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Abstract: Statistics represents that body of methods by which characteristics of a population are inferred through 
observations made in a representative sample from that population. Since scientists rarely observe entire 
populations, sampling and statistical inference are essential. This article first discusses some general principles for 
the planning of experiments and data visualization. Then, a strong emphasis is put on the choice of appropriate 
standard statistical models and methods of statistical inference. (1) Standard models (binomial, Poisson, normal) 
are described. Application of these models to confidence interval estimation and parametric hypothesis testing are 
also described, including two-sample situations when the purpose is to compare two (or more) populations with 
respect to their means or variances. (2) Non-parametric inference tests are also described in cases where the data 
sample distribution is not compatible with standard parametric distributions. (3) Resampling methods using many 
randomly computer-generated samples are finally introduced for estimating characteristics of a distribution and for 
statistical inference. The following section deals with methods for processing multivariate data. Methods for 
dealing with clinical trials are also briefly reviewed. Finally, a last section discusses statistical computer software 
and guides the reader through a collection of bibliographic references adapted to different levels of expertise and 
topics. 

 
 Statistics can be called that body of analytical and 
computational methods by which characteristics of a 
population are inferred through observations made in a 
representative sample from that population. Since scientists 
rarely observe entire populations, sampling and statistical 
inference are essential. Although, the objective of statistical 
methods is to make the process of scientific research as 
efficient and productive as possible, many scientists and 
engineers have inadequate training in experimental design 
and in the proper selection of statistical analyses for 
experimentally acquired data. John L. Gill [1] states: 
“…statistical analysis too often has meant the manipulation 
of ambiguous data by means of dubious methods to solve a 
problem that has not been defined.” The purpose of this 
article is to provide readers with definitions and examples 
of widely used concepts in statistics. This article first 
discusses some general principles for the planning of 
experiments and data visualization. Then, since we expect 
that most readers are not studying this article to learn 
statistics but instead to find practical methods for analyzing 
data, a strong emphasis has been put on choice of 
appropriate standard statistical model and statistical 
inference methods (parametric, non-parametric, resampling 
methods) for different types of data. Then, methods for 
processing multivariate data are briefly reviewed. The 
section following it deals with clinical trials. Finally, the 
last section discusses computer software and guides the 
reader through a collection of bibliographic references 
adapted to different levels of expertise and topics. 
 

DATA SAMPLE AND EXPERIMENTAL DESIGN 

Any experimental or observational investigation is 
motivated by a general problem that can be tackled by 
answering specific questions. Associated with the general 
problem will be a population. For example, the population 

can be all human beings. The problem may be to estimate the 
probability by age bracket for someone to develop lung cancer. 
Another population may be the full range of responses of a 
medical device to measure heart pressure and the problem may 
be to model the noise behavior of this apparatus. 

Often, experiments aim at comparing two sub-
populations and determining if there is a (significant) 
difference between them. For example, we may compare the 
frequency occurrence of lung cancer of smokers compared to 
non-smokers or we may compare the signal to noise ratio 
generated by two brands of medical devices and determine 
which brand outperforms the other with respect to this measure. 

How can representative samples be chosen from such 
populations? Guided by the list of specific questions, samples 
will be drawn from specified sub-populations. For example, the 
study plan might specify that 1000 presently cancer-free 
persons will be drawn from the greater Los Angeles area. These 
1000 persons would be composed of random samples of 
specified sizes of smokers and non-smokers of varying ages 
and occupations. Thus, the description of the sampling plan 
will imply to some extent the nature of the target sub-
population, in this case smoking individuals. 

Choosing a random sample may not be easy and there 
are two types of errors associated with choosing representative 
samples: sampling errors and non-sampling errors. Sampling 
errors are those errors due to chance variations resulting from 
sampling a population. For example, in a population of 100,000 
individuals, suppose that 100 have a certain genetic trait and in 
a (random) sample of 10,000, 8 have the trait. The 
experimenter will estimate that 8/10,000 of the population or 
80/100,000 individuals have the trait, and in doing so will have 
underestimated the actual percentage. Imagine conducting this 
experiment (i.e., drawing a random sample of 10,000 and 
examining for the trait) repeatedly. The observed number of 
sampled individuals having the trait will fluctuate. This 
phenomenon is called the sampling error. Indeed, if sampling 



STATISTICAL METHODS 

 2

is truly random, the observed number having the trait in 
each repetition will fluctuate “randomly” about 10. 
Furthermore, the limits within which most fluctuations will 
occur are estimable using standard statistical methods. 
Consequently, the experimenter not only acknowledges the 
presence of sampling errors, but he can estimate their 
effect.  

In contrast, variation associated with improper 
sampling is called non-sampling error. For example, the 
entire target population may not be accessible to the 
experimenter for the purpose of choosing a sample. The 
results of the analysis will be biased if the accessible and 
non-accessible portions of the population are different with 
respect to the characteristic(s) being investigated. 
Increasing sample size within the accessible portion will 
not solve the problem. The sample, although random within 
the accessible portion, will not be “representative” of the 
target population. The experimenter is often not aware of 
the presence of non-sampling errors (e.g., in the above 
context, the experimenter may not be aware that the trait 
occurs with higher frequency in a particular ethnic group 
that is less accessible to sampling than other groups within 
the population). Furthermore, even when a source of non-
sampling error is identified, there may not be a practical 
way of assessing its effect. The only recourse when a 
source of non-sampling error is identified is to document 
its nature as thoroughly as possible. Clinical trials 
involving survival studies are often associated with specific 
non-sampling errors (see the section dealing with clinical 
trials below). 

 
DESCRIPTIVE STATISTICS 

 Descriptive statistics are tabular, graphical, and 
numerical methods by which essential features of a sample 
can be described. Although these same methods can be 
used to describe entire populations, they are more often 
applied to samples in order to capture population 
characteristics by inference.  
 We will differentiate between two main types of 
data samples: qualitative data samples and quantitative data 
samples. Qualitative data arises when the characteristic 
being observed is not measurable. A typical case is the 
“success” or “failure” of a particular test. For example, to 
test the effect of a drug in a clinical trial setting, the 
experimenter may define two possible outcomes for each 
patient: either the drug was effective in treating the patient, 
or the drug was not effective. In the case of two possible 
outcomes, any sample of size n can be represented as a 
sequence of n nominal outcome x1, x2,…, xn that can 
assume either the value “success” or “failure”. 
 By contrast, quantitative data arise when the 
characteristics being observed can be described by 
numbers. Discrete quantitative data is countable whereas 
continuous data may assume any value, apart from any 
precision constraint imposed by the measuring instrument. 
Discrete quantitative data may be obtained by counting the 
number of each possible outcome from a qualitative data 
sample. Examples of discrete data may be the number of 
subjects sensitive to the effect of a drug (number of 
“success” and number of “failure”). Examples continuous 
data are weight, height, pressure, and survival time. Thus, 
any quantitative data sample of size n may be represented 

as a sequence of n numbers x1, x2, …, xn and sample statistics 
are functions of these numbers.  
 Discrete data may be preprocessed using frequency 
tables and represented using histograms. This is best illustrated 
by an example. For discrete data, consider a survey in which 
1000 patients fill in a questionnaire for assessing the quality of 
a hearing aid device. Each patient has to rank product 
satisfaction from 0 to 5, each rank being associated with a 
detailed description of hearing quality. Table 1 represents the 
frequency of each response type. A graphical equivalent is the 
frequency histogram illustrated in Fig. 1.  In the histogram, the 
heights of the bars are the frequencies of each response type. 
The histogram is a powerful visual aid to obtain a general 
picture of the data distribution. In Fig. 1, we notice a majority 
of answers corresponding to response type “2” and a 10-fold 
frequency drop for response types “0” and “5” compared to 
response type “2”. 

For continuous data, consider the data sample in Table 
2, which represents amounts of infant serum calcium in mg/100 
ml for a random sample of 75 week-old infants whose mothers 
received vitamin D supplements during pregnancy. Little 
information is conveyed by the list of numbers. To depict the 
central tendency and variability of the data, Table 3 groups the 
data into six classes, each of width 0.03 mg/100 ml. The 
“frequency” column in Table 3 gives the number of sample 
values occurring in each class. The picture given by the 
frequency distribution Table 3 is a clearer representation of 
central tendency and variability of the data than that presented 
by Table 2. In Table 3, data are grouped in six classes of equal 
size and it is possible to see the “centering” of the data about 
the 9.325–9.355 class and its variability—the measurements 
vary from 9.27 to 9.44 with about 95% of them between 9.29 
and 9.41. The advantage of grouped frequency distributions is 
that grouping smoothes the data so that essential features are 
more discernible. Fig. 2 represents the corresponding 

Satisfaction rank Number of responses 
0 38 
1 144 
2 342 
3 287 
4 164 
5 25 

Total 1000 
Table 1. Result of a hearing aid device satisfaction survey in 
1000 patients showing the frequency distribution of each 
response. 

 
Fig. 1. Frequency histogram for the hearing aid device 
satisfaction survey of Table 1. 
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histogram. The sides of the bars of the histogram are drawn 
at the class boundaries and their heights are the frequencies 
or the relative frequencies (frequency/sample size). In the 
histogram, we clearly see that the distribution of the data 
centered about the point 9.34. Although grouping smoothes 
the data, too much grouping (that is choosing too few 
classes) will tend to mask rather than enhance the sample’s 
essential features. 
 There are many numerical indicators for 
summarizing and describing data. The most common ones 
indicate central tendency, variability, and proportional 
representation (the sample mean, variance, and percentiles, 
respectively). We shall assume that any characteristic of 
interest in a population, and hence in a sample, can be 
represented by a number. This is obvious for measurements 
and counts, but even qualitative characteristics (described 
by discrete variables) can be numerically represented. For 
example, if a population is dichotomized into those 
individuals who are carriers of a particular disease and 
those who are not, a 1 can be assigned to each carrier and a 
0 to each non-carrier. The sample can then be represented 

by a sequence of 0s and 1s.  
The most common measure of central tendency is the 

sample mean: 
 

1 2( ... ) / also notednM x x x n X= + + +  (1) 
 

where x1, x2,…, xn is the collection of numbers from a sample of 
size n. The sample mean can be roughly visualized as the 
abscissa of the horizontal center of gravity of the frequency 
histogram. For the serum calcium data of Table 2, M=9.34 
which happens to be the midpoint of the highest bar of the 
histogram (Fig. 2). This histogram is roughly symmetric about 
a vertical line drawn through M but this is not necessarily true 
of all histograms. Histograms of counts and survival times data 
are often skewed to the right (long-tailed with concentrated 
“mass” at the lower values). Consequently, the idea of M as a 
center of gravity is important to bear in mind when using it to 
indicate central tendency. For example, the median (described 
later in this section) may be a more appropriate index of 
centrality depending on the type of data and the kind of 
information one wishes to convey. 

The sample variance, defined by 
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is a measure of variability or dispersion of the data. As such it 
can be motivated as follows: xi-M is the deviation of the ith 
data sample from the sample mean, that is, from the “center” of 
the data; we are interested in the amount of deviation, not its 
direction, so we disregard the sign by calculating the squared 
deviation (xi-M)2; finally, we “average” the squared deviations 
by summing them and dividing by the sample size minus 1. 
(Division by n – 1 ensures that the sample variance is an 
unbiased estimate of the population variance.) Note that an 
equivalent and often more practical formula for computing the 
variance may be obtained by developing Equation (2):  
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A measure of variability in the original units is then obtained 
by taking the square root of the sample variance. Specifically, 
the sample standard deviation, denoted s, is the square root of 
the sample variance. 

For the serum calcium data of Table 2, s2 = 0.0010 and 
s = 0.03 mg/100 ml. The reader might wonder how the number 
0.03 gives an indication of variability. Note that for the serum 
calcium data M±s=9.34±0.03 contains 73% of the data, 
M±2s=9.34±0.06 contains 95% and M±3s=9.34±0.09 contains 
99%. It can be shown that the interval M±3s will include at 
least 89% of any set of data (irrespective of the data 
distribution). 

An alternative measure of central tendency is the 
median value of a data sample. The median is essentially the 
sample value at the middle of the list of sorted sample values. 
We say “essentially” because a particular sample may have no 
such value. In an odd-numbered sample, the median is the 
middle value; in an even-numbered sample, where there is no 
middle value, it is conventional to take the average of the two 
middle values. For the serum calcium data of Table 3, the 
median is equal to 9.34.  

Fig. 2. Frequency histogram of infant serum calcium data of 
Table 2 and 3. The curve on the top of the histogram is 
another representation of probability density for continuous 
data. 

9.37 9.34 9.38 9.32 9.33 9.28 9.34 
9.29 9.36 9.30 9.31 9.33 9.34 9.35 
9.35 9.36 9.30 9.32 9.33 9.35 9.36 
9.32 9.37 9.34 9.38 9.36 9.37 9.36 
9.36 9.33 9.34 9.37 9.44 9.32 9.36 
9.38 9.39 9.34 9.32 9.30 9.30 9.36 
9.29 9.41 9.27 9.36 9.41 9.37 9.31 
9.31 9.33 9.35 9.34 9.35 9.34 9.38 
9.40 9.35 9.37 9.35 9.32 9.36 9.35 
9.35 9.36 9.39 9.31 9.31 9.30 
9.31 9.36 9.34 9.31 9.32 9.34 

Table 2. Serum calcium (mg/100 ml) in a random sample of 
75 week-old infants whose mother received vitamin D 
supplement during pregnancy. 

Serum calcium (mg/100 mL) Frequency 
9.265–9.295 4 
9.295–9.325 18 
9.325–9.355 24 
9.355–9.385 22 
9.385–9.415 6 
9.415–9.445 1 
Total 75 

Table 3. Frequency distribution of infant serum calcium data. 
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By extension to the median, the sample p percentile 
(say 25th percentile for example) is the sample value at or 
below which p% (25%) of the sample values lie. If there is 
no value at a specific percentile, the average between the 
upper and lower closest existing round percentile is used. 
Knowledge of a few sample percentiles can provide 
important information about the population.  

For skewed frequency distributions, the median 
may be more informative for assessing a population 
“center” than the mean. Similarly, an alternative to the 
standard deviation is the interquartile range: it is defined as 
the 75th minus the 25th percentiles and is a variability 
index not as influenced by outliers as the standard 
deviation.  

There are many other descriptive and numerical 
methods (see for instance [2]). It should be emphasized that 
the purpose of these methods is usually not to study the 
data sample itself but rather to infer a picture of the 
population from which the sample is taken. In the next 
section, standard population distributions and their 
associated statistics are described. 

 
PROBABILITY, RANDOM VARIABLES, AND 

PROBABILITY DISTRIBUTIONS 

The foundation of all statistical methodology is 
probability theory, which progresses from elementary to the 
most advanced mathematics. Much of the 
misunderstanding and abuse of statistics comes from the 
lack of understanding of its probabilistic foundation. When 
assumptions of the underlying probabilistic (mathematical) 
model are grossly violated, derived inferential methods will 
lead to misleading and irrational conclusions. Here, we 
only discuss enough probability theory to provide a 
framework for this article. 

In the rest of this article, we will study experiments 
that have more than one possible outcome, the actual 
outcome being determined by some chance mechanism. 
The set of possible outcomes of an experiment is called its 
sample space; subsets of the sample space are called events, 
and an event is said to occur if the actual outcome of the 
experiment is a member of that event. A simple example 
follows.  

The experiment will be the toss of a pair of fair 
coins, arbitrarily labeled coin number 1 and coin number 2. 
The outcome (1,0) means that coin #1 shows a head and 
coin #2 shows a tail. We can then specify the sample space 
by the collection of all possible outcomes: 

 
{(0,0) (0,1) (1,0) (1,1)}S =  

 
There are 4 ordered pairs so there are 4 possible outcomes 
in this coin-tossing experiment. Consider the event A “toss 
one head and one tail,” which can be represented by A = 
{(1,0) (0,1)}. If the actual outcome is (0,1) then the event A 
has occurred. 

In the example above, the probability for event A to 
occur is obviously 50%. However, in most experiments it is 
not possible to intuitively estimate probabilities, so the next 
step in setting up a probabilistic framework for an 
experiment is to assign, through some mathematical model, 
a probability to each event in the sample space.  

Definition of Probability 

A probability measure is a rule, say P, which associates 
with each event contained in a sample space S a number such 
that the following properties are satisfied: 

 
1: For any event, A, P(A) ≥ 0. 

2: P(S) = 1 (since S contains all the outcomes, S always 
occurs). 

3: P(not A)+P(A)=1.  

4: If A and B are mutually exclusive events (that cannot 
occur simultaneously) and independent events (that are 
not linked in any way), then 

 
P(A or B) = P(A) + P(B) and 

 
P(A and B) = 0    

 
Many elementary probability theorems (rules) follow directly 
from these definitions. 

Probability and relative frequency 

The axiomatic definition above and its derived theorems 
dictate the properties that probability must satisfy, but they do 
not indicate how to assign probabilities to events. The major 
classical and cultural interpretation of probabilities is the 
relative frequency interpretation. Consider an experiment that 
is (at least conceptually) infinitely repeatable. Let A be any 
event and let nA be the number of times the event A occurs in n 
repetitions of the experiment; then the relative frequency of 
occurrence of A in the n repetitions is nA/n. For example, if 
mass production of a medical device reliably yields 7 
malfunctioning devices out of 100, the relative frequency of 
occurrence of a defective device is 7/100.  

The probability of A is defined by P(A) = lim nA/n as n 
→ ∞, where this limit is assumed to exist. The number P(A) 
can never be known, but if the experiment can in fact be 
repeated a “large” number of times, it can be estimated by the 
relative frequency of occurrence of A. 

The relative frequency interpretation is an objective 
interpretation because the probability of an event is assumed to 
be independent of judgment by the observer. In the subjective 
interpretation of probability, a probability is assigned to an 
event according to the assigner’s strength of belief that the 
event will occur, on a scale of 0 to 1. The “assigner” could be 
an expert in a specific field, for example, a cardiologist that 
provides the probability for a sample of electrocardiograms to 
be pathological.  

Probability distribution definition and probability mass 
function 

We have assumed that all data can be numerically 
represented. Thus, the outcome of an experiment in which one 
item will be randomly drawn from a population will be a 
number, but this number cannot be known in advance. Let the 
potential outcome of the experiment be denoted by X, which is 
called a random variable in statistics. When the item is drawn, 
X will be realized or observed. Although the numerical values 
that X will take cannot be known in advance, the random 
mechanism that governs the outcome can perhaps be described 
by a probability model. Using the model, we may calculate the 
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probability that the random variable X will take a value 
within a set or range of numbers.  

One such popular mathematical model is the 
probability distribution of a discrete random variable X. It 
can be best described as a mathematical equation or table 
that gives, for each value x that X can assume, the 
probability associated with this value P(X = x). For 
instance, if X represents the outcome of the tossing of a 
coin, there are two possible outcomes, “tail” and “head”. If 
it is a fair coin P(X=”tail”)=0.5 and P(X=”head”)=0.5. In 
statistics, the function P(X = x) is called the probability 
mass function of X.  

It follows from the relative frequency interpretation 
of probability that, for a discrete random variable or for the 
frequency distribution of a continuous variable, relative 
frequency histograms estimate the probability mass 
functions of this variable. For example, in Table 3, if the 
random variable X indicates the serum calcium measure, 
then  

 
l l( ) (9.265 9.295) 4 / 75 P X is in the first bin P X= ≤ < =  

 
the ^ symbol on P indicating estimated probability values, 
since actual probabilities describe the population itself and 
cannot be calculated from data samples. Similarly the 
probability that X is in the 2nd bin, the 3rd bin, … can be 
estimated and the collection of these probabilities constitute 
an estimated probability mass function. 

Probability density function for continuous variables 

The probability mass function above best describes 
discrete events but what probabilities can we assign to 
continuous variables? Since a continuous variable X can 
assume any value on a continuum, the probability that X 
assumes a particular value is 0 (except in very particular 
cases that will not be discussed here). Consequently, 
associated with a continuous random variable X, is a 
function fX, called its probability density function that can 
be used to compute probability. The probability that a 
continuous random variable X assumes a value between 
values x1 and x2 is the area under the graph of fX over the 
interval x1 and x2; mathematically 

 

P x X x f x dxXx

x
( ) ( )1 2

1

2
≤ ≤ = z    (5) 

 
For example, for the infant serum data of Table 2 

(see also Table 3), we would estimate that the probability 
that an infant whose mother received vitamin D supplement 
during pregnancy has between 9.35 and 9.38 mg/100 ml 
calcium is 22/75 or 0.293, which is the relative frequency 
of the 9.355–9.385 class in the sample. For continuous 
data, a smooth curve passing through the midpoint of a 
histogram bars’ upper limit should resemble the probability 
density function of the underlying population. 

There are many mathematical models of probability 
distribution. Three of the most commonly used probability 
distribution models described below are the binomial 
distribution and the Poisson distribution for discrete 
variables, and the normal distribution for continuous 
variables. 

The binomial distribution 

The scenario leading to the binomial distribution is an 
experiment that consists of n independent, repeated trials, each 
of which can end in only one of two ways arbitrarily labeled 
“success” or “failure.” The probability that any trial ends in a 
“success” is p (and hence q = 1 – p for a “failure”). Let the 
random variable X denote the total number of successes in the n 
trials, and x denote a number in {0; …; n}. Under these 
assumptions: 

 

( ) 0,  1, .... x n xn
P X x p q x n

x
− 

= = = 
 

 (6) 

 
with 

!
!( )!

n n
x x n x

 
=  − 

   (7) 

 
where n!=1*2*3…*n is n factorial.  

For example, suppose the proportion of carriers of an 
infectious disease in a large population is 10% (p = 0.1) and 
that the number of carriers follows a binomial distribution. If 
20 individuals are sampled (n = 20) and X is the number of 
carriers (“successes”) in the sample, then the probability that 
there will be exactly one carrier in the sample is  

 
1 20 120

( 1) (0.10) (0.90) 0.27
1

P X − 
= = = 

 
 

 
More complex probabilities may be calculated with the help of 
probability rules and definitions. For instance the probability 
that there will be at least two carriers in the sample is 
 

( )

rd

th

0 20 1 19

( 2) 1 ( 2) see 3 probability definition
1 ( 0 1)
1 ( 0) ( 1) see 4 probability definition

20 20
1 (0.10) (0.90) (0.10) (0.90)

0 1
1 0.12 0.27 0.61

P X P X
P X or X
P X P X

≥ = − <
= − = =

= − = + =

   
= − −   

   
= − − =

 

 
Historically, single trials of a binomial distribution are called 
Bernoulli variates after the Swiss mathematician James 
Bernoulli who discovered it at the end of the seventeenth 
century. 

The Poisson distribution 

The Poisson distribution is often used to represent the 
number of successive independent events of a specified type 
(for example cases of flu) with low probability of occurrence 
(less than 10%) in some specified interval of time or space. The 
Poisson distribution is also often used to represent the number 
of occurrence of events of a specified type where there is no 
natural upper limit, for example the number of radioactive 
particles emitted by a sample over a set time period. 
Specifically, X is a Poisson random variable if it obeys the 
following formula: 

 
P X x e x xx( ) != = =−λλ 0,  1,  2,  …  (8) 
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where e = 2.178…is the natural logarithmic base and λ is a 
given constant. For example, suppose the number of a 
particular type of bacteria in a standard area (e.g., 1 cm2) 
can be described by a Poisson distribution with parameter λ 
= 5. Then, the probability that there are no more than 3 
bacteria in the standard area is given by 
 

5 0 5 1 5 2 5 3

( 3) ( 0) ( 1) ( 2) ( 3)
5 0! 5 1! 5 2! 5 3! 0.265

P X P X P X P X P X
e e e e− − − −

≤ = = + = + = + =

= + + + =
 

Note that the Poisson and the binomial distributions 
are closely related. In the case of a rare event (p<10%), the 
binomial distribution (described by probability p and n 
events) is well approximated by the Poisson distribution 
with the constant λ=np. The Poisson distribution was 
named after the French mathematician Siméon-Denis 
Poisson, who discovered it in the early part of the 
nineteenth century. 

The normal distribution 

The binomial and Poisson distributions describe 
discrete events but there are also many distributions 
describing continuous variables. The most important one is 
the normal distribution (also called Laplace-Gauss 
distribution as it was discovered by the French astronomer 
Pierre-Simon Laplace and the German mathematician Karl 
Friedrich Gauss in the early nineteenth century). Normal 
distributions arise as a result of many small random 
fluctuations about some general average (for example, 
repeated recordings of a constant body temperature using a 
noisy electronic thermometer). A random variable X is said 
to be a normal or Gaussian random variable with mean 
parameter μ and standard deviation parameter σ if its 
probability density function is 

 
2

2
( )

21( )
2

x

Xf x e x
μ
σ

σ π

−

= −∞ < < ∞   (9) 

 
 The normal probability density function graphed in 
Fig. 3, is bell shaped with tails rather rapidly receding to 
zero height. Because fX represents probability density, the 
total area bounded by the curve is 1 (see Equation (9)). The 

area between two values of variable X (x1 and x2 where x1<x2) 
represents the probability that X lies between x1 and x2 
(Equation (5)).  

As shown in Fig. 3, if X is normal (μ, σ), it can be 
calculated that P(μ – 3σ ≤ X ≤ μ + 3σ) = 0.997, which, 
according to the relative frequency interpretation of probability, 
states that about 99.7% of a large sample from a “normally 
distributed population” will be contained in the interval mean 
plus or minus three standard deviations (μ ± 3σ).  

 
 

 Note that there is a relation between the normal and the 
binomial distribution. Using the same notation as in Equation 
(6), if n, the number of samples, is large enough then the 
variable z defined as 
 

-x npz
npq

=                                          (10) 

 
is approximately normally distributed with mean 0 and 
standard deviation 1. In a coin throwing experiment, throwing 
the coin a large number of times and counting the number of 
heads x, then building a histogram for the value z, the 
histogram will be close to a normal distribution (as shown in 
Fig. 3). Similarly, there is a relation between the Poisson and 
the normal distribution, the variable z defined as z=(x-λ)/λ is 
normally distributed for large values of λ. 

Many statistical inferential methods described in the 
next section assume that the data is approximately normally 
distributed. Much abuse occurs, however, when these methods 
are applied blindly with no verification of the normality 
assumption. Incidentally, methods that incorporate assumptions 
of normality often can be applied to non-normal situations 
because under certain conditions, the normal distribution can 
approximate other distributions, such as the binomial and the 
Poisson distributions. Sometimes, the data can also be 
preprocessed to fit the normal distribution. For example, a 
histogram might indicate non-normality, while a histogram of 
the logarithms of the data would fit the normal distribution, 
indicating that normal-based models can be applied to the log-
transformed data. These transformations are discussed in most 
experimental design textbooks. 

The importance of the normal distribution in statistics is 
also due to the central limit theorem in statistics which states 
that the distribution of any linear mixture of two or more 
independent random variables is more normal (has a shape 
closer to the normal distribution) than the distribution of the 
random variables themselves. This property is used by some 
algorithms processing multivariate data (as described in a later 
section). 

There are many other continuous probability 
distributions besides the normal distribution. For example, the 
most commonly used distribution in survival analysis is the 
Weibull distribution. The von Mises distribution allows 
parametric statistical tests for periodic data (i.e., seasonal).  

Characteristics of probability distributions 

Just as there are numerical indexes for sample 
description, for example, sample means, variances, and 
percentiles, there are numerical characteristics of probability 
distributions. The expectation or mean (not sample mean) of an 
random variable X is 

Fig. 3.  The normal probability density function showing 
symmetry about a vertical line through μ and the role of σ as a 
variability parameter. Vertical bars indicates ±σ, ±2σ, ±3σ. 

- 
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The expectation E is a measure of central tendency for a 
population (i.e., the center of gravity of the probability 
distribution about the y axis). The variance of X is defined 
in terms of expectation by 
 

Var( ) {[ ( )] }X E X E X≡ − 2   (12) 
 

In words, Var(X) is the expected squared deviation of X 
from E(X), and in this sense is a measure of variability or 
dispersion for a population. The standard deviation of X is 
the square root of its variance. Table 4 indicates mean and 
variance for the binomial, the Poisson, and the normal 
distribution.  
 

 Binomial Poisson Normal 
Mean µ = Np µ = λ µ 
Variance σ2  = Npq σ2  = λ σ2 

Table 4. Mean and variance for standard distributions (see 
text for details). 

Numerical descriptors of populations are often the 
very things we want to know about populations. They 
should not be confused with their sample counterparts; the 
sample numerical descriptors are the basis for drawing 
inferences regarding their population counterparts, which 
are of primary interest. 

 
STATISTICAL INFERENCE 

A statistical hypothesis is a statement about the 
probability distribution of populations using one or more 
data samples. Typical questions are “is this single data 
sample consistent with this theoretical distribution of 
values?”, “are these two data samples originating from the 
same population?”, “are these n data samples originating 
from the same population?”. Associated with each of these 
questions, in statistics, two hypotheses are usually 
formulated.  

 
Hypothesis H0: All data samples originate from the same 
population (or the single data sample is consistent with a 
given theoretical distribution).  
 
Hypothesis H1: Some data samples do not originate from 
the same population (or the single data sample is not 
consistent with the given theoretical distribution). 
 

The test is called significant if we reject hypothesis 
H0 with respect to a user-defined confidence interval (for 
instance 5% of chance of wrongly rejecting H0). It is 
important to remember that inference tests can never 
disprove hypothesis H0. Instead, based on the significance 
threshold and on the inference test we have chosen, we can 
say that the data support rejecting H0. The test is called 
non-significant if we accept hypothesis H0 and reject 
hypothesis H1. Accepting H0 means that we failed to find 
any significant difference with respect to our user-defined 
confidence interval. Because the error in accepting H0 is 

usually large (see error types below), in general we should 
avoid drawing any conclusion about the experiment when 
accepting H0. 

 
Degree of freedom: Elementary tests usually depend on the 
data sample size as well as the number of parameters, (e.g. 
mean or variance) that have to be estimated from the sample, to 
run the test. Specifically, the number of degrees of freedom of a 
statistics is defined as the number of independent observations 
minus the number of population parameters which must be 
estimated from sample observations. Details will be provided 
for each test. 
 
p-values: Once hypotheses H0 and H1 have been defined, that a 
test has been chosen  to address these hypotheses (see below), 
and that parameters for this test have been calculated, one must 
choose a level of significance. p<0.05 is the arbitrary value that 
is generally accepted to be significant. It means that there must 
be less than a 5% possibility of falsely detecting a significant 
difference. We will now describe how the p value relates to the 
different types of errors associated with elementary tests.  
 
Type I and type II errors: If we reject a hypothesis H0 when it 
should be accepted, we say that a type I error has been made. If 
we accept a hypothesis H0 when it should be rejected we say 
that a type II error has been made. In either case a wrong 
decision or judgment has occurred. This is not a simple matter 
because decreasing one error type usually leads to increasing 
the other error type. One way of getting around this problem is 
just to set your significance level at .05 (and not at .01 or .001). 
In this way you are balancing between type I and type II errors 
in your decision making process. One way to decrease both 
error types is to increase the size of the sample. However, two 
ways of analyzing the same size dataset (i.e. two types of 
inference test) might have different efficiency, so that the more 
efficient might give better performance on both error types. As 
an example of type I and type II errors, let’s imagine that there 
is a significant difference between the average of blood 
pressure measured from a population of patients and the 
general population at p=0.05. Then there will be a 5% chance 
that our statement is false (type I error). This means that if we 
repeat the test 100 times, when in fact no real effects are 
present, we will draw a wrong conclusion about 5% of the time 
that we observe a significant difference. In contrast, if we state 
that there is no such difference between population of patients 
at p=0.05, there is not a 5% chance of being wrong but usually 
more (type II error). This is why, in general, when accepting 
hypothesis H0, we should not draw any conclusion about the 
results of an experiment. The exact calculation of type II error 
usually depends on the size of the actual effect in the 
population, hence it is usually described by curves as a function 
of effect magnitude.  
 
Correction for multiple comparisons: When multiple tests are 
performed, the probability that one of them is significant by 
chance becomes larger. As for type I error, if 100 tests are 
performed with significance threshold of p=0.05, when in fact 
no real effects are present, then on average about 5 of them will 
indicate significance, but will be false positives. This is the 
case for instance when processing biophysical images such as 
magnetic resonance imaging data: a collection of values is 
acquired for each coordinate on a 3-D grid and a statistical test 
must be performed on this data. The same problem may arise 
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when processing time series data. The standard 
conservative approach developed by Bonferroni [3] 
consists of dividing the p-value threshold by the number of 
comparisons performed. For example, for 100 tests 
performed at p=0.05, the corrected p value is 
0.05/100=0.0005. This is a conservative approach and a 
less stringent method has been developed by Holm [4]: first 
choose a significance level p=α (e.g., p=0.05). Then 
compute the exact p-value for each test (which is usually 
possible using modern computerized approaches). Rank the 
collection of p-values from smallest to largest. The smallest 
p-value is tested against α/N, where N is the number of 
tests. If the smallest p-value is not less than α/N, stop the 
procedure. However, if it is less than α/N, proceed to test 
the second smallest p-value against α/(N-1), etc... A variant 
of the Holm’s procedure consist of testing the first p-value 
against α/N, the second one against 2α/N, the third one 
against 3α/N, etc. Technical details and theory about 
multiple comparisons may be found in [5]. 
 
Paired/unpaired samples: Table 5 distinguishes between 
paired versus unpaired data samples. For unpaired data 
samples, there is no direct correspondence between values. 
This may be the case when a specific measure (e.g., blood 
pressure) is taken from two distinct populations of patients 
(e.g., patients suffering from heart failure and control 
patients). The two data samples corresponding to the two 
groups of patients are said to be unpaired because there is 
no relationship between them. In contrast, for paired 
samples, each value in one sample corresponds to a value 
in the other sample. In the previous example, it could be the 
case if each patient tested had a twin volunteering to be a 
control patient. This would also be the case if two 
assessments were performed on the same patients (e.g., 
measure of blood pressure before and after taking a drug). 
Note that paired groups must necessarily be of the same 

size. Matched/unmatched data samples are an extension of 
paired/unpaired data samples when there are more than two 
samples.  
 
Sampling with or without replacement: Sampling with 
replacement means that each item is put back in the data 
sample after being sampled (so it may be sampled more than 
once and appear twice or more in a data sample). Sampling 
with replacement satisfies the requirement that the trials are 
independent, but when the sample size is small relative to the 
size of the population, sampling with or without replacement 
makes little difference. In elementary statistics, a representative 
sample is synonymous with the concept of a "random" sample. 
When sampling from a population of finite size, a sample of n 
items is a random sample if it is chosen in such a way that any 
other sample of size n would be equally likely to be chosen. 
Sampled items can be chosen with or without replacement. 
Although impractical in many situations, sampling with 
replacement leads to easier mathematical analysis. When the 
population is large relative to the sample size, the analytical 
methods developed for sampling with replacement yield good 
approximations. A random sample can be chosen by assigning 
a number to each member of the population, and then choosing 
at random n numbers (with or without replacement). This can 
be done by the so-called Monte-Carlo method (consisting of 
random draws) that uses computer-generated (pseudo) random 
numbers. 

Table 5 indicates which statistical test should be used 
depending on data type and question type. We have already 
described most types of questions when we defined hypotheses 
H0 and H1. We did not cover the last row of Table 5 which is 
concerned with the relationship between data samples (or more 
specifically the relationship between variables underlying two 
paired data samples). The corresponding question may be 
formulated as “is there any relationship between the two 
variables (e.g., two paired measurements)?” The H0 hypothesis 
is that there is no relationship between the two variables. 

Dataset 
 
 

Goal 
 

Binomial or Discrete Continuous measurement 
(from a normal distribution) 

Continuous measurement, 
Rank, or Score (from non-

normal distribution) 

Example of data sample 
List of patients recovering or not 

after a treatment 
Readings of heart pressure from 

several patients 
Ranking of several treatment 

efficiency by one expert 

Describe one data sample Proportions Mean, SD Median 

Compare one data sample to a 
hypothetical distribution χ2 or binomial test One-sample t test Sign test or Wilcoxon test 

Compare two paired samples Sign test Paired t test Sign test or Wilcoxon test 

Compare two unpaired  samples χ2 square 
Fisher's exact test Unpaired t test Mann-Whitney test 

Compare three or more 
unmatched samples χ2 test One-way ANOVA Kruskal-Wallis test 

Compare three or more matched 
samples Cochrane Q test Repeated-measures ANOVA Friedman test 

Quantify association between 
two paired samples Contingency coefficients Pearson correlation Spearman correlation 

Table 5. Which statistical inference test to use for which type of data. All statistical tests in this table are described in the text and often 
instantiated using a numerical example. 
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Columns of Table 5 contain elementary tests for 
different types of variables. Elementary tests cover 
confidence interval estimation and parametric hypothesis 
testing for situations involving normally distributed 
samples, including two-sample situations where the 
purpose is to compare two populations with respect to their 
means or variances. Other types of elementary confidence 
intervals are for proportions and difference of proportions, 
usually based on the binomial distribution or based on the 
normal approximation to the binomial distribution. 
Confidence interval estimation for parameters of non-
normal distributions are much more difficult and closed 
form formulas often do not exist. In these cases, 
experimenters must use non-parametric statistical tests that 
only take into account rank ordering of data samples. They 
may also use resampling statistical tests, which estimates 
confidence intervals using many computer-generated 
random resamplings. For practicality, in Table 5, we 
divided hypothesis testing into three main categories: 
hypothesis testing on discrete variables, parametric 
statistical testing on continuous variables, and non- 
parametric statistical testing on continuous variables. We 
will deal in a separate section with resampling methods 
since it may be applied to any type of data. The list of tests 
is not exhaustive but instead seeks to provide, within the 
limited scope of this short article, a range of methods to 
perform statistical inference on different types of data. 

Which type of test to use is often one of the most 
delicate choices an experimenter has to make. For 
continuous data for instance, one could use at least three 
tests: a parametric, a non-parametric, or a resampling 
inference test. Different tests make different assumptions: 
parametric test such as the t-test make the hypothesis that 
the data is normally distributed. Non-parametric tests make 
fewer assumptions about the population distribution but 
require more data samples. Resampling tests make the 
assumption that the data samples are an accurate 
representation of the population. There is no ideal test 
(although some applied statisticians would argue that 
resampling methods are indeed superior to other methods), 
and the test to choose often depends on the type of data 
being processed or common usage in one specific field of 
research. 

Testing hypothesis on discrete variables 

 For discrete variables, data is most often 
represented by proportions of different outcomes. As 
shown in the first column of Table 5, specific tests have 
been designed to deal and compare proportions between 
data samples. Some of these tests (as indicated below) can 
only deal with binomial data samples (“success” or 
“failure”). 

Goodness of fit to distribution for one data sample  

 A goodness of fit test may be used to compare one 
data sample to a hypothetical value or distribution. In a 
goodness-of-fit test the hypotheses are concerned with the 
distribution itself. For example, a drug has been repeatedly 
tested on adults and has shown minor side effects in 2.5% 
of the cases in which it was administered. To validate this 
drug for treating children, it is given to a sample of 300 
children. The goal of this study is to determine if children 
showed more or less side effects than adults. The 

hypothesis H0 is that the distribution of sample data values for 
children is generally the same as the hypothetical distribution 
for adults. The hypothesis H1 is that the distribution of sample 
data values for children generally differs from the hypothetical 
distribution for adults. Table 6 indicates that 13 out of 300 
children showed an abnormal reaction to the drug. The second 
column in Table 6 indicates the expected values from the 
theoretical distribution (2.5% of cases for 300 subjects is 7.5 
individuals; it is not so important that the expected value is not 
a whole number since this distribution is only theoretical).  

The χ2 value is then simply calculated by comparing the 
expected frequencies e1 (7.5 individuals showing side effects) 
and e2 (292.5 individuals showing no side effects) to the 
observed frequencies O1 (13) and O2 (287) using the formula: 

 
2 2

2 1 1 2 2

1 2

(O ) (O )e e
e e

χ − −
= +   

 
or more generally 

 
2

2 (O )i i

i i

e
e

χ −
=∑                                      (13) 

 
where Oi is the frequency observation in row i and ei is the 
corresponding expected frequency. The degrees of freedom is 
equal to (n - 1), where n is the number of rows in the table. 
Once the χ2 value and the degrees of freedom have been 
calculated, the critical value for χ2

crit can be looked up in Table 
7 for a given level of significance. If χ2 > χ2

crit, we reject 

 Children Expected value 
Side effect 13 7.5 
No side effects 287 292.5 
Total 300 300 

Table 6. Measured and expected frequencies of side effect for 
300 children treated with a test drug. 

df p=0.05  p=0.01 p=0.001 df   p=0.05  p=0.01  p=0.001 
1 3.84 6.64 10.83 20  31.41 37.57 45.32 
2 5.99 9.21 13.82 21  32.67 38.93 46.80 
3 7.82 11.35 16.27 22  33.92 40.29 48.27 
4 9.49 13.28 18.47 23  35.17 41.64 49.73 
5 11.07 15.09 20.52 24  36.42 42.98 51.18 
6 12.59 16.81 22.46 25  37.65 44.31 52.62 
7 14.07 18.48 24.32 26  38.89 45.64 54.05 
8 15.51 20.09 26.13 27  40.11 46.96 55.48 
9 16.92 21.67 27.88 28  41.34 48.28 56.89 
10 18.31 23.21 29.59 29  42.56 49.59 58.30 
11 19.68 24.73 31.26 30  43.77 50.89 59.70 
12 21.03 26.22 32.91 35  49.80 57.34 66.62 
13 22.36 27.69 34.53 40  55.76 63.69 73.41 
14 23.69 29.14 36.12 50  67.51 76.15 86.66 
15 25.00 30.58 37.70 60  79.08 88.38 99.62 
16 26.30 32.00 39.25 70  90.53 100.42 112.31
17 27.59 33.41 40.79 80  101.88 112.33 124.84
18 28.87 34.81 42.31 90  113.15 124.12 137.19
19 30.14 36.19 43.82 100 124.34 135.81 149.48

Table 7. χ2 distribution of critical values. To use this table, 
choose a p value (column) and read the value for your 
calculated degrees of freedom (df). If your calculated χ2 value 
is larger than the one you read in the table, the test you 
performed is significant (see text for details). 
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hypothesis H0 in favor of hypothesis H1 and conclude that 
the data support the hypothesis that there is a difference 
between the sample data and the theoretical distribution at 
the 5% level of significance. 
 
 
 In the example shown in Table 6,  
 

2 2
2 (13 7.5) (287 292.5) 4.13

7.5 292.5
χ − −

= + =  

 
with 1 degree of freedom (2 rows minus 1). For a test at the 
5% level of significance (p=0.05) with 1 degree of 
freedom, χ2

crit in the χ2 table (Table 7) is equal to 3.84. 
Since 4.13 > 3.84, the hypothesis that the proportion of 
children having side effects in the same as that of adults is 
rejected. Comparing actual and expected frequencies in 
Table 6, we conclude that children have higher occurrences 
of side effects than adults for this drug. 
 Note that the construction of the χ2 table is 
relatively simple. One can simply assume that a known 
population (whose expected distribution is known) is 
sampled several times and that the χ2 value is computed for 
each of these samples. The histogram of these observed χ2 

values, when in fact no real effects are present, is an 
approximation to the χ2 distribution for the null hypothesis 
(Fig. 4). The tails of this distribution may be used to set 
thresholds for significance testing (if an observed χ2 value 
ends up in the tail of the distribution, then it is likely that it 
does not originate from the known population). For 
example, the χ2 value for a data sample is significantly 
different from the χ2 standard distribution at p=0.05 if it 
lies in the lower or upper tails each containing only 2.5% of 
the values of the standard χ2  distribution. 

Binomial test for binomial variables 

 For data samples that we assume are obeying the 
binomial distribution, it is possible to compute exact p 
values as explained in a previous section. For example, a 
coin is tossed 10 times to determine if it returns fair results 
or not. It returns 9 heads. The hypothesis H0 is that the coin 
is fair and that the probability of obtaining a head is 0.5. 
The H1 hypothesis is that the coin is biased towards head. 
Using the binomial distribution, we need to compute the 
probability of obtaining an equal or more extreme number 
of heads than the one we measured. The probability of 
obtaining 9 heads or more is 

 

9 10 9 10

( 9) ( 9) ( 10)
10 10

.5 (1 .5) .5 0.011
9 10

P X P X P X

−

≥ = = + =

   
= − + =   
   

 

 
It appears that this result would appear by chance in only 1.1% 
of coin tossing trials if the coin is returning fair results. If we 
consider p<0.05 to be the standard threshold for significance, 
we can conclude that the coin does return more heads than a 
fair coin at the 5% level of significance. Note that this was a 
one-sided test, assuming that we have prior knowledge that the 
coin will be biased towards heads (based for instance on the 
aspect of the coin): for a two-sided test that would assess if the 
coin is “fair” in returning both faces and heads, we would need 
to add probabilities of obtaining both 9 to 10 heads and 9 to 10 
faces. 

Sign test to compare paired samples 

 This test is best illustrated by an example. To determine 
if drug A is more effective than a drug B for pain control, 10 
patients are tested with these 2 drugs (with an interval of 
several days to prevent carry over effects) and asked if the drug 
was effective in controlling their pain. Hypothetical results are 
shown in Table 8, with “+” signs indicating a positive effect of 
the drug and “-“ signs indicating no effect of the drug. The last 
row indicates the sign of the difference between the first two 
rows: a “+” sign indicates that drug A is performing better than 
drug B and a “-“ sign indicates that drug B is performing better 
than drug A. When the outcome is the same, the cell is left 
empty. If the two drugs are equally effective, and if the sample 
is large enough, then there should be approximately equal 
numbers of “+” and “-“ signs in the last row. We can test the 
expected number of “+” signs (6 out of 7 non-empty cells) 
using binomial probability (note that for a large number of 
values, the approximation of the binomial distribution by the 
normal distribution may be used). We need to compute the 
probability of obtaining an equally or more extreme number of 
“+” or “-“ than the one we obtained, hence to compute P(0, 1, 
2, 5, 6, 7): 
 

0 7 0 1 7 17 7
(" " 0,1,2,5,6,7) .5 (1 .5) .5 (1 .5) ... 0.45

0 1
P − −   

+ = = − + − + =   
   

 

 

         Fig. 4. Standard distributions (χ2, t, and F). Tails of these distributions are used to determine significance thresholds (see text). 

Patient 1 2 3 4 5 6 7 8 9 10 
Drug A + + + - + + + + + + 
Drug B + - - + + - - + - - 
Sign  + + -  + +  + + 

Table 8. Success (+) or failure (-) of drug A and B for 
reducing pain in 10 patients. 
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 Although it seems that drug A is a better pain killer 
than drug B, the p value did not reach significance 
(p>0.05). In other words, H0, the hypothesis that the two 
drugs are performing equally well cannot be rejected. This 
type of test applied to binomial variables is also sometimes 
called the Mc Nemar’s test. 

χ2  test to compare two or more unpaired samples 

The χ2 test allows the comparison of proportions 
observed in several groups under two or more conditions. 
Suppose that we wish to determine which of four prosthetic 
devices perform better for improving muscular response. 
Each of the four devices is implanted in 4 random samples 
of 100 patients each. For each patient, a clinician then 
estimates if there has been “no improvement” or “partial to 
full restoration”. Data is cross-classified as shown in Table 
9. The test described here is usually called the χ2 test of 
independence because it aims at finding if results from 
different groups can or cannot originate from the same 
population.  

Here, the objective is to determine whether 
improvement is independent of the type of device. If it is 
the case, then the proportion of responses with “no 
improvement” and “partial to full restoration” should be 
similar for all four types of devices. The χ2 test allows the 
comparison of the actual proportion of responses to each 
type of device to the idealized proportions where all types 
of devices perform equally well. These proportions (also 
called expected frequencies) are calculated by pooling the 
responses for all types of devices. For instance, in Table 9, 
irrespective of the device type, there are 120 patients 
showing no restoration and 280 patients showing some 
degree of restoration, so the expected frequency for “no 
restoration” is 30% and the expected frequency for “partial 
to full restoration” is 70%.  

As for the simpler example earlier in this section 
comparing a sample data distribution to a theoretical 
distribution, the χ2 is simply calculated by comparing the 
expected frequencies, denoted by ei,j for device i (where i 
ranges from 1 to 4) and outcome j (where j=1 indicates “no 
restoration” and j=2 indicates “partial to full restoration”), 
to the observed frequencies Oi,j using the formula: 

 
χ 2 2= −∑ ( ) /

,

Oij ij ij
i j

e e   (14) 

 
The degrees of freedom is equal to (r - 1) (c - 1), 

where r and c are the number of rows and columns in the 
table. Once the χ2 value and the degrees of freedom have 
been calculated, the critical value for χ2

crit can be looked up 

in Table 7 for a given level of significance. If χ2 > χ2
crit, then 

there is a significant difference between the groups being 
compared.  

For the example shown in Table 9,  
 

2 2 2
2 (35 30) (65 70) (40 30) ... 26.2

30 70 30
χ − − −

= + + + =  

 
The degrees of freedom is (4-1)(2-1)=3. In this example, for a 
test at the 5% level of significance (p=0.05) and 3 degrees of 
freedom, Table 7 indicates that χ2

crit= 7.82. Since 26.2 > 7.82, 
the hypothesis that all four devices are equally effective is 
rejected. It can be seen that device type 4 is most effective. In 
fact, further analysis supports the conclusion that differences 
between the other device types can be explained by sampling 
variation, and that there is a statistically significant difference 
between the first three device types taken together and the 4th 
device type. The additional analysis is sensible because the first 
three types are different “vintages” of essentially the same 
design, whereas the type 4 device is an experimental version of 
a fundamentally different design. 

The χ2 test may be used on a table of any size and not 
necessarily on binomial variables. For the example shown in 
Table 9, we could imagine three possible outcomes - “no 
improvement,” “partial restoration,” and “full restoration.”. 
This would have added a row to Table 9 but the χ2 formula 
(Equation (14)) would still apply. 

Quantify relationship between variables 

Classification in a table often reflects characteristics of 
individuals or objects, so they are often referred to as attributes. 
A measure of the degree of relationship, association, or 
dependence of two attributes (and the associated variables in 
the population) is called the coefficient of correlation. It is 
given by 
 

2

(min(# ,# ) 1)
r

N rows columns
χ

=
−

  (15) 

 
where χ2 represents the value computed from the χ2 table; N is 
the total number of observations, and min(#rows,#columns) 
represents the smaller number between the number of rows 
(#row) and the number of columns (#columns). r can only take 
values between 0 and 1. The closer r is to 1, the greater the 
association between the two (or more) columns of the table. To 
determine if a value of r is significant or not, χ2 tests previously 
described in this section may be used. 

Parametrical hypothesis testing on continuous variables  

A parametric statistical hypothesis assumes that the data 
sample originates from a population that fits a specific model 
(most often the normal model). This is usually the case when 
recording a measure that fluctuates around a fixed mean 
because of environmental noise.  Before running any statistical 
tests, one must verify that the data distribution is consistent 
with the normal distribution. First, plot the histogram to check 
that the distribution’s overall shape is similar to that of the 
normal distribution. You may then perform a goodness of fit 
test with the normal distribution. In a goodness-of-fit test, the 
hypotheses are concerned not with the parameters but with the 
distribution itself. For example, H0: X has a normal distribution; 
H1: X does not have a normal distribution. This may be done 

 Type of device  

 1 2 3 4 Total 

No 
improvement  35(30)  40(30) 35(30) 10(30) 120 

Partial to full 
restoration  65(70) 60(70) 65(70) 90(70) 280 

Total  100 100 100 100 400 

Table 9. Results of improvement in muscular response following 
implantation of an electronic device available in four types. 
Numbers are observed frequencies and number in parentheses are 
expected frequencies. 
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using the χ2 goodness of fit test (mentioned in the previous 
section) applied to the data histogram frequencies 
compared to expected values calculated from the normal 
distribution (by integrating Equation (9) using Equation 
(5)). Other goodness-of-fit tests are the Kolmogorov-
Smirnov, Cramer-Von Mises, and Anderson-Darling. There 
are also tests when H0 involves some specific distribution, 
for example, the Shapiro-Wilk test for normality. Most 
computer packages incorporate such tests.  

One-sample t-test to compare one data sample to a 
hypothetical distribution 

This test is used to determine if a data sample 
belongs to a population with mean µ and standard deviation 
σ (the hypothesis H0 is that it does belong to this 
population). This test applies to continuous or non-
continuous data that have a distribution that is not 
significantly different from normal. First, check that the 
standard deviation of the data sample is similar to the 
population’s standard deviation σ  (within a two-fold 
range). For a data sample containing N values that has a 
mean M and standard deviation SD, the variable t is defined 
as  

 
Mt N

SD
µ−

=                         (16) 

 
The degrees of freedom associated with t is equal to 

df=N-1. After calculating t and df, set up a threshold for 
significance (i.e. p<0.05) and look up tcrit critical value in 
Table 10. In the t-test table, you may choose either one-
tailed or two-tailed t-test critical values. One-tailed t-tests 
are used when there is some prior knowledge to predict the 
direction of the difference. Most commonly, two-tailed t-
tests are used when there is no such knowledge. If the 
calculated t value is greater than tcrit, there is a statistically 
significant difference between the data sample and the 
hypothetical distribution (the null hypothesis H0 is 
rejected). 

As for the χ2 table, building the t-test table is 
straightforward. One may assume that, for a given degree 
of freedom, a known population (with a normal 
distribution) is sampled several times and that the t value is 
computed for each of these samples (M should on average 
be the same as µ since it is the theoretical population which 
is being sampled). The histogram of these observed t 

values, obtained when in fact no real effects are present, is 
an approximation to the t distribution (Fig. 4, middle 
panel). The tails of this distribution allow for threshold-
setting for significance (as for the χ2, if an observed value 
ends up in the tail of the distribution, then it is likely that it 
does not belong to this distribution). Note that for an 
infinite number of degrees of freedom, the t distribution is 
equal to the normal distribution. 

For example, in the past, a machine has been 
producing washers having a thickness of 0.06 inches on 
average. To test if the machine is still working properly, we 
produce 10 washers of size (0.065; 0.062; 0.060; 0.059; 
0.061; 0.064; 0.067; 0.064; 0.061; 0.062). The sample 
mean is 0.0625 and the sample standard deviation is 
0.0025. The t value is equal to 

 

0.0625 0.06 10 3.16
0.0025

t −
= =  

 
We use a two-tailed t-test since we have no a priori knowledge 
about the sampled distribution. At the 5% significance level, 
tcrit5% is equal to 1.83. Since t>1.83, we can conclude that there 
is a significant difference between the expected washer 
thickness and the observed one (we reject hypothesis H0 which 
assumes that the sample distribution has a mean of 0.06 
inches). However at .5% significance level, tcrit1% is equal to 
3.25. Since t< 3.25, we cannot conclude that such difference 
exist at this level of significance (we cannot reject hypothesis 
H0).  

One-tailed .1 .05 .025 .01 .005 .0001 
Two-tailed .2 .1 .05 .02 .01 .0002 

df       
1 3.078 6.314 12.71 31.82 63.66 318.3 
2 1.886 2.920 4.303 6.965 9.925 22.33 
3 1.638 2.353 3.182 4.541 5.841 10.21 
4 1.533 2.132 2.776 3.747 4.604 7.173 
5 1.476 2.015 2.571 3.365 4.032 5.893 
6 1.440 1.943 2.447 3.143 3.707 5.208 
7 1.415 1.895 2.365 2.998 3.499 4.785 
8 1.397 1.860 2.306 2.896 3.355 4.501 
9 1.383 1.833 2.262 2.821 3.250 4.297 
10 1.372 1.812 2.228 2.764 3.169 4.144 
11 1.363 1.796 2.201 2.718 3.106 4.025 
12 1.356 1.782 2.179 2.681 3.055 3.930 
13 1.350 1.771 2.160 2.650 3.012 3.852 
14 1.345 1.761 2.145 2.624 2.977 3.787 
15 1.341 1.753 2.131 2.602 2.947 3.733 
16 1.337 1.746 2.120 2.583 2.921 3.686 
17 1.333 1.740 2.110 2.567 2.898 3.646 
18 1.330 1.734 2.101 2.552 2.878 3.611 
19 1.328 1.729 2.093 2.539 2.861 3.579 
20 1.325 1.725 2.086 2.528 2.845 3.552 
21 1.323 1.721 2.080 2.518 2.831 3.527 
22 1.321 1.717 2.074 2.508 2.819 3.505 
23 1.319 1.714 2.069 2.500 2.807 3.485 
24 1.318 1.711 2.064 2.492 2.797 3.467 
25 1.316 1.708 2.060 2.485 2.787 3.450 
26 1.315 1.706 2.056 2.479 2.779 3.435 
27 1.314 1.703 2.052 2.473 2.771 3.421 
28 1.313 1.701 2.048 2.467 2.763 3.408 
29 1.311 1.699 2.045 2.462 2.756 3.396 
30 1.310 1.697 2.042 2.457 2.750 3.385 
40 1.303 1.684 2.021 2.423 2.704 3.307 
50 1.295 1.676 2.009 2.403 2.678 3.261 
60 1.296 1.671 2.000 2.390 2.660 3.232 
80 1.292 1.664 1.990 2.374 2.639 3.195 

100 1.290 1.660 1.984 2.364 2.626 3.174 
1000 1.282 1.646 1.962 2.330 2.581 3.098 
inf. 1.282 1.64 1.960 2.326 2.576 3.091 

Table 10. t distribution of critical values. To use this table, find your 
degrees of freedom in the df column (or a lower one if yours is not 
present in the table). Then, look up the probability in the top row 
(p=0.05 is a test of significance at 5%). If your calculated t value is 
larger than the one you read in the table, the test you performed is 
significant (see text for details). 
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Paired t-test to compare paired data samples 

This test applies to two paired samples of 
continuous or non-continuous data that have a distribution 
non-significantly different from normal and similar 
standard deviations (with less than 2-fold difference). First 
calculate the difference between each pair and average 
them (Dav) (note that differences in values also have to be 
normally distributed). Then calculate the value of t using 

 
avDt N

SD
=                            (17) 

 
where SD is the standard deviation of the difference 
between each pair. Since the accuracy of a statistic is 
influenced by the population size, we must then calculate 
the degrees of freedom (df) or the number of independent 
parameters used in the calculation of the test statistic. The 
degrees of freedom is equal to the degrees of freedom used 
in calculation the sample SD, that is, the number of pairs 
minus 1: df=N-1. 

Finally, as for the one sample t-test, set up a 
threshold for significance, look up tcrit critical value in 
Table 10, and compare it to the calculated value. If the 
calculated t value is greater than tcrit, there is a statistically 
significant difference between the two groups (the null 
hypothesis H0 is rejected).  

For example, to test if a newly designed electronic 
blood pressure (BP) device returns similar (hypothesis H0) 
or different  (hypothesis H1) readings compared to an old 
manual blood pressure device, readings on 10 patients are 
performed and presented in Table 11 (only systolic pressure 
in Hg.mm is reported in the table). 
 We must first ensure that the two standard 
deviations are similar (14.1 for the electronic BP device 
and 13.5 for the manual BP device). To calculate the t 
value, we compute the difference between each pair, check 
that their distribution is normal, and then average them. 
Dav= ((121-115)+(130-131)+…)/10=2.8. The standard 
deviation of the difference is SD=2.57, and the degrees of 
freedom is 9 (10 readings minus 1). Thus the t value is 
equal to  
 

2.8 10 3.44
2.57

t = =  

 
At the 5% level of significance, for 9 degrees of freedom, 
tcrit5% is equal to 2.26. Since t> 2.26, we can conclude that 
the two devices return different averages (we can reject 
hypothesis H0). The newly devised electronic BP device 
probably has to be recalibrated to better match the readings 
of the manual one. 

 

Unpaired t-test to compare unpaired data samples 

 An unpaired t-test aims to compare two unpaired data 
samples and applies to continuous or non-continuous data that 
have a distribution not significantly different from normal. 
Sample sizes should be similar (with less than 2-fold 
difference) for the two groups and, if n<30, variances should 
also be similar (with less than 2-fold difference). If the t-test is 
used in other circumstances, the results will have no meaning.  
  The most common way of calculating the t-statistics for 
unpaired data samples is to use the pooled variance estimate (it 
is also possible to use unpooled variance estimates but this is 
less common and will not be presented here). First calculate the 
unbiased pooled variance estimate: 
 

( 1) ( 1)
2

A A B B

A B

V N V NV
N N
− + −

=
+ −

                      (18) 

 
Then estimate the standard error of the difference of the means: 
 

(1 1 )A BSE V N N= +                          (19) 

 
Then the t statistics is the difference of the means divided by its 
estimated standard error: 
 

A BM Mt
SE
−

=                                     (20) 

 
where MA, and MB are the means of groups A and B 
respectively and where VA and VB are the variances of groups A 
and B respectively. For this test, the number of degrees of 
freedom is equal to the total number of points minus 2, because 
two means are estimated. 
 

( ) 2A Bdf N N= + −  
 

Finally, set up a threshold for significance (p<0.05 for 
example), and look up the critical value tcrit in Table 10 (see the 
section above on one sample t-test for the difference between 
one-tailed and two-tailed t-tests). If the calculated t value is 
greater than tcrit, there is a statistically significant difference 
between the two groups (the null hypothesis H0 is rejected). 
 For example, to test if patients diagnosed with heart 
failure have similar (hypothesis H0) or higher (hypothesis H1) 
heart rates than control patients, 15 readings are performed at 
rest for these two groups of patients A and B of matched age, 
sex, and ethnicity. Heart rate is reported in beating per minutes 
in Table 12. 
 After testing for normality (see for how to test for 
normality at the beginning of this section), we ensure that 
standard deviations for the two data samples are similar 
(SDA=11.5 and SDB=9.1). To calculate the t value, we then 
need to compute the mean heart rate for each group. For 
patients suffering from heart failure, MA=88.4, and for control 
patients, MB=77.7 (variances are VA=140.3 and VB=82.9). Thus 

Patient 1 2 3 4 5 6 7 8 9 10 

Electronic 
BP device 121 130 129 113 145 132 110 116 125 155

Manual 
BP device 115 131 127 111 140 131 111 111 121 150

Table 11. Systolic blood pressure in Hg.mm measured 
in 10 patients using either a new electronic device or 
an old manual device. 

HF 
patients 78 81 88 76 93 112 83 96   

Control 
patients 80 71 68 80 95 67 85 69 85 77

Table 12. Heart rate in beats/second of control and test patients 
suffering from heart failure.
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the pooled variance estimate is V=108, the standard error of 
the mean is 4.93 and the t value is equal to 
  

88.4 77.7 2.17
4.93

t −
= =  

 
 
At 5% significance level for 16 degrees of freedom (10 
heart failure patients plus 8 control patients minus 2), tcrit1% 
is equal to 2.12. Since t>2.12, the data support the fact that 
patients with heart failure have higher heart rate than 
controls (we can reject hypothesis H0).  

One-way ANOVA for unmatched samples 

 One-way ANOVA (Analysis of Variance) is used to 
test the hypothesis that two or more samples are drawn 
from the same distribution of values and have the same 
mean and variance. Unpaired student t-test is a particular 
case of one-way ANOVA applied to two data samples. As 
for t-test, ANOVA test applies to continuous or non-
continuous data that have a distribution that is not 
significantly different from normal. Sample sizes should be 
similar (with less than 2-fold difference) for all sample 
groups and, if n<30, variances should also be similar (less 
than 2-fold difference). If the test is used in other 
circumstances, the test outcome will lead to erroneous 
conclusions. The basis of ANOVA is the F (Fisher) 
variable, which combines the unbiased variance between 

sample groups (VinterGroup) and the variance within sample 
groups (VwithinGroup). 
 

interGroup

WithinGroup

V
F

V
=                                    (21) 

 
For several data samples A, B, C, … of the same size, inter-
group variance is defined as 

2 2 2 2( ) ( ) ( ) ... ( )
1

A A B B C C T G
interGroup

G

N M N M N M N MV
N

+ + + −
=

−
    (22) 

where MA, MB , and MC are the means of sample A, B, C, … 
and NA, NB , NC, … are the number of values in samples A, B, 
C, … MG is the average of all values from all sample groups 
and NG is the number of samples. The within sample group 
variance is defined as 

2 2 2( 1)( ) ( 1)( ) ( 1)( ) ...A A B B C C
withinGroup

T G

N SD N SD N SDV
N N

− + − + − +
=

−
   (23) 

where SDA, SDB, SDC, … are the standard deviations of group 
A, B, C, ... and NT represents the total number of observations 
(for all data sample pooled together). Degrees of freedom for 
the numerator of F and the denominator of F are defined as: 
 

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 100 ∞ 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.59 8.57 8.55 8.54 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.72 5.69 5.66 5.63 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.46 4.43 4.41 4.36 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.77 3.74 3.71 3.67 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.34 3.30 3.27 3.23 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.04 3.01 2.97 2.93 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.83 2.79 2.76 2.71 
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.70 2.66 2.62 2.59 2.54 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.57 2.53 2.49 2.46 2.41 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.47 2.43 2.38 2.35 2.30 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.38 2.34 2.30 2.26 2.21 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.31 2.27 2.22 2.19 2.13 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.20 2.16 2.12 2.07 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.19 2.15 2.11 2.07 2.01 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.15 2.10 2.06 2.02 1.96 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.11 2.06 2.02 1.98 1.92 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.07 2.03 1.98 1.94 1.88 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.99 1.95 1.91 1.84 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 1.98 1.94 1.89 1.85 1.78 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.94 1.89 1.84 1.80 1.73 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.90 1.85 1.80 1.76 1.69 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.87 1.82 1.77 1.73 1.66 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.79 1.74 1.70 1.62 
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.04 1.96 1.88 1.79 1.74 1.68 1.63 1.56 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.69 1.64 1.59 1.51 
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 1.97 1.89 1.81 1.71 1.66 1.60 1.55 1.47 
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.69 1.63 1.58 1.52 1.44 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.59 1.53 1.48 1.39 
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.89 1.81 1.72 1.62 1.57 1.50 1.45 1.35 
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.88 1.79 1.70 1.60 1.54 1.48 1.43 1.33 

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77 1.68 1.57 1.52 1.45 1.39 1.28 
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.80 1.72 1.62 1.52 1.46 1.39 1.32 1.19 
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.77 1.69 1.59 1.48 1.42 1.35 1.28 1.12 
1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.76 1.68 1.58 1.47 1.41 1.33 1.26 1.08 
∞ 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.46 1.40 1.32 1.25 1.03 
Table 13. F distribution of critical values at p=0.05 for ANOVA tests. To use this table, read the value at the intersection of the 
numerator’s degrees of freedom (df1) and the denominator’s degrees of freedom (df2). If your calculated F value is larger than the one you 
read in the table, the test you performed is significant (see text for details). 



STATISTICAL METHODS 

 15

1numerator Gdf N= −  

denominator T Gdf N N= −  

 Note that each variance in Equation (22) and (23) is 
divided by the appropriate degrees of freedom to give 
unbiased estimate of population variance (assuming the 
null hypothesis H0 is true). As for other inference tests, the 
computed F value is tested against critical F values (Table 
13) obtained from the tail of null-hypothesis F distribution 
(Fig. 4, right panel). 
 For example, a clinician planning to purchase 
equipment for electro-encephalography compares the signal 
to noise ratio for three sets of electro-encephalographic 
equipment. For each system that has been made available to 
him, he records 10 new patients performing standard 
psychophysical tasks and measures the signal to 
background noise ratio of the encephalographic equipment 
(Table 14). 
 After testing for normality, we must ensure that 
standard deviations are similar (i.e., no 2-fold differences). 
Standard deviation for Brand A is equal to SDA=1.11; 
Brand B: SDB=0.75; Brand C: SDC=0.94. After calculating 
Vintergroup=0.44 and VwinthinGroup=0.89, we may calculate F 
using Equation (21)  

0.44 0.49
0.89

F = =  

 The degrees of freedom for the numerator is 
dfnumerator=NG-1=2. The degrees of freedom for the 
denominator is dfdenominator=30-3=27. Reading Fcrit=2.95 in 
Table 13, we may conclude that there is no significant 
difference (since F<2.95) in terms of signal to noise ratio 
between the three sets of EEG equipments (we accept 
hypothesis H0). 

One-way ANOVA for matched samples 

 One-way ANOVA may also be used to compare 
paired sample groups. In fact, since for matched samples, 
one may analyses either the rows or the columns of a table, 
the formula given here may be used both for rows or 
columns, and are usually associated with two-way 
ANOVA. The formula for the F (Fisher) variable is now 
equal to 
 

interGroup

error

V
F

V
=                                   (24) 

 
The variance due to error or chance is defined as  
 

( )2

. .
,

( 1)( 1)

jk j k
j k

error
R C

x M M M
V

N N

− − −
=

− −

∑
               (25) 

 
where xjk are all the elements in the array, Mj. are the row 
means, M.k are the column means, M is the global array 
mean, NC is the number of columns, and NR the number of 
rows. The degrees of freedom for the numerator and 
denominator are now defined as 
 

1 1numerator R Gdf N N= − = −  

( 1)( 1)denominator R Cdf N N= − −  

Using the same example as shown in Table 14, and now 
assuming that the data samples are paired (EEG systems were 
tested with the same patients), we can compute the inter-subject 
variance Verrort=1.04, and 

0.44 0.42
1.04

F = =  

The degrees of freedom for the numerator is dfnumerator=NG-
1=2. The degrees of freedom for the denominator is 
dfdenominator=(NR-1)(NC-1)=(3-1)(10-1)=18. For a test at 5% 
significance, reading Fcrit=3.55 in Table 13, we may conclude 
that there is no significant difference (since F<3.55) in terms of 
signal to noise ratio between the three sets of EEG equipments.  
 Note that one could argue that instead of using ANOVA 
analysis, we could perform t-tests between each pair of 
samples. Although this is possible, the ANOVA test is more 
sensitive than a series of paired t-tests because it processes all 
data samples simultaneously. 

Two-way ANOVA for two-factor experiments 

 This type of test is being used for experiments with two 
factors or two attributes. In the example above, to test the 
reliability of the EEG equipment, the clinician might want to 
perform three experimental protocols and measure the signal to 
noise ratio in each of these protocols. The two factors are now 
the three sets of EEG equipment and the three protocols as 
shown in Table 15. 
 In each of the cells of Table 15, the clinician recorded 
nine values. In the case of only one value per cell, the analysis 
would be similar to the one-way ANOVA (row and column 
data may be analyzed separately using one-way ANOVAs for 
matched samples). However, if several values are recorded for 
each cell (several subjects for instance), one must use the 
repeated measures two-way ANOVA test. This test is 
especially interesting because it is possible to test for 
interaction between variables. Hypothesis H0 would be that 
there is no significant relationship between brands and type of 
protocol and Hypothesis H1 would be that there is indeed such 
a relationship. Running a repeated measures two-way ANOVA 
test under any software will return 3 p-values: the first value is 

Brand A 1.87 3.88 2.68 1.19 0.93 0.38 2.69 1.8 0.39 1.62
Brand B 2.48 1.71 3.05 1.58 1.7 3 0.47 2.11 2.18 2.22
Brand C 2.29 1.49 2.52 1.26 3.71 2.14 2.33 2.79 2.61 0.29
Table 14. Signal to noise ratio for 10 patients and for three 
brand of EEG system.

 Protocol 1 Protocol 2 Protocol 3 

Brand A 
6 8 8

10 8 2
10 6 2

 
1 0 2
2 0 1
1 3 3

 
1 4 4
4 2 2
3 5 0

 

Brand B 
2 2 10
6 10 10
6 2 6

 
4 9 8
5 5 9
3 7 7

 
3 3 6
5 4 2
3 5 6

 

Brand C 
6 0 4
6 4 4
4 8 8

 
5 3 2
1 1 1
3 3 2

 
6 6 8
6 0 10
4 8 6

. 

Table 15. Example of table for a 2-factor experiment. 
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for significant differences between rows; the second value 
is for significant differences between columns; the last p-
value is for the interaction between columns and rows. In 
the case of Table 15, the p-value for the columns (protocol) 
is 0.0004 indicating a significant difference between 
protocols. As observed in Table 15, the values for the first 
protocol are indeed higher than the values for other 
protocols. The p-value for the different rows (device brand) 
is not significant (p=0.22). The p-value for the interaction 
between brand and protocol is 0.0006. In fact, it appears 
that the device of brand B returns higher values for protocol 
2 than other brands, and that the device of brand C returns 
higher values for protocol 3 than other brands. 
 Experimental design and ANOVA in its many 
variations is perhaps the most important statistical 
methodology for experimenters, and the literature is 
immense. Extreme care should be taken when choosing an 
ANOVA test. For instance, there are different ways to treat 
multifactor ANOVAs analytically when the number of 
observations is unequal among the treatment combinations 
(called unbalanced designs). A non-technical discussion is 
the classic Planning of Experiments by D. R. Cox [6]. 
Other general introductions are [1, 7-12]. 

Regression and Correlation 

 Regressions and correlations aim at determining 
relationship between variables. We may wish to determine 
if there is a significant correlation between independent and 
dependent variables, the independent variable being set by 
the experimenter, and the dependent variable being 
measured. For example, to test the reliability of a device, an 
experimenter may change the temperature of the room 
where the device is being tested (independent variable), and 
see if this change affects measures returned by the tested 
device (dependant variable). Regression and correlation can 
also be used to estimate the relationship between two (or 
more) dependent variables. 

The first step in determining the relation between 
two variables is to plot values of one variable versus values 
of the other variable. This is usually called a scatterplot 
(Fig. 5). From the scatterplot it is often possible to visualize 
a smooth curve that approximates the data. If it is a straight 
line, then the least squares regression method may be used. 

Otherwise, other curve fitting procedures may be used. It is 
sometimes useful to plot scatterplots of transformed variables 
(for instance, log transformation of values the in first variable 
versus values of the second variable).  

The method of least squares computes the best linear 
regression between two variables. Specifically, for two 
variables X and Y, the data consist of n pairs (x1, y1),…, (xn, yn). 
For all values of X and Y, we wish to find the parameter a and b 
such that 

 
Y aX b= +   (26) 

 
Assuming the jittering of points along the straight line is 

normally distributed, parameters a and b may be obtained using 
the formula 
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To draw the linear regression line, yi
est values may be 

calculated using Equation (26) for all values of X. A sample-
based measure of the strength of the linear association between 
the X and Y variables is the sample correlation coefficient (also 
known as the Pearson correlation coefficient) defined by 
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r may also be expressed using the original variables X and Y.  
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where MX and MY (SDX and SDY) are the mean (the standard 
deviation) for X and Y respectively and cov(X,Y) is the 
covariance between X and Y (the numerator on the right of 
Equation (30) is equal to cov(X,Y) and the denominator is equal 
to SDX*SDY). Necessarily –1 ≤ r ≤ 1. Positive (respectively 
negative) values of r indicate that large values (respectively 
small values) of X are associated with large values (respectively 
small values) of Y. Values of r near 0 indicate little or no linear 
association. Interpretation must be done with care because there 
are many reasons for the presence or absence of a correlation. 
Also, comparing r values may be misleading as a value of r = 
0.6 does not mean that the linear relationship is twice as strong 
as r = 0.3. On the other hand, r2, called the sample coefficient 
of determination, represents the proportion of the total variation 
in the sample values of Y that can be “explained” by a linear 
relationship as in Equation (26). Thus r2 = (0.3)2 = 0.09 versus 
r2 = (0.6)2 = 0.36 indicates a 9% versus 36% accountability for 
total variability by the proposed linear relationship. 

To test if the linear correlation between the two 
variables is significant, different tests may be used. The null 
hypothesis H0 states that there is no relationship between the 
two variables. A t-test (with degrees of freedom equal to N-2) 
may be used if the expected population correlation coefficient 

 

Fig. 5. A typical scatterplot with the least-square line drawn 
through the data points. The r2 value as well as the best fit 
equation is indicated on the diagram. The t-value is equal to 
9.24 and indicate a significant relationship between X and Y 
(at p=0.05, for 22 degrees of freedom, tcrit=2.07). 
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between variable X and Y is 0 and if we expect the 
correlation coefficient to be normally distributed when 
random samples of X and Y are drawn. The variable t is 
defined as 

 

2

2
1

r Nt
r
−

=
−

   (31) 

 
More details for determining if correlation coefficients are 
significant or to compare between correlation coefficients 
may be found in Spiegel and Stepens [2]. 

As shown in Fig. 5, most regression computer 
packages will output scatterplots, and correlation 
coefficients. Residuals plots (not shown here) indicate if 
the distribution of distance between estimated and actual 
values of Y. A histogram of these residuals should be 
normally distributed (computing the parameter a, b, and the 
coefficient of correlation r requires that these residuals are 
normally distributed with mean 0 and a constant standard 
deviation irrespective of the X values).  

A comprehensive presentation of regression 
methods for linear and non-linear regression is given in [2, 
7, 13]. 

Non-parametric testing 

 Elementary tests mentioned in the previous section 
require that the distribution of values in the population be 
normally distributed. In practice, this assumption may not 
hold so statisticians have devised tests that are less 
dependent of population distribution. Non-parametric or 
distribution-free statistical methods generally are not 
concerned with inferences about parameters of distributions 
and assume little or no knowledge about the distributions of 
the underlying populations. Their primary advantage is that 
they are subjected to less restrictive assumptions than their 
parametric counterparts. Moreover, the data need not be 
quantitative (data values may indicate ranks on an ordinal 
scale). However, a disadvantage of nonparametric methods 
is that that they may not utilize all the information in a 
sample, consequently requiring a larger sample than the 
parametric version to attain the same Type II error (see 
error types). 
 The χ2 goodness-of-fit tests previously mentioned is 
an example of a non-parametric test. Other non-parametric 
tests make various hypotheses for medians (or means of a 

symmetric distribution) and differences in location and/or 
variability of two populations. There are also tests for 
randomness, independence, and association among random 
variables. Relatively elementary texts that give a fairly broad 
and complete coverage of non-parametric methods are [14, 15]. 

Compare sample distribution to a hypothetical distribution 

 As for binomial and discrete data, a χ2 goodness-of-fit 
test may be performed. For continuous data, a χ2 goodness-of-
fit test may be used on the frequency distribution (histogram) 
of the data compared to a hypothetical distribution. 

Sign test and Wilcoxon test for paired samples 

 As for binomial and discrete data, a sign test allows the 
comparison of paired samples (see the beginning of the section 
for a definition of paired and unpaired samples). A sign test 
simply involves pair-wise comparisons of measures between 
the two sample data sets (see sign test for binomial and discrete 
data). A variation of this test is called the Wilcoxon test which 
takes into account the signed rank of the difference between 
each pair (instead of using all the signs). This is best illustrated 
using an example. To test if a pacemaker device has any effect 
on heart rate variability (defined as the standard deviation of 
heart beat intervals in seconds), 10 patients’ heart rate 
variability are measured while the pacemaker was either 
switched on or off (Table 16).  
 The Wilcoxon test begins by taking the difference in 
heart rate variability between the two conditions for each 
patient (4th row of Table 16). If a difference is equal to 0 it is 
eliminated from further consideration, since it provides no 
useful information. The second step consists of taking the 
absolutes of the differences which is accomplished simply by 
removing all the positive and negative signs (5th row of Table 
16), then ranking these absolute differences from lowest to 
highest, with tied ranks included where appropriate. Tied rank 
means that if two values are equal they are first ordered 
randomly and then assigned their average rank (see the 1st and 
3rd columns of the 6th row in Table 16). Finally re-attach to 
each rank the positive or negative sign that was removed from 
the difference in the transition from row 4 to row 5, and sum up 
these values. In our case W=23 and the number of values used 
in this sum is 10 (degrees of freedom). 
 If we were to draw repeatedly two sets of sample values 
from the same distribution (which verify hypothesis H0 that the 
two samples belong to the same distribution) and calculate W 
values, we would realize that the distribution (histogram) of W 
values is close to normal. In fact, we may define  
 

W

Wz
SD

=                                      (32) 

 
where z is normally distributed with mean 0 and variance 1, 
and SDW is the standard deviation of W, which can be shown to 
be equal to 
 

( 1)(2 1)
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For N=10 values, SDW=19.6, so z=23/19.6=1.17. As 
mentioned earlier, the t-distribution is equal to the normal 
distribution for infinite degrees of freedom. Looking in the last 
row of the t-table (Table 10), for a significant threshold at 

Patient 1 2 3 4 5 6 7 8 9 10 

Pacemaker 
off 0.15 0.32 0.25 1.1 0.82 0.83 0.94 0.42 0.48 0.21

Pacemaker 
on 0.12 0.19 0.28 0.56 0.37 0.52 0.24 0.73 0.81 0.13

difference 0.03 0.13 -0.03 0.54 0.45 0.31 0.70 -0.51 -0.43 0.08

abs 
difference 0.03 0.13 0.03 0.54 0.45 0.31 0.70 0.51 0.43 0.08

Rank of abs 
difference 1.5 4 1.5 9 7 5 10 8 6 3 

Signed rank 1.5 4 -1.5 9 7 5 10 -9 -6 3 

Table 16. Heart rate variability for 10 patients while their 
pacemaker is switched on or off, and calculation of signed 
rank for Wilcoxon test. The sum of the values in last row is 
23. 
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p=0.05 (two-tailed), we obtain zcrit=1.64. Since z<1.64, we 
cannot reject hypothesis H0. Although it seems that heart 
rate variability is higher when the pacemaker is switched 
on, the difference did not reach significance. 

Mann-Whiney U test for unpaired samples 

 The Mann Whitney U test is similar to the 
Wilcoxon test. Once more we will illustrate this test using 
an example. To compare sensitivity of two hearing aids, the 
minimum sound a patient can hear using each brand is 
measured (in dB) and reported in Table 17. 10 different 
patients tested each prosthetic device (unpaired samples).  
 To perform a Mann Whitney test, first combine all 
values in an array and assign a rank from 1 to 20 to all 
these values, assigning tied ranks where appropriate (see 
Wilcoxon test). The rank for each value is indicated in 
Table 18. 
 Then sum up the ranks for each brand. RA=80 is the 
sum for brand A and RB=130 is the sum for brand B. A 
significant difference between the two rank sums implies a 
significant difference between the two samples. Calculate 
the U statistic to test the difference between the ranks: 
 

( 1)
2

A A
A B A

N NU N N R+
= + −                       (34) 

 
Note that the formula above is symmetrical with respect to 
A and B. In the hearing aid example, NA=10 and NB=10, so  
 

10(10 1)10*10 80 75
2
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There is no Table for U values. Instead, as for the 
Wilcoxon test, the Table for z values is used because of a 
property of the U distribution. When calculating the U 
value repeatedly on samples known not to be statistically 
different (for instance two data samples drawn from the 
responses of the same device), then it can be shown that the 
repeated U values (U1, U2, U3, …) have a Gaussian 
distribution with mean MU and standard deviation SDU 
defined as: 
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This means that the U distribution can be normalized and 
that 
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is normally distributed with mean 0 and variance 1.  
 In the example above MU=10*10/2=50 and 
SDU=13.2, so z=3.78. Looking up the last row of the t-table 
(Table 10) for a significance level of 5%, we read 
zcrit=1.64. Since z>1.64, we can reject hypothesis H0 and 
conclude that one hearing aid performs better than the other 
one. Looking at the mean or median for each brand, or for 
this simple example simply at Table 17, brand A clearly 

allows patients to hear sounds of smaller amplitudes than brand 
B. Note that the calculations above are usually not necessary 
since most statistical software will return the value of U along 
with its significance level. 

Kruskal-Wallis test for unmatched samples 

 The Kruskal-Wallis H test is a generalization of the 
Mann Whitney U test to more than two samples (for instance 
three brands A, B, and C of sample sizes NA, NB, NC,… with the 
total number of samples equal to N). As for the Mann Whitney 
test, values from all distributions are sorted and once the sum 
of the rank for each sample is calculated RA, RB, RC, … the 
value of H is given by 
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It can be shown that, after collecting repeated measures of H 
from several samples from the same population (verifying the 
hypothesis H0 that they originate from the same population), 
the histogram of H values is very close to a χ2 distribution with 
degrees of freedom equal to the number of groups minus one 
(so the χ2 table may be used for H). Thus, to use the Kruskal-
Wallis test, first calculate H, then compute the degrees of 
freedom (number of groups minus one), and look up the χ2 

critical value in Table 7. If the calculated H value is larger than 
the critical value, reject hypothesis H0. 

Friedman test for matched samples 

 Suppose we wish to determine if three spectroscopy 
machines A, B, and C returns the same hematocrit density 
(density of blood cells in a blood sample). We test the three 
machines using 20 blood samples (the same blood sample is 
used for all machines). Since preliminary analysis shows that 
the readings are not normally distributed we have to use a non-
parametric test. To do so, for each blood sample, we rank the 
machines (from 1 to 3) and compute the total rank for each 
machine TA, TB, and TC. Tall being the sum of all the ranks, the 
squares deviate SS is equal to 
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= −             (39) 

 
where NG is the number of groups and N is the number of 
samples in each group. As for the Kruskal-Wallis test, we may 
use the χ2 distribution with degrees of freedom equal to 
df=NG—1. In the Friedman test, we simply refer to this value as 
χ2 
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                           (40) 

 

Brand A 0.1 -1 4.1 2.4 -2.3 3.8 0.9 1.4 0.4 1.2
Brand B 2.7 3.1 5.2 2.1 4.7 1.5 -1.2 3.7 2.8 3.1
Table 17. Patient maximal sensitivity (in dB) for two brands of 
hearing aids. 

Brand A 4 3 18 11 1 17 6 8 5 7 
Brand B 12 14.5 20 10 19 9 2 16 13 14.5
Table 18. Rank of measures for table 17. 
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If the calculated χ2 value is larger than the critical value for 
the specified degrees of freedom, we reject hypothesis H0. 

The spearman’s rank correlation test 

 Rank methods may also be used to determine the 
correlation between two variables. Instead of using exact 
variable values, their ranks may be used. For two sample A 
and B of the same size, corresponding to two variables X 
and Y (for instance lifespans and prices of a family of 
devices), rank each sample value from 1 to N separately for 
A and B. Then calculate the difference D1, D2, D3, … 
between the sorted rank for A and B and compute 
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If rS is close to 0, there is no correlation between the two 
variables whereas if it is close to 1 or -1, there is a strong 
correlation between the two variables. To test if rS is 
significantly different from 0, the same t-test as for the 
Pearson correlation coefficient may be used (replacing r by 
rs and using the same degrees of freedom df=N-2).  

Resampling methods 

Resampling methods help provide confidence 
intervals for parameters in situations where these are 
difficult or impossible to derive analytically. Resampling 
methods also help perform statistical inference without 
assuming a known probability distribution for the data. The 
bootstrap method consists of drawing random sub-samples 
and the randomization method consists of shuffling data 
samples. 

Bootstrap method 

The bootstrap method is the most recently 
developed method to estimate errors and other statistics. It 
is not primarily aimed at performing inference although it 
may be used to do so, since it provides confidence intervals 
for the measure of interest. The term “bootstrap” derives 
from the phrase “to pull oneself up by one's bootstrap” 
(Adventures of Baron Munchausen, by Rudolph Erich 
Raspe). Suppose we have a data sample and an estimator 
(e.g., mean). The basic idea involves sampling with 
replacement to produce random samples of size N from the 
original data sample (of size larger than N). Each of these 
samples is known as a bootstrap sample and provides an 
estimate of the parameter of interest. Repeating the 
sampling a large number of times provides information on 
the variability of the estimator and help define confidence 
limits. There are N to the power of N, NN, possible samples, 
called the ideal bootstrap samples. It is important to 
emphasis that sub-samples are drawn with replacement: for 
instance, for an empirical distribution composed of 2 values 
(5 and 8), the bootstrap samples are (5,8), (5,5), (8,8), and 
(8,5) (note that there are 22=4 of them). Getting all ideal 
bootstrap samples becomes unrealistic as N becomes larger, 
so the Monte-Carlo approach (which consists of random 
draws) is used. The sampling is said to be balanced if each 
sample value is drawn the same number of times. For each 
bootstrap sample, let’s suppose that the mean is calculated. 
The standard deviation of the bootstrap distribution for the 
mean correspond to the standard error (Equation (19)) and 

may be used in parametrical t-test to compute the t value 
(Equation 20) and perform inference testing (assuming 
normality of the distribution of course). However this mixture 
of bootstrap and parametric t-test is relatively unconventional 
and it is better to estimate the bootstrap distribution of t value 
as explained below. 

To perform a statistical inference test using bootstrap, 
we first have to state a null hypothesis H0. Null hypotheses for 
resampling tests are usually vague because there may be many 
reasons (based on the shape of the distribution) why two 
samples may differ (whereas when performing a parametric t-
test, the non-null hypothesis states clearly that the means are 
non-equal). Moreover, bootstrap statistics use the implicit 
assumption that data samples are representative of the 
underlying population and in fact do as if the data samples were 
the population itself. Therefore it is not possible to draw direct 
conclusions about the underlying population either.  

In the case of the heart rate study of Table 12 for 
instance, where comparing a measure (i.e. heart rate) for 
patients suffering from heart failure (sample A) and control 
subjects (sample B), the null hypothesis would be “patient 
suffering from heart failure have abnormal heart rate”. One way 
to test this hypothesis is to perform a bootstrap t-test. Two 
bootstrap samples are first drawn from the pooled distribution 
of A and B: sample A’ and B’ of the same size as A and B 
respectively. The t-value is then computed using the two 
bootstrap samples as in Equation (16). The operation is 
repeated m times to obtain the distribution of t-values for the 
null hypothesis. Note that, even if we are computing a t-value, 
we do not assume normality for the data samples since the 
distribution of t values for the null hypothesis is estimated 
using bootstrap samples. The actual t-value is calculated for the 
original data samples A and B and tested against the bootstrap t-
distribution. If it lies in the lower 2.5% or upper 2.5% tails, 
then the bootstrap test may be considered to be significant at 
the 5% level of significance. In Fig. 6 (top), 10,000 bootstrap t 
values have been accumulated for the two samples in Table 12. 
Since the original t value for Table 12 is equal to 2.17 (see the 

Fig. 6. Bootstrap t-distribution for Table 12 (top) and randomized 
t-distribution for Table 12 (bottom). Since the actual t value 
obtained from the original samples in Table 12 (t=2.17) belong to 
the rightmost 2.5% value in both the bootstrap and the 
randomized distribution (the 2.5% limit being indicated by a 
vertical line), it may be considered significant at 5%. 
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t-test section) and since it lies in the upper 2.5% of the 
bootstrap t-value distribution, we may conclude that the 
data support the hypothesis that heart rate is affected in 
patients suffering from heart failure at the 5% significance 
level. 

There are other ways to test for significance using 
bootstrap, such as the bootstrap-percentile method, or the 
bootstrap-bca method (see [16] for a comprehensive 
reference). In general, it should be remembered that 
bootstrap methods are designed primarily for estimating 
characteristics of data samples, not for performing 
inference tests. Resampling methods specializing in 
statistical inference are called randomization methods and 
are describe below. 

Randomization methods 

For the purpose of performing paired or unpaired 
comparisons, randomization methods consist of random 
permutations of data. Randomization methods are also 
often called permutation methods or surrogate methods. 
Specifying the null H0 hypothesis is the same as for the 
bootstrap and involves a vague formulation about the result 
of the experiment, such as “patient suffering from heart 
failure have abnormal heart rate” or “the drug treatment 
does not have an effect on blood pressure”.  

Randomizing the data is straightforward. Using the 
same example as for the bootstrap distribution with two 
unpaired samples A and B of sizes NA and NB, a 
randomization method consists of pooling the data of A and 
B together (into C), then randomly drawing from C 
(without replacement) two groups A’ and B’ which have the 
same size as A and B respectively [17]. Then we compute 
the estimator (e.g., t value) for each randomized pair of 
samples. We repeat this procedure a large number of times 
to obtain the distribution of the estimator (e.g., t value) for 
the null hypothesis. Significance is assessed as for the 
bootstrap t-test. For example, in Fig. 6 (bottom), 10,000 
randomized t values have been accumulated for the two 
samples in Table 12. Note that irregularities in the 
distribution are due to the fact that we are randomizing a 
relatively small number of values. As for the bootstrap, 
since the original t value (t=2.17) lies in the upper 2.5% of 
the randomized t values, we may conclude that the data 
support the hypothesis that heart rate is affected in patients 
suffering from heart failure at the 5% significance level. It 
is reassuring to notice that the upper 5% significance 
threshold t value for the bootstrap (tcrit=2.13), the 
randomized (tcrit=2.11), and the normal distribution 
(tcrit=2.12) are all similar. 

For paired comparisons, the principle is slightly 
different since we are now randomizing not the sample 
values but the pairs. For instance, for the data of Table 11, 
half of the pairs are selected randomly then shuffled (the 
value for the first device is now attributed to the second 
device and vice-versa) and the paired t test value is 
recalculated (Equation (17)). This procedure is repeated a 
large number of times. To assess significance, as in the 
previous paragraph, the original t value computed using the 
non-randomized samples is compared against the 
distribution of randomized t value.  

This procedure may be generalized to compare an 
arbitrary number of samples. For instance, to compare 
several unpaired sample, data sample values may be 

randomized among groups and one-way ANOVA values may 
be calculated repeatedly. The ANOVA value for the non-
randomized groups is then compared against this ANOVA 
randomized distribution. Web reference [18] provides a clear 
introduction to resampling methods. 

 
MULTIVARIATE METHODS 

We previously discussed probability distributions 
involving one variable, but in many situations there are two or 
perhaps many interdependent variables, for example, height, 
weight, daily caloric intake, genetic strain, etc. Data samples 
involving several variables are called multivariate. Many 
multivariate analytical methods involve inference for the 
parameters (means, variances, and correlation coefficients) 
based on multivariate normal distribution. One such method is 
known as discriminant analysis and is concerned with the 
problem of distinguishing between two or more populations on 
the basis of observations of a multivariate nature. Principal 
components analysis, cluster and factor analysis seek to 
determine relatively few out of possibly many variables that 
will serve to “explain” the variability or the interrelationships 
in the variables. Principal component analysis (PCA) would 
specifically make each successive component account for as 
much as possible of the remaining variability uncorrelated with 
previously determined components. In Fig. 7, data points from 
two variables are represented. Coordinates of data points on the 
abscissa axis correspond to values of the first variable and 
coordinates on the ordinate axis correspond to values of the 
second variable. PCA is able to find a first principal axis 
(labeled one) that accounts for most of the variance of the data. 
The second principal axis (labeled two) has to be perpendicular 
to the first principal axis and accounts for the remaining of the 
variance. 
 Recent progresses in signal processing and information 
theory have seen the development of blind source separation 
methods, which attempt to find a coordinate frame onto which 
the data projections have minimal overlap. For example, if two 
sources of sounds (e.g., a conversation and a CD player) are 
recorded simultaneously in the same room on two 
microphones, the sound signal from the two sources are mixed 
on both microphones. Coordinates of data points in Fig. 7 could 
represent the signal recorded from the two microphones. 
Separating the two sound sources from the microphone signal 
is called blind source separation. Independent component 
analysis (ICA) is a family of linear blind source separation 
methods. The core mathematical concept of ICA is to minimize 
the mutual information among the data projections. PCA 
components are orthogonal as shown in Fig. 7, which is usually 
not a realistic assumption for bio-physical data. To find 
biologically plausible sources, PCA must be followed by an 
axis rotation procedure, and ICA can be viewed as a powerful 
rotation method. ICA seeks to find axes for which the 
projection of data is maximally non-normal (i.e., contains the 
maximum amount of information). It uses the property of the 
central limit theorem in statistics that states that any linear 
mixture of two or more source activities is more normal that the 
original source activities, so, by finding axes that maximize 
non-normality, source separation may be achieved. As can be 
seen in Fig. 7, ICA is free to adapt to the actual projection 
patterns of source generators, if their activity time courses are 
(near) independent of one another. Performing ICA 
decompositions is most appropriate when sources are linearly 
mixed in the recorded signal, without differential time delays.  



STATISTICAL METHODS 

 21

ICA is being applied to various biomedical signal 
processing problems that include performing speech and 
noise separation [19], decomposing functional resonance 
imaging data [20], and separating brain area activities and 
artifacts mixed in electro-encephalography scalp sensors 
[21]. 

Texts that give broad coverage of multivariate 
analysis are [22-24]. 
 

CLINICAL TRIALS 

A clinical trial is not a method per se but is a term 
applied to any form of planned experiments that involves 
human patients. The purpose of a clinical trial is to evaluate 
and verify the efficacy and safety of a new treatment or sets 
of treatments for a given medical condition. Although most 
of the analytical methods employed for clinical trials are 
the same as in other contexts, there is a special effort to 
avoid bias, which leads to some unique designs. Another 
distinguishing characteristic of clinical trials is the 
constraint imposed by studying living patients and the often 
difficult ethical considerations that must be addressed.  

 
Double blind: The usual method to avoid bias in 
experimental designs is the random allocation of 
experimental subjects to treatments, but this will generally 
not suffice in clinical trials. A major potential source of 
bias is when subjects or evaluators in a trial know which 
treatment (e.g., placebo or active) is being received. In 
double-blind trials, neither the subject nor the evaluators 
are aware of which treatment is being received. Sometimes 
ethical or practical considerations make double-blinding 
infeasible, and sometimes partial blinding, for example, 
independent “blinded” evaluators only, may be sufficient to 
reduce bias in treatment comparison. 
 
Within patient studies versus across patient studies: Most 
clinical trials are conducted as parallel studies in which two 
or more treatments are evaluated concurrently in separate 
groups of patients. As many researchers remain reluctant to 
assign patients randomly to new or standard treatments, 
current patients on the new treatment may be compared 
with data external to the study containing patients who had 

received standard treatments. Such an approach invites severe 
bias, since there is no assurance that treatment and control 
groups do not differ with respect to some factors other than the 
treatment itself. In crossover studies, each patient receives in 
succession two or more treatments. When feasible, such 
“within-patient” studies require smaller sample sizes than 
“between-patient” studies to achieve the same level of 
significance. 
 
Lifetime variables: Some clinical studies are conducted as life 
data analysis and survival studies, and require specific 
statistical tools. In such studies, a variable represents the time 
to the occurrence of some event of interest, and is called a 
lifetime variable. In the engineering context, a life test consists 
of monitoring the operation of a sample of devices and to 
observe causes of and times to failure for all or some of the 
devices. In the clinical context, a survival study may involve 
observing cause of death (and time from entry to the study until 
death occurs) for some potentially fatal or, in the case of animal 
studies, induced disease. Alternatively, the event of interest 
may be time to relapse or time to remission for some diseases 
or conditions. The purpose of life tests or survival studies is to 
estimate or to compare lifetime or survival between different 
treatment groups.  
 
Statistical test for lifetime variables: Since a lifetime variable 
must be positive (number of remissions for instance), the 
normal distribution is not usually a suitable model. The normal-
based methods of multiple regression and analysis of variance 
cannot be used in the usual manner and in general requisite 
mathematical and computational methods are much less 
tractable than normal-based methods. Consequently, a non-
parametric, partially parametric, or non-normal distributional 
analytic approach is taken. Data is usually visualized using 
Kaplan-Meier survival curves where censored patients (patients 
that have left the study) are explicitly indicated on the curve. 
Comparing between unpaired groups usually involve a log-rank 
test or a Mantel-Haenszel test. Conditional proportional 
hazards regression may be used to compare between two or 
more paired groups. Finally Cox proportional hazard regression 
may be used to compare between more than two unpaired 
groups and perform regression analysis. 
 

Fig. 7. Illustration of PCA and ICA algorithms. PCA finds axis with maximum variance. By contrast in ICA, the projection of data 
point on ICA axis is maximally independent. 
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Censoring: As mentioned above, a further complicating 
factor for survival studies is censoring. Under censoring, 
exact lifetimes are known only for a portion of the 
experimental units, the remainder known only to exceed 
certain censoring times. Censoring is usually a practical 
necessity and must be preplanned. For example, a life test 
on a random sample of 100 devices that has median time-
to-failure of 2500 h will likely take over a year to complete 
if the tests were to continue until all devices fail. Instead, 
the test might be terminated at some predetermined time, 
for example, 1000 h, or immediately upon achieving some 
predetermined number of failures, for example, 30. These 
are called Type I and Type II censoring, respectively, and 
are the simplest to deal with. A distinguishing characteristic 
of survival studies involving human patients is that 
censoring times are often random. For example, suppose 
patients with a certain cancer are undergoing different 
chemotherapy treatments. Patients may enter the study in a 
random manner and patients may survive the termination 
time of the study or may die due to causes unrelated to the 
cancer. There are probability models that incorporate these 
data and lead to appropriate statistical inferential 
techniques. For example, some techniques assess the 
effectiveness of different treatments by comparing 
estimated mean survival times with the effect of unrelated 
causes of death removed. We shall not discuss any further 
methods used for dealing with censoring. It is sufficient to 
say that the special problems of statistical inference in the 
presence of censoring necessitate the use of large sample 
approximations and computer-aided numerical solutions. 
Some of these methods incorporate strong assumptions 
which users should be aware of. 
 

Extensive treatment of methods for censoring and 
the analysis of survival data is given in [25-27]. Non-
technical discussions of clinical trials and the special 
statistical treatments they require are given by Pocock [28] 
and Shapiro [29].  
 

STATISTICAL COMPUTING AND SOFTWARE 

Standardized computer programs aiming at 
performing a variety of statistical analyses were developed 
through the 1960s at several universities and became 
widely available in the 1970s. There is now a large number 
of them and the one to use will depend on the users 
expertise in statistics and field of research. For infrequent 
usage on small data samples and testing of simple 
hypothesis (χ2, t-test, ANOVA), MS Excel which is usually 
already installed on many computer desktops may be 
sufficient. Note the availability of extra statistical functions 
when one selects the “Analysis Toolpack” add-in (installed 
but inactive by default). However MS Excel is not a 
statistical software per se, so to go beyond exploratory 
analysis stages it is better to rely on professional statistical 
software. 

The best known and most comprehensive of these, 
all now under privately managed companies, are the 
Statistical Package for the Social Sciences 
(www.spss.com), the Statistical Analysis System 
(www.sas.com), and JMP (www.jmp.com). SPSS, as its 
name suggests, was developed primarily for use by social 
scientists and is relatively easy to learn by individuals with 
limited statistical and computer backgrounds. SPSS 

graphical interface is organized as tabular spreadsheets similar 
to MS Excel. The programs comprising SPSS, their output 
format, and the examples in the manuals retain a social science 
flavor. SAS has evolved into a widely utilized and extremely 
flexible package that is generally regarded to be more 
statistically sophisticated and complete than SPSS. JMP, also 
developed by the SAS institute, is a user-friendly graphical 
interface that sequentially guides the user through all stages of 
the experimental design and data analysis.  

Apart from the graphical packages mentioned above, 
most other statistical softwares rely on command line calls, 
where users call functions from a prompt (note that most of 
these softwares also include menus). The free R software 
(www.r-project.org) offers powerful functions contributed by 
leading statisticians in the world. Because it is an open source 
project, it is used by many scientists and its extensive libraries 
are probably the place to look for rare statistical procedures. 
The Biomedical Programs (BMDP) (www.statsol.ie) contains a 
large variety of elementary and advanced statistical procedures. 
The programs are widely applicable, but some are particularly 
appropriate in biomedical contexts such as repeated measures 
ANOVA designs (see ANOVA). The S-plus software is also 
very popular (www.insightful.com) and very similar to R. It is 
based on the S language developed at AT-T. Finally, a widely 
used package in academia as well as in industry is a package 
called MINITAB (www.minitab.com) which is one of the most 
user friendly command line software.  

There are many smaller, less comprehensive statistical 
analyses packages available for computers. These range from 
packages that perform elementary, mostly descriptive analyses, 
to some that are rather sophisticated. For bootstrap and 
surrogate statistics, SAS software is preferred among graphical 
software, although it is possible to program bootstrap and 
surrogate data routines in SPSS. The R software contains the 
majority of such user-contributed routines and S-Plus also 
contains a few of them. Finally MATLAB 
(www.mathworks.com), an interpreted language widely used in 
engineering, also has a large number of user-contributed 
bootstrap and surrogate statistics routines available.  

Caution against the ignorant use of computerized 
statistical analyses cannot be over-emphasized. In planning 
studies, the methods of analysis and the constraint they impose 
on experimental designs should be taken into consideration in 
advance. If not, much work and data collection efforts could be 
wasted. Worse still, misleading and even meaningless results 
are often given undeserved weight merely because they 
represent the voluminous output of computer programs. How 
often do we hear that “a computer analysis shows….”, but such 
programs can be totally inappropriate. For example, the 
mathematical methods underlying repeated-measures ANOVA 
incorporate restrictive assumptions on the normality of the data 
and the experimental design for appropriate randomization of 
events. Although, these considerations are often ignored, 
researchers should systematically assess the degree to which 
test-related assumptions are satisfied. These facts 
notwithstanding, computer-aided data management and 
analysis can be of great benefit if used properly and wisely. 
 

BIBLIOGRAPHY 

 This list is not meant to be comprehensive. For the 
naïve reader, a basic introduction to statistics with a plethora of 
exercises is given in the Schaum’s outline series on statistics 
[2]. For the non-naïve reader in statistics, a more technical yet 
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still accessible reference is [30]. Other texts dealing with 
general statistical methods, particularly regression and 
analysis of variance are [31, 32]. Comprehensive web 
references are [18, 33, 34].  
 Statistical books have also been written for specific 
research topics. For example, see [35] for a beginner’s 
reference in designing biology experiments and [6, 8-10] 
for more detailed references. As already mentioned, see 
[28, 29, 36, 37] for clinical trials. Finally, a recent 
development in statistics is statistical process control which 
deals with optimizing production and quality in the industry 
[38].  
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