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SOLUTION OF DIFFERENTIAL EQUATIONS OF
HYPERGEOMETRIC TYPE
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ABSTRACT. We present a method for solving the classical linear ordinary dif-
ferential equations of hypergeometric type [8], including Bessel’s equation, Le-
gendre’s equation, and others with polynomial coefficients of a certain type.
The method is characterized by using the Mellin transform to convert the
original differential equation into a complex difference equation solving the
differential equations in the Mellin transform, or log-spectral, domain.

1. INTRODUCTION

The standard method of solving differential equations with variable coefficients
is the series method of Frobenius. If certain order criteria apply to the singularities,
then a series solution can be generated. Two generate an independent

This paper considers the solution of differential equations of hypergeometric
type. The proposed method is based on using the Mellin transform to convert the
differential equation into a first order difference equation in the complex domain,
for which solutions can be constructed using I'-functions. We propose that the
common feature of functions of hypergeometric type! is this property of yielding a
first order complex difference equation. The Mathieu equation, for example, yields
a second order difference equation, which is not solvable by the proposed method.
This corresponds to its being of “higher type” than the functions of hypergeometric
type [8, §19.1].

An advantage of the proposed method over series methods like that of Frobe-
nius, is that multiple linearly independent solutions are found simultaneously, and
may be represented in the original domain either in series form, or as the scale
convolution of two or more constituent functions. A notable case in which a sec-
ond solution cannot be found using the Frobenius method is Bessel’s equation of
integer order. Bessel’s function of the second kind is commonly defined and then
verified to be an independent solution and satisfy Bessel’s equation. Similarly for
Legendre’s function of the second kind. Our method yields the second solutions,
plus others, simultaneously with the first. Furthermore, each solution is represented
in a schematic form that can be seen as being central in the sense that and

Our method differs from that used by Mellin [?, 3, §7.6] in our emphasis on
the difference equation and the simultaneous generation of multiple independent
solutions for various boundary conditions. The differen [2, §7.6] by Hille . Hille,
however, seems to treat the method more as a peculiarity [2, p. 279] than a general
method, using the Frobenius method in the main treatment of differential equations.

IThere is evidently no standard definition [4, p. 56] of hypergeometric type.

©1997 American Mathematical Society



2 J. A. PALMER

Again, Bessel’s equation of the second kind is defined and verified to be a solution

of Bessel’s equation, rather than derived on an equal footing with other solutions.
In § 2, we review the basic properties and inverse theorems for the Mellin trans-

form. In § 3 we demonstrate the method for solving some classical equations.

2. THE MELLIN TRANSFORM

The Mellin transform [7, 5, 1], is defined by,
/ 257 (z) do
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for s € C such that the integral is convergent.
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2.1. Basic properties. If 2¥g(x) and z*h(x) € L(0,00) for some k € R, then [7,
Thm. 44],

*1 [z - -
@) ro)= [ ga(f)med = fe) = i)
and x*f(z) € L(0,00). Thus under appropriate conditions, we can solve for h(z)

by inverting the transform. If z*f(x) € L(0,00), then (1) can be inverted almost
everywhere using the formula [7, Thm. 28],

k+io00

[
k—ioco
where f(z+) and f(z—) denote the right and left hand limits of f at x. Thus, for
example, when h in (2) is continuous on (0, 00), we have,
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We can similarly solve integral equations of the form f(z) = fooog(fm)h(f) dg.
Using the following two properties, which follow readily from the definition (1),

(@ Mlatfa)isl = 17(2). MUfa)isl = fls+a
we have M [t h(t™1);s] = h(1 — s), and it follows that,
(5) fla) = [Catean@de = ) =gt~ )

Like the Laplace transform, the Mellin transform can be used to convert integro-
differential equations into algebraic equations. We use in particular the following
relation. Let D denote the differential operator. The transform of the operator
(—x)™D™ is given by,

[(s+n) - .
e

There are two basic integrals that are used, fox f(z)dz and f;o, and there are two
corresponding definitions of fractional integrals. The Riemann-Liouville fractional
integral [1, p. 113], for a > 0 and non-integral, is defined by,

D fe) = 1 | - di

(6) M[(=z)"D"f(x) ;5] =



SOLUTION OF DIFFERENTIAL EQUATIONS OF HYPERGEOMETRIC TYPE 3

The Riemann-Liouville fractional derivative, D?, 8 > 0, is defined by the same
formula, with « replaced by —p.
The Weyl fractional integral, for o > 0 and non-integral, is defined by,

vvaf@>ré0/w@xwvawﬁ

For the Weyl fractional derivative, W5, 3 > 0, let n be the smallest integer greater
than 8. Then the Weyl fractional derivative is defined by,

WP f(x) = (=D)" W7 f(x)

The Mellin transform of the Weyl fractional integral or derivative (a positive or
negative), is given by,

—a . _ F(S) r3
(7) MW= (0)38] = ey F5 )
We also use the following result on differentiation in the transform domain.
dm” =«
(3) M(loga)" f(x)55) = 1 (s)

2.2. Inversion theorems. When f(o+ it) decays exponentially as |t| — oo, the
Mellin transform can be inverted using the following theorem [7, Thm. 31],

Theorem 1. Let s = o + it and z = re'?. The function f(s) is given by,

fo)= [T

0
and has the following two properties,

(S1) f(s) = f(o +it) is analytic in the strip, a < o <b,
(S2) |f(o + it)] = O(el*t9)t) as t — —o0, and O(e=P=It) as t — oo, (with
0 < o, B < ) uniformly in any closed strip interior to a < o <b,
if and only if, the function f(z) is given by,
k-+ioo
f6) = [ i)
k—ioo
for any a < k < b, and has the two properties,
(Z1) f(2) = f(re®) is analytic in the wedge —a < 6 < 3,
(Z2) |f(re?®)| = O(r=2¢) asr — 0, and O(r~=°*€) as r — oo, uniformly in any
closed wedge interior to —a < 0 < 3.

If f(s) does not decay exponentially as |t| — oo, then we require another theorem
for the inverse.

Theorem 2. Let the integral foooxs_lf(x) dr = f(s) be uniformly convergent (as
the limits are approached independently) for s = k + it, t in any finite interval.
Then,

1 7,\( |t|> Flz+) + fz—)
®) I A ~ M s sy as = 2RI

271 A—oo A 2
k—iX

for all x > 0 such that f(x+) and f(x—) exist.
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The asymptotic order of the Gamma function can be determined from Stirling’s
formula. Specifically [6, §4.42], for fixed 6, we have,

Pre”)] = O(="2¢ 7))
_ O(TTcoseféefrcosefresina)

as r — oo. And for fixed o,

|F(U + zt)| = O(|SS*%675’)
O([t|7~ze 1)

as |t| — oo, and,

3. DIFFERENTIAL EQUATIONS OF HYPERGEOMETRIC TYPE

3.1. Classical equations. Bessel’s differential equation is defined by,

(10) x27+x—x+(x2—u2)f:0
Taking Mellin transforms, we have,

s(s+1)f(s) = sf(s) + fls +2) =2 f(s) = 0
or, rearranging,
(11) fls+2)= (" =) f(s)

That is, when f (s) is shifted to the left by 2, two simple zeros are introduced, one
at v and one at —v.
Now consider the hypergeometric differential equation, which is defined by,

d*f af

x(l—x)ﬁ—l— (c— (a—i—b—i—l)x)%—i—abfzo
Taking Mellin transforms and rearranging, we get,
~ s—a)(s—0b) -
(12) R e 3 0

(s—c)(s—1)

Here, shifting f(s) to the right by 1 introduces zeros at a and b, and poles at ¢ and
1. The following table lists the classical second order differential equations that
give rise to first order complex difference equations,
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Name Differential Equation Interval
Bessel 22y +xy + (22 —1v2)y =0 (0, 00)
Modified Bessel 22y +xy — (22 + 1)y =0 (0, 00)
Spherical Bessel 22y 4+ 22y’ + (22 —v(v+ 1))y =0 (0, 00)
Struve o2y + xy’ + (22 — 3y = F(%;;\/E VTl (0, 00)
Legendre (1 —22)y"” —2zy' + n(n+ 1)y =0 (-1,1)
Chebyshev I (1—22)y" —zy +n2y=0 (-1,1)
Chebyshev II (1-22)y"” =32y +n(n+2)y=0 (-1,1)
Laguerre zy' —(1—2z)y +ny=0 (0, 00)
Confluent hypergeometric zy” + (¢ — z)y’ —ay =0 —
Hermite y" —2zy’ +2ny =0 (=00, 00)
Hypergeometric z(1—z)y" +(c—(a+b+ 1Dx)y +aby=0 —

The corresponding Mellin difference equations are given in the following table.

Type Complex difference equation
Bessel U(s+2) = £(s —v)(s +v)y(s)

- — —(n+1)) -
Legendre (s —2) = Ll )

(s —a)

Confluent hypergeometric g(s—1) = (CERICERY 7(s)
Hermite g(s —2) = —2% 4(s)
Hypergeometric g(s—1) = % 4(s)

In each case, we have reduced the problem to the determination of a complex
function, integrable in some strip, satisfying,

(13)

F(s+46) = ];Ej))F(s)

where p(s) and ¢(s) are polynomials with real zeros. The basic idea of the proposed
method is to construct meromorphic solutions to (13) by appropriately combining

I-functions.
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For our purposes, a I-function, say I'((s — a)/b), a,b € R, is regarded as an
infinite sequence of poles beginning at a, extending in the direction —sgn(b) and
evenly spaced at a distance of |b|. Similarly, the function cos(w(s — a)/b) is viewed
as an infinite sequence of zeros extending in the positive and negative directions.
The classical formulae relating the trigonometric and I" functions are easily deduced
by viewing the functions this way and matching poles and zeros.

T —T(s)T(1—s) T Tl 49T - s)

sin(ms) cos(7s)

3.2. Difference equations. Suppose we wish to construct a function that satisfies,
(14) F(s+6)=(s—a)F(s)
where 6 € R. That is, shifting F(s) to the left by ¢ introduces a simple zero at a.

The I'-function is the prototype of functions of this kind, satisfying, I'(s+1) = sI'(s).
Let us first note that if F(s) satisfies (14), then

F(s)
cos(2m(s —1)/9)

also satisfy (14) for any r € R. We can use this type of cosine term to change the
asymptotic order of F(s) to make it integrable. Also note that if F' satisfies,

(15) F(s+0)=G(s)F(s)
and we define F' by,

F(s)cos(2m(s —r)/d) and

F(s) = F(s)cos(n(s —1)/6)
then F satisfies,
(16) F(s+6) = —G(s)F(s)

for any r € R. This type of cosine term can be used when it is desired to change
the sign in the functional equation satisfied by F'(s). We shall denote these cosine
terms by,

(17) Ci(r) = cos (m(s —1)/d) Co(r) = cos (2m(s —1)/4)
The § will generally be taken to be understood from the equation being considered,
and we assume that the functional equation is shifted to make § positive.
As a final preliminary observation, note that if F'(s) satisfies (15), and we define,
F(s) = o/’ F(s)
with @ > 0, then F satisfies,
F(s+0) = aG(s)F(s)

Now, in order to construct a function such that a shift introduces a zero at a, we
have two basic options: either shift the end of a one-sided sequence of zeros onto a,
or shift the end of a one-sided sequence of poles off of a. Likewise, to introduce a
pole at a, we can either shift a sequence of poles onto a, or shift a sequence of zeros
off of a. Specifically, to construct a function satisfying (14), we can use either of,

55/6
I'((a+6—s)/8) cos(m(s —1)/8)

where the cosine in Ay is used to turn @ — s into s — a, as in (16). The following
figure illustrates the idea. In the cosine term in As, r is taken to be a.

(18)  Ai(a) = 53/5F((sfa)/5) As(a) =
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Ay
X X X
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When A; or As is shifted to the left by §, the effect is to introduce a simple zero at a.
Similarly, to introduce a simple pole at a, so that F satisfies F'(s+0) = F(s)/(s—a),
we can use either of,

5l a2 s L@t d—9)/0)
I'((s—a)/d) Bz(a) = 9 cos(m(s —1)/d)

(19) Bi(a) =

Using these elementary terms, we can easily write down solutions to the Bessel and
hypergeometric differential equations in the Mellin domain. Since there are two
possible elementary terms corresponding to each zero and pole introduced, if the
total number of zeros and poles introduced is n, then we can formally write down
2™ solutions.

3.3. Bessel’s equation. The Mellin transform of Bessel’s differential equation
yields the difference equation,

(20) fs+2)=—=(s+v)(s—v)f(s)

The elementary terms corresponding to the creation of a zero at —v and at v are,

Ar(—v) = 2°/2 F(H?V) Al (v) = 2°/2 F<¥> Ci(dv) = cos(@)

As(—v) = 2 As(v) = 2
r(%%s) Ci(—v) r(%m) Ci(v)

These elements are depicted graphically in the following figure,

1
- 0O 0O 00 O === +++ O O O O O

where the x’s represent poles and the circles represent zeros, and each sequence is
on the line Im(s) = 0, though separated vertically in the figure for clarity. Real
parts are accurate. We take one of the —v terms, one of the v terms, and a cosine
term, so that when everything is shifted to the left by two, the effect is to introduce
zeros at —v and v, and multiply by —1. The cosine terms are also chosen to ensure
that the function is integrable on some vertical line Re(s) = k, so that the Mellin
transform can be inverted. Using (17) to write the cosine expressions in terms of
I’-functions, we have the following four basic solutions,
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(52 (5 (5)
A1A1C1 = 72° AZAICI =2°——r

()

F(s—;—u) 25F<1+;—T>F<1—;—r>
AArCr = 2 W AalaC= o F<s+u>r<37u>
2 2 2
where r is arbitrary. Each of these expressions is a solution to (20). They will be

shown to correspond respectively to Y, (Bessel function of the second kind), J,,
J_, (Bessel functions of the first kind), and H_, (Struve’s function of order —v).

3.3.1. Series solutions. Using the theory of residues and contour integration, to-
gether with the asymptotic properties of the I'-function, we can easily derive series
solutions corresponding to each solution to the complex difference equation.

For A;A Cy, we have f(o +it) = O(]|)

According to Theorem 1

3.3.2. Integral representations.

3.4. Hypergeometric equation. We have seen that the Hypergeometric differ-
ential equation gives rise, after rearranging (12), to the following quasi-periodic
functional equation,

~ s(s—(c—1))

(21) fls+1)= (s—(a—1)(s—(b—1) e
Here § is 1, and the elementary terms are,
AL(0) =  T(s) A2(0) = ﬁ
Aile=1) =T(s+1-¢)  Aglc—1)= ﬁ

.
I'(s+1—a)
D= 1

)= T'(s+1—10)

Bi(a—1) = B2(a—1) =T'(a—s)Cy

Bi(b— Ba(b—1) = I'(b— s)Cy
where C; indicates some kind of cosine term of the form cos(w(s—r)) or 1/ cos(m(s—
r)). The purpose of these terms with respect to the functional is to multiply by
—1, so any two of the C; terms multiplied or divided can be chosen to cancel each
other out, so long as the resulting function is invertible.

Taking the 16 possible combinations of the elementary terms, and agreeing to
cancel cosine terms whenever possible and limit the number of I' functions in the
numerator or denominator to four, we obtain the following basic solutions,
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L(s)['(s+1—c) I(s+1—c)D(r+s)I'(1—r—s)

AABIBL = w1 —0) AsMBIBL = R A S T =) s+ 1)
'(s)'(s+1—c)['(b—s I'(s+1—c)'(b—s

A1A1B1By = F(er(lzagF(rJrs))F((lfr)fs) A2A1B1B2 = m
~['(s)['(s+1—c)['(a—s T'(s+1—c)'(a—s

A1A1BQBl = F(s—i-(lzbgf‘(r-ﬁ—s))f‘((l—?“zs) AQAIBQBI = %

*L(s+1—c)l'(a—s)['(b—s)
T(1—s)I(r+s)I'(1—r—s)

T(r+s)L(1—r—s)['(r'+s)T(1—1"—5)

A1A1B3By = F(S)F(S-‘rl—c)r(a—s)r(b—s) A2A1B3By =

L(s)I'(r+s)I'(1—r—s)

AtABIBL = e T —oT(e—s) "2A2B1B1 = Gr =T F - a1 1-0)

A1A2B1B; = % A2A2B1By = ﬂrr((r1tss?)rr((lcig)_1f()s,r+(})1152)
I'(s)I'(a—s I'(r+s)I'(1—r—s)'(a—s

ArAzB2B1 = —F(sfl)flg)F(c)fs) A2A2B2B1 = wlg(lfg)Ig(cfs)ngille)

AiA>BoBy — ~I'(s)['(a—s)I'(b—s) AsAsBaBy — I'(a—s)I'(b—3s)

T'(c—s)I'(r+s)I'(1—r—s) T'(1—s)I'(c—s)

where r and ' are arbitrary.

3.5. Series solutions. We now show how to determine solutions in series form
using the inverse transform (3) and the method of contour integration.

3.6. Integral solutions.

3.7. Inverse operators. The following are inverse operators. If a > 0,

T=a+zD T '= x_“/ t*"Lf(t)dt or x—“/ t* () dt
0 x

depending on which integral exists.

4. CRITERIA FOR HYPERGEOMETRIC TYPE

4.1. Transforming by multiplicative factor. Consider the following second or-
der differential equaiton,

po(@)y"(x) + p1(2)y(z) + pa(2)y(x) =0
Given Define the function f(x) such that y(z) = w(z)f(z).
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