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ABSTRACT | Neural prosthetic technologies have helped many

patients by restoring vision, hearing, or movement and

relieving chronic pain or neurological disorders. While most

neural prosthetic systems to date have used invasive or

implantable devices for patients with inoperative or malfunc-

tioning external body parts or internal organs, a much larger

population of Bhealthy[ people who suffer episodic or

progressive cognitive impairments in daily life can benefit

from noninvasive neural prostheses. For example, reduced

alertness, lack of attention, or poor decision-making during

monotonous, routine tasks can have catastrophic conse-

quences. This study proposes a noninvasive mobile prosthetic

platform for continuously monitoring high-temporal resolution

brain dynamics without requiring application of conductive

gels on the scalp. The proposed system features dry micro-

electromechanical system electroencephalography sensors,

low-power signal acquisition, amplification and digitization,

wireless telemetry, online artifact cancellation, and signal

processing. Its implications for neural prostheses are examined

in two sample studies: 1) cognitive-state monitoring of

participants performing realistic driving tasks in the virtual-

reality-based dynamic driving simulator and 2) the neural

correlates of motion sickness in driving. The experimental

results of these studies provide new insights into the under-

standing of complex brain functions of participants actively

performing ordinary tasks in natural body positions and

situations within real operational environments.

KEYWORDS | Cognitive-state monitoring; electroencephalogra-

phy (EEG); motion sickness; neural prosthesis; noninvasive

mobile prosthetic platform

I . INTRODUCTION

Prosthesis refers to a surrogate or replacement of a body

part such as a tooth, an eye, a facial bone, an ear, a hip, a

knee or other joint, a leg, or an arm. Prostheses may be
designed for functional or cosmetic purposes or both.

Advances in biomedical science and technology have

enabled integration of some prostheses with body tissues,

including the central nervous system. These neuroprosthe-
ses can now respond to commands from the brain. During

the current decade, hundreds of thousands of patients have

already been helped by neuroprosthetic technologies that

restore vision [1], hearing [2] or movement [3] and relieve
chronic pain or neurological disorders [4]. These neuro-

prostheses usually involve invasive or implantable devices

for patients with inoperative or malfunctioning external

body members or internal body organs [5]. However, a

much larger population of Bhealthy[ people who suffer

momentary, episodic, or progressive cognitive impair-

ments in daily life have, ironically, been overlooked. For

Manuscript received April 20, 2007; revised February 12, 2008. This work was

supported by the National Science Council, Taiwan, R.O.C., under Contracts

NSC 96-2627-E-009-001 and NSC 96-2218-E-009-001; the BAiming for the Top

University Plan,[ National Chiao-Tung University; the Ministry of Education, Taiwan,

under Contract 96W803; and the Defense Advanced Research Projects Agency under

Grant NBCH1060010.

C.-T. Lin, L.-W. Ko, and J.-C. Chiou are with the Brain Research Center and

Department of Electrical and Control Engineering, National Chiao-Tung University,

Hsinchu, Taiwan, R.O.C. (e-mail: ctlin@mail.nctu.edu.tw; lwko@mail.nctu.edu.tw;

chiou@mail.nctu.edu.tw).

J.-R. Duann and T.-P. Jung are with the Brain Research Center, National Chiao-Tung

University, Hsinchu, Taiwan, R.O.C. They are also with the Institute for Neural

Computation, University of California San Diego, La Jolla, CA 92093 USA

(e-mail: duann@sccn.ucsd.edu; jung@sccn.ucsd.edu).

R.-S. Huang is with the Institute for Neural Computation, University of California

San Diego, La Jolla, CA 92093 USA (e-mail: rshuang@sccn.ucsd.edu).

S.-F. Liang is with the Brain Research Center, National Chiao-Tung University, Hsinchu,

Taiwan, R.O.C. He is also with the Department of Computer Science and Information

Engineering, National Cheng-Kung University, Tainan, Taiwan, R.O.C.

(e-mail: sfliang@mail.ncku.edu.tw).

T.-W. Chiu is with the Brain Research Center, National Chiao-Tung University, Hsinchu,

Taiwan, R.O.C. (e-mail: twchiu@mail.nctu.edu.tw; tzaiwen.chiu@gmail.com).

Digital Object Identifier: 10.1109/JPROC.2008.922561

Vol. 96, No. 7, July 2008 | Proceedings of the IEEE 11670018-9219/$25.00 �2008 IEEE



example, as the last 60 years of research in human vigilance
and attention has shown, humans are not well suited for

maintaining alertness and attention under monotonous

conditions, particularly during the normal sleep phase of

their circadian cycle [6]. Catastrophic errors can result

from momentary lapses in alertness and attention during

periods of relative inactivity. Many people, not just

patients, can benefit from a prosthetic system that

continuously monitors fluctuations in cognitive states in
the workplace and/or the home. However, to be practical

for routine clinical or occupational use, the prosthetic

system must be noninvasive, nonintrusive, lightweight,

battery-powered, and easy to don and doff. Further, it must

enable a full range of head, eye, and body movements. The

only possible brain-imaging modality fulfilling these criteria

is electroencephalography (EEG). EEG is a powerful

noninvasive tool widely used for both medical diagnosis
and neurobiological research because it can provide high

temporal resolution in milliseconds that directly reflects

the dynamics of the generating cell assemblies. Electroen-

cephalography is also the only brain-imaging modality that

can be performed without fixing the head/body. Substantial

research [7]–[11] has shown that many features of EEG

dynamics index the current state of subject alertness,

arousal, and attention. However, data collection in most
EEG studies requires skin preparation and gel application to

ensure good electrical conductivity between sensor and

skin. These procedures are time consuming, uncomfort-

able, and even painful for participants since skin prepara-

tion usually involves abrasion of the outer skin layer.

Repeated skin preparation and gel application for EEG may

also cause allergic reactions or infections. Further, the

signal quality may degrade over time as the skin regenerates
and the conductive gel dries. Advance electrode designs are

needed to overcome these requirements and complications

of adhesive contacts between EEG electrodes and the skin

surface before routine EEG monitoring can be feasible in

real-world environments.

Another major challenge for EEG monitoring in

operational environments is extracting meaningful and

informative event-related brain dynamics from the re-
corded signals that are often subject to severe artifacts

from head/body motion or other ocular or muscle

movement. The recorded information generally has value

only in proportion to the sophistication and reliability of

the analytical method employed. Sophisticated signal-

processing techniques are often computationally expensive

and implemented either online or offline using high-end

personal computers (PCs). The substantial processing
requirements hinder the wearability, portability, and

practical use of the systems in operational environments.

However, given the recent development of embedded

system and signal-processing techniques, it is now

practical to implement these sophisticated algorithms in

embedded systems for online EEG monitoring and/or

brain–computer interface (BCI). These real-time embed-

ded systems, in conjunction with wireless transmission,
have proven useful in applications such as diagnosis and

homecare systems [12] because they provide maximum

portability and wearability.

In short, the unavailability of EEG monitoring systems

that do not require application of conductive gels to the

scalp and are capable of high-definition recording, online

signal processing, and artifact cancellation has long

thwarted applications of EEG monitoring in other than
well-controlled laboratory conditions. To make the non-

invasive prosthetic system practical for routine use, it is

essential to provide a quickly and easily donned and doffed

EEG acquisition system for implementing online signal-

processing techniques to continuously and accurately

extract meaningful and informative information. The

system should also be a convenient size, rugged, and

lightweight and have low power consumption to meet the
requirements of wearability, portability, and durability.

This study details the design, development, and testing

of a noninvasive mobile prosthetic platform for continu-

ously monitoring high-temporal resolution brain dynamics

without requiring conductive gels applied to the scalp. The

system employs dry microelectromechanical system

(MEMS) EEG sensors, low-power signal acquisition,

amplification and digitization, wireless telemetry, online
artifact cancellation, and real-time signal processing. Its

implications in neuroprostheses are also demonstrated

through two sample studies: 1) cognitive-state monitoring

of participants performing realistic driving tasks in a

virtual reality–based dynamic driving environment and

evaluation of the efficacy of the system in delivering

stimulating feedback to help maintain optimal task

performance and 2) identification of neural correlates of
motion sickness in driving.

II . NONINVASIVE PROSTHETIC SYSTEM

The study reported in this paper designed and developed a

noninvasive mobile prosthetic platform (Fig. 1) consisting

of self-stabilized MEMS sensors, signal amplification and

digitization, wireless transmission/receiving, and a real-
time embedded system to assess human physiological and

mental information in operational environments.

A. Self-Stabilized MEMS Sensor
Electrodes for biopotential measurement transduce

biosignals from skin tissue to the amplifier circuit. They

are used extensively in biomedical applications to

measure biosignals such as EEG and electrocardiogram
(ECG) signals [13]. The most important task in designing

and fabricating the biopotential electrode is ensuring low

electrode/skin interface impedance so that the measured

biosignals can be bridged into the front-end circuits with

minimal attenuation and noise interference [13]. Skin

anatomy can be divided into three layers: the epidermal,

dermal, and subcutaneous layers [14]. As Fig. 2(a) shows,
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the epidermis contains two layers: stratum corneum (SC)

and stratum germinativum (SG). The SC consists of dead

cells and thus has electrical isolation characteristics. The

SG is composed of living cells and is therefore electrically

conductive. The dermis contains nerve endings, blood

vessels, and oil glands. To overcome the electrical

isolation property of the SC, conventional wet electrodes

always require skin preparation (abrasion on SC) and the
use of an electrolyte. Improper preparation can cause

skin irritation, pain, or even infection. Using electrolytic

gel on the skin tissue not only is uncomfortable and

inconvenient but also causes irritation and swelling

during long-term measurement. Further, the conductivity

of electrolytic gel decreases gradually due to drying. The

decreasing conductance can in turn degrade signal

quality.

For practical use of biomedical signal monitoring in the

workplace, collecting the biosignals using easily donned

and doffed dry electrode technology is highly desirable. In

recent years, the authors have explored the use of MEMS

technology to build a silicon-based spiked electrode array

or so-called dry electrode array to enable EEG, electro-

oculograph, ECG, and magnetoencephalogram [13] mon-

itoring without conductive paste or scalp preparation. The
dry MEMS sensors feature a microprobe array structure

and self-stabilization capability. Microprobe arrays placed

on the skin provide signal transmission performance

superior to that of standard wet electrodes. Transmission

is improved because the electrically conductive probe can

penetrate the high electrical resistance of the outer SC

skin layer and into the deeper SG skin layer, which has

better electrical conductivity [15]. As Fig. 2 shows, the

Fig. 2. Skin anatomy: comparison between (a) conventional wet electrode, conical shape electrode and

(b) proposed self-stabilized MEMS EEG sensor.

Fig. 1. The system diagram of the proposed noninvasive prosthetic system.
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electrically conductive probes are designed to avoid the

dermal layer so as to avoid pain and bleeding. Since the

proposed sensor is expected to bypass the high impedance

of the SC skin layer, skin preparation and electrolytic gel

application are no longer required. In contrast with other

designs such as that proposed in [13], this study develops a

simple and stable technology for fabricating EEG sensors.

1) Design and Fabrication: Fig. 3 shows the silicon-based
process for microfabrication of the self-stabilized diamond-

shaped microprobe. The most important parameter in the

fabrication process is the probe length, which should be

sufficient to pierce the SG layer but not the dermis. The

thickness of the epidermis varies from 0.05 to 1.5 mm in

different ethnic groups and in different areas of the body,
and the thickness of SC and SG layers is approximately

10–15 and 50–100 �m, respectively [16]. Thus, to

penetrate the SC and reach the SG layers, the length of

the probe must be longer than 20 �m and the tip must be

sufficiently sharp to minimize damage during penetration.

Fig. 4 shows a scanning electron microscope image of

the fabricated electrodes. The dimensions of the

manufactured probe are a ¼ 17 �m, b ¼ 50 �m,
c ¼ 200 �m, and d ¼ 50 �m. The tip of the probe is

slightly blunt (G 10 �m) because the tip must support the

hard mask in the second anisotropic etching.

2) Testing and Evaluation: To test the electrode/skin

interface impedance, two dry electrodes were placed on

the forehead 4 cm apart, and electrode/skin impedance was

measured after applying current to the electrode pair [17].

The measured impedance was then compared to that

obtained from wet electrode pair with the same setup.

Nineteen tests were performed on five different subjects.

Five different electrodes were used: two standard wet

electrodes coated with AgCl and Au of 1 cm diameter and
three fabricated MEMS electrodes with sizes of 4 � 4,

3 � 3, and 2� 2 mm2. Fig. 5(a) shows the impedance for a

frequency range (0.5–150 Hz) obtained by dry electrode

pair (red trace) without skin preparation or conducting gel,

with AgCl electrode (green trace), and without applying gel

(blue trace). Electrode/skin impedances for five different

electrodes (Au, AgCl, 4 � 4, 3 � 3, and 2 � 2 mm2) were

evaluated without using skin preparation or electrolytic gel.
As Fig. 5(b) shows, the electrode/skin impedances of all the

MEMS electrodes were lower than those of the wet

electrodes without preparation in almost all frequency

ranges. These experimental results indicated that the

MEMS electrodes outperformed the conventional (wet)

electrodes in terms of electrode/skin interface impedance

and signal intensity [18].

B. Mobile and Wireless Noninvasive
Prosthetic System

The study reported in this paper proposed a noninva-

sive prosthetic system using mobile and wireless EEG

comprising the above MEMS EEG sensors, a signal

acquisition and amplification unit, wireless telemetry,

Fig. 4. The fabrication result of the proposed design. The dimension of the microprobe is about a ¼ 17 �m, b ¼ 50 �m,

c ¼ 200 �m, and d ¼ 50 �m.

Fig. 3. Fabrication process of the proposed self-stabilized microprobe array.
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and online signal processing modules. The system analyzes

EEG signals in near real-time to monitor human cognition

states and delivers arousing feedback to help maintain

subject alertness. The left side of Fig. 6 shows the detailed

system architecture of the noninvasive prosthetic system,
which consists of five major units: (a) signal acquisition

and amplification units, (b) wireless data transmission

unit, (c) dual-core processing unit, (d) host system for data

storage and real-time display, and (e) warning device. The

EEG signals acquired by MEMS electrodes are first

amplified by the signal acquisition and amplification

unit. The wireless data transmission unit consists of an

analog-to-digital converter, a complex programmable logic

device, and a wireless module. The wireless module can be

either a radio-frequency (RF) module (RF3100/3105) or a
Bluetooth module depending on transmission range

requirements. The heart of the mobile and wireless non-

invasive prosthetic system is a dual-core processing unit

based on Texas Instruments’ Open Multimedia Architec-

ture Platform 1510 featuring an ARM925 processor and a

Fig. 6 (Left) Detailed system architecture of the mobile and wireless prosthetic system. (Right) The structure

of the embedded system and the data processing flowchart.

Fig. 5. Comparisons of impedance spectra for the test biopotential electrodes.
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TMS320C55x digital signal-processing (DSP) processor.
The DSP core is used to process EEG data, and the

ARM925 is used to communicate with other devices such

as wireless transmission modules and TCP/IP networks.

The DSP gateway software enables the ARM core to use

DSP resources by application program interface (API) and

functions similarly to a small real-time kernel, which

manages resources and data flow in the DSP core.

Therefore, it is used as the cooperation structure for
communication between the two cores since these two

cores perform different functions. This mechanism

activates the DSP processor only when the system must

process EEG data. The Linux operating system (OS) is used

to manage core ARM resources. The three components of

the ARM are 1) wireless module control, 2) TCP/IP control

and 3) DSP gateway driver. The right side of Fig. 6 shows

the process flowchart and task distribution in the
embedded system.

The host system is equipped with data storage and real-

time EEG signal display functions. The connection

between the host and embedded systems uses TCP/IP

protocol. The warning device is also incorporated in the

system. Visual and/or audio signals can be delivered to

users to provide stimulating feedback signals. A multitask-

ing and scheduling procedure is employed in the dual-core
signal processing unit to enhance the efficiency of the

embedded system and to enable to the system to function

in near real-time [19]. The unique features of the proposed

system are:

1) novel dry electrodes that noninvasively and

nonintrusively acquire EEG signals without re-

quiring skin preparation or conductive gel;

2) a miniaturized and battery-powered signal acqui-
sition and digitization module for maximum

portability;

3) a selectable wireless transmission module that

maximizes wearability and can be adapted to

many other applications;

4) a dual-core embedded system with a multitasking

and scheduling procedure for online signal

processing and artifact cancellation;
5) a feedback delivery device that provides stimu-

lating feedback to help users optimize task

performance.

III . DEVELOPMENT OF KINESTHETIC
VIRTUAL-REALITY DRIVING
ENVIRONMENT

To demonstrate the implications of the noninvasive

prosthetic system, declines in the cognitive state of

participants were monitored in a sustained-attention

task. Driving is one of the most common attention-

demanding tasks in daily life. Driver fatigue or drowsiness

is reportedly a major causal factor in many accidents

because sleepy drivers have markedly reduced perception,

recognition, and vehicle control abilities. In recent years,
technology for preventing driving accidents caused by

drowsiness has become a major interest in automotive

safety engineering. Physiological changes such as eye

activity measures, heart rate variability, and particularly

EEG activity are known to be associated with drowsiness

[20]–[25].

Most previous studies of drowsiness measured the

psychophysical responses while participants performed a
computer-simulated driving task in a well-controlled

laboratory in which driving controls were a joystick or a

steering wheel in front of a computer screen. In such

studies, behavioral data such as reaction time to perform

sudden braking or turning maneuvers are often measured.

However, participants are never provided with kinesthetic

input or sensation during these experiments. The lack of

multisensory (visual, auditory, kinesthetic, and tactile)
information presented to participants limits the assess-

ment and interpretation of the complicated relationships

between such information and the motor actions of the

participants. The ideal experimental condition would

measure physiological signals in an actual automobile on

the road. However, investigating driving perception in an

actual driving environment would be subject to several

limitations. First, ethical concerns would prohibit expos-
ing subjects to physical danger of attention lapse while

driving an automobile. Secondly, appropriate data acqui-

sition and monitoring devices are needed to study the rapid

physiological responses of kinesthetic stimuli. Simulators

provide simple and repeatable stimulation to control the

parameters of the experiment. Thirdly, objective evalua-

tion of driving performance and putative level of alertness

may be difficult to assess on the road. To solve such
problems of studying kinesthetic perceptions during

driving, a realistic simulator is the best alternative for

driving-related research [26]–[29].

To test and demonstrate the feasibility of a noninvasive

prosthetic system in a realistic operational environment,

the study reported in this paper developed a three-

dimensional (3-D) virtual-reality (VR) dynamic motion

simulator [30], [31] as a test bed for studying the EEG
dynamics associated with cognitive-state changes during

driving. The simulator provides visual, auditory, and, most

importantly, kinesthetic and tactile stimulation either

separately or jointly to volunteer subjects, which are not

available in conventional EEG laboratories. This dynamic

driving simulator enables systematic testing of the

limitations of normal human performance in sustained-

attention tasks in a safe yet realistic environment. Seven
projectors are used to project 360� highway and driving

scenes in 3-D [Fig. 7(a)]. For the study, an actual

automobile was mounted on a six-degree-of-freedom

(DOF) Stewart platform [Fig. (7b)]. The 6-DOF motion

platform is controlled by six hydraulic linear actuators to

generate translational and rotational movement as well as

vibratory feedback to simulate actual driving conditions.
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The 360� projection of driving scenery is updated

synchronously with deviations caused by wheel/paddle

movement by the subjects or by road conditions such that
subjects feel the car moving as if they are driving in real-

world conditions. The motion platform also provides

physiological and behavioral response recordings to not

only to evaluate driving performance and behavior but also

examine the brain dynamics in response to the kinesthetic

stimulation generated by the motion platform. Therefore,

this test environment provides an interactive, safe, and

realistic environment at very low cost, and the outcomes of
the study should be highly applicable to real-life driving

safety research.

IV. CASE STUDY: DROWSINESS
DETECTION IN LONG-TERM DRIVING

The goal of the study was to examine the efficacy of a

noninvasive prosthetic system for monitoring declines in
cognitive function during a sustained-attention task. By

combining EEG power spectrum estimation, principal

component analysis (PCA), and linear regression of

artificial neural networks, the authors previously reported

that continuous, accurate, noninvasive, and near real-time

estimation of alertness of an operator is feasible [30], [31].

The study employed dry MEMS sensors and mobile

wireless EEG monitoring technologies to extend previous
laboratory studies of EEG-based drowsiness detection to a

simulated operational environment using a realistic

kinesthetic VR driving simulator.

A. Method and Materials
Ten subjects (aged 20–40 years; mean 29.8 years;

standard deviation �5.9) participated in the VR-based

highway driving experiments, which were all conducted in
the early afternoon after lunch. The VR scenes simulated

driving at a constant speed (100 km/h) on a highway with

the car randomly drifting away from the center of the

cruising lane to simulate driving on nonideal road surfaces

or with poor alignment [32]. Other than a straight and

monotonous road, no traffic or other stimuli appeared in

the VR scene, which was intended to simulate a driving

situation likely to induce drowsiness.

All participants completed informed consent forms
before being briefed on the task requirements. All subjects

practiced keeping the car in the cruising lane using the

steering wheel for 15–30 min until they reached a

performance asymptote for the task. After the practice

session, conventional wet electrodes and MEMS EEG

sensors were prepared and placed on the forehead of each

subject (Fig. 8), who then performed the driving task for

1 h. Each participant returned on a different day to
complete a second 1-h driving session. Driving perfor-

mance was measured by the distance of lane deviation,

which was small when the subject was alert, and vice versa.

The driving parameters (lane position and wheel rotation)

were in sync with the EEG acquisition system.

Fig. 8 shows the placements of theMEMS/conventional

electrode pairs at the five forehead locations. The first

and fifth MEMS EEG sensors were placed at Fp1 and Fp2
according to the international 10–20 electrode placement

system [33]. Three additional MEMS EEG sensors were

also evenly positioned between these two MEMS sensors

Fig. 7. (a) Kinesthetic VR-based driving environment; (b) driving cabin simulator mounted on a 6-DOF dynamic Stewart motion platform.

Fig. 8. Forehead positions of (circle) conventional wet electrodes and

(square) MEMS EEG sensors.
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and labeled as MEMS2, MEMS3, and MEMS4.
Corresponding conventional wet electrodes were placed

1cm above the MEMS EEG sensors. The contact imped-

ance between the MEMS/wet electrode and skin tissue

was calibrated to less than 5 k�. The EEG signals were

recorded from these five MEMS and five wet sensors, then

referenced against linked mastoids (A1, A2) by the

proposed noninvasive prosthetic system and Neuroscan

NuAmps Express system (Compumedics Ltd., VIC,
Australia), respectively. The frequency range was selected

to bandpass from 0.5 to 100 Hz with a 60-Hz notch filter,

recorded with 16-bit quantization level at a sampling rate

of 500 Hz and downsampled to 250 Hz to simplify signal

processing.

B. Results
Fig. 9 plots the raw EEG signals measured by the

noninvasive mobile wireless prosthetic system and tradi-

tional EEG system (only the leftmost and rightmost

MEMS/wet pairs are shown). The figure shows that the

EEG signals recorded by the MEMS sensors are virtually

identical to those obtained by the corresponding wet

electrodes. Fig. 10 overplots the EEG power spectra of EEG

data collected by five MEMS/wet electrode pairs. The plot

shows their similarity, especially in low frequency bands
(1–30 Hz), indicating that EEG signals obtained by the

proposed noninvasive prosthetic system using MEMS

sensors approximated those recorded by the conventional

EEG system using conventional wet electrodes.

Fig. 11 shows data analysis procedures for estimating

the drowsiness level from EEG power spectra. The

acquired EEG signals were fed into an EEG-based

drowsiness estimation program [31] to estimate the driver
drowsiness level during long-term driving. First, artifacts

were rejected before further analysis. A low-pass filter with

a cutoff frequency of 50 Hz was applied to EEG data to

remove line noise and other high-frequency noises. The
time series of recorded behavior data (driving perfor-

mance) and EEG signals were smoothed using a causal 90-s

square moving-averaged filter advancing at 2-s steps to

eliminate variance at cycle lengths shorter than 1–2 min

since driving performance becomes erratic at cycle lengths

of 4 min and longer [8], [9]. After moving-average power

spectral analysis, an EEG log power spectrum was obtained

for the five MEMS (or wet) electrodes. Logarithmic scaling
linearizes the expected multiplicative effects of subcortical

systems involved in wake–sleep regulation on EEG

amplitudes [34]. Karhunen–Loeve PCA was then applied

to the resultant EEG log spectrum between 1–40 Hz to

extract the directions of largest variance for each session.

Finally, projections of the EEG log spectral data (PCA

features mapping) along the subspace formed by the

eigenvectors corresponding to the largest 50 eigenvalues
were used as inputs to a multiple linear regression model

[35] to estimate the time course of driving error for each

subject [36]. The features of each model were trained and

extracted only from the training session and tested on the

data from a separate testing session.

Figs. 12–15 compare the estimation performance

obtained by MEMS EEG sensors and wet electrodes in

the sustained-attention driving tasks. In each figure, the
blue and red traces represent the acquired and estimated

driving errors, respectively, and all of the figures show test

data results. Fig. 12(a) and (b) shows the estimated driving

error for Subject 1 in Session #2 using the EEG signals

recorded by the conventional wet electrodes and the

MEMS EEG sensors, respectively. The estimators were

trained with the EEG signals from Session #1 to estimate

the driving errors in Session #2 of Subject 1 (the blue
traces in Fig. 12). Conversely, Fig. 13(a) and (b) shows the

estimated driving error of Subject 1 using EEG data

from Session #2 as the training dataset and those from

Fig. 9. EEG signal recording contrast MEMS sensors with wet electrodes.
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Fig. 10. Comparison of EEG power spectra between five dry (MEMS)/wet electrode pairs. (a) Dry1 (MEMS1)/Wet1 electrode pair.

(b) Dry2 (MEMS2)/Wet2 electrode pair. (c) Dry3 (MEMS3)/Wet3 electrode pair. (d) Dry4 (MEMS4)/Wet4 electrode pair.

(e) Dry5 (MEMS5)/Wet5 electrode pair.
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Session #1 as the testing dataset. Similarly, Figs. 14 and 15

show estimated and actual driving errors made by another

subject (Subject 2). Table 1 compares correlation coeffi-

cients between the actual and estimated driving error time

series using MEMS EEG sensors and conventional wet

electrodes for ten different subjects. As Figs. 12–15 and

Table 1 show, the estimated driving errors based on EEG
spectra matched well with actual errors, which was

consistent with a recent report by the authors in which

the same driving tasks were analyzed by whole-head

32-channel EEG [30], [31]. These analytical results

demonstrate the feasibility of accurately estimating subject

task performance based on EEG signals collected by dry

MEMS sensors positioned on frontal areas. Further, the

estimation accuracy based on the EEG collected by the
MEMS EEG sensor is comparable to that of signals

collected by conventional wet electrodes, which indicates

that the proposed noninvasive prosthetic system does not

require skin preparation or conductive gels to acquire high-

quality EEG signals in operational environments.

V. CASE STUDY: MOTION SICKNESS
WHILE DRIVING ON WINDING ROADS

Motion sickness can be induced when humans are exposed

to vestibular or visual motion stimuli. Symptoms may

differ according to the vehicle or environment, such as car

sickness, sea sickness, air sickness, and space sickness.

Motion sickness can induce symptoms including eye

strain, headache, pallor, sweating, vertigo, ataxia, nausea,

and vomiting. Many previous studies indicate that motion
sickness can sometimes impair cognitive and response

Fig. 11. Flowchart for processing the EEG signals. 1) A low-pass filter was used to remove the line noise and higher frequency (> 50 Hz) noise.

2) Moving-averaged spectral analysis was used to calculate the EEG log power spectrum of each channel advancing at 2-s steps. 3) Two EEG

channels with higher correlation coefficients between the subject’s driving performance and EEG log power spectrum were further selected.

4) PCA was trained and used to decompose selected features and extract the representative PCA components as the input vectors for the linear

regression models. 5) The linear regression models were trained in one training session and used to continuously estimate and predict the

individual subject’s driving performance in the testing session.

Fig. 12. Estimated (red traces) and actual (blue traces) driving error of Session #2 of Subject 1 using the EEG signals recorded by

(a) the conventional wet electrodes and (b) MEMS EEG sensors, respectively. The estimators were trained with the EEG signals

from Session #1 to estimate the driving error of Session #2.
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ability [37], [38]. Thus, numerous studies have attempted

to elucidate motion sickness and its symptoms. Two main

theories of the cause of motion sickness are the sensory

conflict theory [39] and the postural instability theory [40].

Studies have employed various methods of inducing
motion sickness, such as rotary chair [41], circular vection

drum [42], and off-axis yaw oscillator [43]. According to

the sensory conflict theory, subjects get sick in a virtual

environment because of the conflict between the visual

and vestibular system. Thus, conflict can be induced or

reduced by using a motion platform in a VR environment.

The syndrome of sickness should be induced or totally

eliminated if the motion of the platform is misaligned or

perfectly aligned with the VR scene, respectively. The goal

of the study reported in this paper was to demonstrate the

potential use of a noninvasive prosthetic system for

predicting the onset of motion sickness while driving by

exploring the EEG correlates of motion sickness system-
atically induced/reduced by the aforementioned kines-

thetic VR driving platform.

A. Method and Materials
A three-stage driving task was designed. Each subject

was given a 10-min practice session before each experi-

ment to familiarize himself with the VR environment and

vehicle controls. Each experiment started with a 10-min

Fig. 13. Estimated (red traces) andactual (blue traces)drivingerrorofSession#1 Subject 1 using theEEGsignals recordedby (a)wetand (b)MEMS

electrodes, respectively. The estimators were trained with the EEG signals of Session #2 to estimate the driving error of Session #1.

Fig. 14. Estimated (red traces) and actual (blue traces) driving error of Session #2 of Subject 2 using the EEG signals recorded by (a) wet and

(b)MEMS electrodes, respectively. The estimators were trained with the EEG signals from Session #1 to estimate the driving error of Session #2.
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period of straight road driving followed by 40 min of

winding-road driving to induce motion sickness, followed

by 15 min of straight-road driving for recovery. Fig. 16

shows the experimental scheme. Data for the first 10-min

portion of each experiment were regarded as baseline data.

The subjects were expected to experience motion sickness

during and after the 40-min winding-road driving session.

The physiological signals collected during the Bmotion

sickness[ session were then compared with those in the

Bbaseline[ session. The VR scene was designed to simulate

Fig. 15. Estimated (red traces) and actual (blue traces) driving error of Session #1 of Subject 2 using the EEG signals recorded by (a) wet and

(b) proposed electrodes, respectively. The estimators were trainedwith the EEG signals of Session #2 to estimate the driving error of Session #1.

Table 1 Testing Patterns for Electrode-Skin-Electrode Impedance (ESEI) Measurement

Fig. 16. Protocol of the designed VR scene to induce motion sickness.
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Fig. 17. The EEG correlates of motion sickness induced by a dynamic VR driving simulator. (a) ERSP of a sample independent component.

(b) Mean and individual scalp maps of a centroparietal component cluster. (c) The mean log alpha power as a function of subjective

motion-sickness level.
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driving in a tunnel, which is known to induce motion
sickness.

Ten healthy volunteers (six males and four females;

aged 18–26 years old; average age 22 years old) with no

history of gastrointestinal, cardiovascular, or vestibular

disorders participated in the experiments. All subjects had

been instructed to avoid tobacco, caffeine, drugs, or

alcohol for a week prior to the experiment to minimize

influences on the central and autonomic nervous systems.
A motion-sickness questionnaire was also designed based

on several related studies to evaluate the behavioral

performance of subjects during varying severity of motion

sickness [44]. To fully explore the EEG correlates of

motion sickness in the kinesthetic VR environment, this

preliminary study employed a whole-head 32-channel EEG

cap (Neuroscan, Inc.) to measure subject EEG data in the

motion-sickness experiments. All channels were
referenced to the right mastoid with input impedance

lower than 5 k�. Subjective sickness level was continu-

ously reported by subjects using a joystick synchronized

with EEG acquisition. After artifact removal, the EEG data

were processed by independent component analysis [45]–

[48] and time-frequency analysis to assess EEG correlates

of motion sickness. Time series in each epoch k were

transformed into time-frequency matrix Fkðf ; tÞ using 1-s
moving-window fast Fourier transforms. Log power

spectra were estimated at 50 linear-spaced frequencies

from 0.5 to 25 Hz, then normalized by subtracting the log

mean power spectrum in the baseline (first 10-min

straight-road driving). The resulting event-related spectral

perturbation (ERSP) images were constructed to show

potentially significant spectral perturbations (log power

differences) from the mean power spectral baseline
(pG 0:01, not corrected for multiple comparisons) [49].

The power spectra of independent component (IC) time

courses were also calculated and correlated with the

subjective motion-sickness level to select motion-sickness-

related IC(s).

B. Results
Fig. 17(a) shows the ERSP of a typical Bnausea-related[

independent component with an equivalent dipole source

located in the centroparietal area. This component

exhibited strong alpha-band (8–12 Hz) power increases

when the subjects experienced motion sickness plotted

above the ERSP image. The spectra of equivalent

components of some subjects even exhibited parallel

spectral increases at 18�20 Hz. To test the consistency

of component activities, clustering analysis of equivalent
ICs was performed across sessions and subjects. The ICs

from all experiments were grouped semiautomatically

based on their scalp maps and power spectral baselines

[50]. Fig. 17(b) shows the mean scalp map for the

centroparietal component cluster. Individual maps in this

cluster resembled the cluster mean map, indicating the

component scalp projections, putatively equivalent dipole

locations, and component activities were acceptably stable
across sessions and subjects. Fig. 17(c) shows the mean

(and þ=� standard deviation) alpha power of the

centroparietal components across sessions and subjects

as a function of subjective motion-sickness level. Alpha

band power increased monotonically with subjective

motion-sickness level.

These experimental results suggest that continuous,

accurate, noninvasive, and near real-time estimation of the
physical state (in this example, motion sickness) of the

driver is feasible using EEG measures recorded from

the scalp.

VI. DISCUSSIONS AND CONCLUSIONS

While most neural prosthetic systems to date have focused

on invasive or implantable devices for patients with
inoperative or malfunctioning body parts or organs, a

much larger population of otherwise healthy people often

suffer momentary, episodic, or progressive cognitive

impairments in daily life and can benefit from noninvasive

neural prosthesis. This paper proposes a mobile, wireless,

and noninvasive prosthetic system that allows continuous

monitoring of EEG and other physiological signals and

prosthesis for monitoring physical and cognitive states.
The unavailability of an EEG monitoring system capable of

high-definition recording, online signal processing, and

artifact cancellation without the need to apply conductive

gels to the scalp has long limited the use of EEG

monitoring in operational environments. The proposed

mobile and wireless EEG system composed of dry MEMS

EEG sensors, low-power signal acquisition, amplification

and digitization, wireless telemetry, online artifact can-
cellation, and signal processing enables continuous and

accurate monitoring of physiological signals in real

operational environments. This paper also reports a

dynamic VR motion platform integrating technologies of

information science and electrical and mechanical control

to gather multisensory (visual, auditory, kinesthetic, and

tactile) information from participants in a safe yet realistic

environment. The platform allows repetitive and system-
atic assessment of the complicated coupling between such

information and the motor actions applied to the subjects

and vehicle.

This paper also demonstrated the applications of

this mobile and wireless noninvasive technology in

neuroscience and neurotechnology through two case

studies: 1) cognitive-state monitoring of participants

performing realistic driving tasks in the VR-based dynamic
driving simulator and 2) neural correlates of motion

sickness in winding-road driving. The experimental results

of these studies provide new insights into the understand-

ing of complex brain functions of participants actively

performing ordinary tasks in natural body positions and

situations in operational environments. Such data would

be difficult or impossible to obtain in a standard EEG

Lin et al.: Noninvasive Neural Prostheses Using Mobile and Wireless EEG

1180 Proceedings of the IEEE | Vol. 96, No. 7, July 2008



laboratory where participants are asked to limit their eye
blinks, teeth clenching, or other head/ body movements.

These experimental results may also be applied in future

studies to elucidate the limitations of normal human

performance in repetitive task environments and may

inspire more detailed study of changes in cognitive

dynamics in brain-damaged, diseased, or genetically

abnormal individuals. The proposed system has many

potential applications in clinical research and practice in

such diverse fields as neurology, psychiatry, gerontology,
and rehabilitative medicine. h

Acknowledgment

The authors would like to greatly thank Y. C. Chen,

C. W. Chang, C. F. Chao, J. L. Jeng, Y. H. Lin, and

S. W. Chuang for their developing and operating the

experiments.

REFERENCES

[1] E. Margalit, M. Maia, J. Weiland,
R. Greenberg, G. Fujii, G. Torres,
D. Piyathaisere, T. O’Hearn, W. Liu,
G. Lazzi, G. Dagnelie, D. Scribner,
E. de Juan, Jr., and M. Humayun,
BRetinal prosthesis for the blind,[ Surv.
Ophthal., vol. 47, no. 4, pp. 335–356, 2002.

[2] B. S. Wilson, D. T. Lawson, J. M. Müller,
R. S. Tyler, and J. Kiefer, BCochlear implants:
Some likely next steps,[ Annu. Rev. Biomed.
Eng., vol. 5, pp. 207–249, 2003.

[3] X. Navarro, T. B. Krueger, N. Lago, S. Micera,
T. Stieglitz, and P. Dario, BA critical review
of interfaces with the peripheral nervous
system for the control of neuroprostheses
and hybrid bionic systems,[ J. Periph. Nervous
Syst., vol. 10, no. 3, pp. 229–258, 2005.

[4] S. Siegel, E. Paszkiewicz, C. Kirkpatrick,
B. Hinkel, and K. Oleson, BSacral nerve
stimulation in patients with chronic
intractable pelvic pain,[ J. Urol., vol. 166,
no. 5, pp. 1742–1745, 2001.

[5] M. Mojarradi, D. Binkley, B. Blalock,
R. Andersen, N. Ulshoefer, T. Johnson, and
L. Del Castillo, BA miniaturized
neuroprosthesis suitable for implantation into
the brain,[ IEEE Trans. Neural Syst. Rehab.
Eng., vol. 11, no. 1, pp. 38–42, 2003.

[6] N. H. Mackworth, BThe breakdown of
vigilance during prolonged visual search,[
Ergonomics, vol. 3, pp. 133–153, 2005.

[7] T. Pilutti and G. Ulsoy, BIdentification
of driver state for lane-keeping tasks,[
IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 29, pp. 486–502, Sep. 1999.

[8] T. P. Jung, S. Makeig, M. Stensmo, and
T. J. Sejnowski, BEstimating alertness from
the EEG power spectrum,[ IEEE Trans.
Biomed. Eng., vol. 44, no. 1, pp. 60–69, 1997.

[9] S. Makeig and T. P. Jung, BChanges
in alertness are a principal component of
variance in the EEG spectrum,[ Neuroreport,
vol. 7, no. 1, pp. 213–216, 1995.

[10] H. J. Eoh, M. K. Chung, and S. H. Kim,
BElectroencephalographic study of drowsiness
in simulated driving with sleep deprivation,[
Int. J. Ind. Ergon., vol. 35, pp. 307–320, 2005.

[11] R. S. Huang, T. P. Jung, A. Delorme, and
S. Makeig, BTonic and phasic
electroencephalographic dynamics during
continuous compensatory tracking,[
Neuroimage, 2008, in press.

[12] N. G. Page and M. A. Gresty, BMotorist’s
vestibular disorientation syndrome,[
J. Neurol. Neurosurg. Psych., vol. 48,
pp. 729–735, 1985.

[13] H. A. Miller and D. C. Harrison, Biomedical
Electrode Technology. New York: Academic,
1974.

[14] A. P. Spence, Basic Human Anatomy.
Redwood City, CA: Benjamin Cumming,
1990.

[15] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso,
P. Merilainen, S. Ollmar, and G. Stemme,
BMicromachined electrodes for biopotential
measurements,[ J. Microelectromech. Syst.,
vol. 10, no. 1, pp. 10–16, 2001.

[16] A. P. Spence, Basic Human Anatomy.
Redwood City, CA: Benjamin Cumming,
1990.

[17] J. G. Webster, Medical Instrumentation
Application and Design, 3rd ed. New York:
Wiley, 1998.

[18] J. C. Chiou, L. W. Ko, C. T. Lin, T. P. Jung,
S. F. Liang, J. L. Jeng, and C. T. Hong, BUsing
novel MEMS EEG sensors in detecting
drowsiness application,[ in Proc. IEEE Biomed.
Circuits Syst. Conf. (BioCAS 2006), London,
U.K., Nov. 29–Dec. 1, 2006.

[19] C. T. Lin, H. Y. Hsieh, L. W. Ko, M. Lin,
S. F. Liang, and C. T. Hong, BDevelopment
of wireless brain computer interface with
embedded multi-task scheduling,[ in Proc.
IEEE Biomed. Circuits Syst. Conf. (BioCAS
2006), London, U.K., Nov. 29–Dec. 1, 2006.

[20] R. S. Huang, C. J. Kuo, L. L. Tsai, and
O. T. C. Chen, BEEG pattern recognition
arousal states detection and classification,[ in
Proc. IEEE Int. Conf. Neural Netw., 1996,
vol. 2, pp. 641–646.

[21] S. Makeig and M. Inlow, BLapses in alertness:
Coherence of fluctuations in performance and
EEG spectrum,[ Electroencephal. Clin.
Neurophysiol., vol. 86, pp. 23–35, 1993.

[22] A. Vuckovic, V. Radivojevic, A. C. N. Chen,
and D. Popovic, BAutomatic recognition of
alertness and drowsiness from EEG by an
artificial neural network,[ Med. Eng. Phys.,
vol. 24, pp. 349–360, 2002.

[23] S. Roberts, I. Rezek, R. Everson, H. Stone,
S. Wilson, and C. Alford, BAutomated
assessment of vigilance using committees of
radial basis function analysers,[ Proc. Inst.
Elect. Eng. Sci., Meas. Technol., vol. 147, no. 6,
pp. 333–338, Nov. 2000.

[24] K. B. Khalifa, M. H. Bedoui, R. Raytchev, and
M. Dogui, BA portable device for alertness
detection,[ in Proc. 1st Annu. Int. Conf.
Microtechnol. Med. Biol., 2000, pp. 584–586.

[25] J. Wilson and T. D. Bracewell, BAlertness
monitor using neural networks for EEG
analysis,[ in Proc. IEEE Signal Process. Soc.
Workshop Neural Netw. Signal Process., 2000,
vol. 2, pp. 814–820.

[26] W. Wierville, J. G. Casali, and B. S. Repa,
BDriver steering reaction time to abrupt-onset
crosswind, as measured in a moving-base
driving simulator,[ Human Factors, vol. 25,
no. 1, pp. 103–116, 1983.

[27] G. Reymond, A. Kemeny, J. Droulez, and
A. Berthoz, BRole of lateral acceleration in
curve driving: Driver model and experiments
on a real vehicle and a driving simulator,[
Human Factors, vol. 43, pp. 483–495, 2001.

[28] E. L. Groen, I. P. Howard, and B. S. Cheung,
BInfluence of body roll on visually induced
sensation of self-tilt and rotation,[ Perception,
vol. 28, pp. 287–297, 1999.

[29] C. T. Lin, I. F. Chung, L. W. Ko, Y. C. Chen,
S. F. Liang, and J. R. Duann, BEEG-based
assessment of driver cognitive responses in a
dynamic virtual-reality driving environment,[
IEEE Trans. Biomed. Eng., vol. 54, no. 7,
pp. 1349–1352, 2007.

[30] C. T. Lin, R. C. Wu, S. F. Liang, W. H. Chao,
Y. J. Chen, and T. P. Jung, BEEG-based
drowsiness estimation for safety driving using
independent component analysis,[ IEEE
Trans. Circuits Syst. I, Regular Papers, vol. 52,
pp. 2726–2738, Dec. 2005.

[31] C. T. Lin, R. C. Wu, T. P. Jung, S. F. Liang,
and T. Y. Huang, BEstimating alertness level
based on EEG spectrum analysis,[ EURASIP
J. Appl. Signal Process., vol. 2005, no. 19,
pp. 3165–3174, Mar. 2005.

[32] R. S. Huang, T. P. Jung, and S. Makeig,
BMulti-scale EEG brain dynamics during
sustained attention tasks,[ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2007,
vol. 4, pp. 1173–1176.

[33] N. V. Thakor, Biopotentials and Electro-
Physiology Measurement. Baltimore, MD:
Johns Hopkins School of Medicine, 1999.

[34] M. Steriade, BCentral core modulation
of spontaneous oscillations and sensory
transmission in thalamocortical systems,[
Current Opinion Neurobiol., vol. 3, no. 4,
pp. 619–625, 1993.

[35] S. Chatterjee and A. S. Hadi, BInfluential
observations, high leverage points, and
outliers in linear regression,[ Statist. Sci.,
pp. 379–416, 1986.

[36] C. M. Bishop, Neural Networks for Pattern
Recognition. Oxford, U.K.: Oxford Univ.
Press, 1995.

[37] S. Hu, K. A. McChesney, K. A. Player,
A. M. Bahl, J. B. Buchanan, and
J. E. Scozzafava, BSystematic investigation of
physiological correlates of motion sickness
induced by viewing an optokinetic rotating
drum,[ Aviation, Space, Environ. Med., vol. 70,
no. 8, pp. 759–765, 1999.

Lin et al.: Noninvasive Neural Prostheses Using Mobile and Wireless EEG

Vol. 96, No. 7, July 2008 | Proceedings of the IEEE 1181



[38] B. Cheung and P. Vaitkus, BPerspectives
of electrogastrography and motion
sickness,[ Brain Res. Bull., vol. 47, no. 5,
pp. 421–431, 1998.

[39] J. T. Reason and J. J. Brand, Motion
Sickness. London, U.K.: Academic, 1975.

[40] G. E. Riccio and T. A. Stoffregen,
BAn ecological theory of motion sickness
and postural instability,[ Ecol. Psychol., vol. 3,
no. 3, pp. 195–240, 1991.

[41] T. Russomano, D. F. G. de Azevedo,
L. Piedade, F. S. Glock, M. Tello,
M. A. dos Santos, F. P. Falcao, and
J. L. Giongo, BDevelopment and validation of
an electrically controlled rotatory chair to be
used as a simulator for spatial disorientation
and motion sickness,[ in Proc. 25th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., 2003, vol. 4,
pp. 3306–3308.

[42] M. J. Williamson, M. J. Thomas, and
R. M. Stern, BThe contribution of
expectations to motion sickness symptoms

and gastric activity,[ J. Psychosom. Res.,
vol. 56, no. 6, pp. 721–726, 2004.

[43] S. J. Wood, BHuman otolith-ocular reflexes
during off-vertical axis rotation: Effect of
frequency on tilt-translation ambiguity
and motion sickness,[ Neurosci. Lett., vol. 323,
no. 1, pp. 41–44, 2002.

[44] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and
M. G. Lilienthal, BSimulator sickness
questionnaire: An enhanced method for
quantifying simulator sickness,[ Int. J.
Aviation Psychol., vol. 3, pp. 203–220, 1993.

[45] A. J. Bell and T. J. Sejnowski,
BAn information-maximization approach to
blind separation and blind deconvolution,[
Neural Comput., vol. 7, pp. 1129–1159, 1995.

[46] S. Makeig, A. J. Bell, T. P. Jung, and
T. J. Sejnowski, BIndependent component
analysis of electroencephalographic data,[ in
Advances in Neural Information Processing
Systems, D. Touretzky, M. Mozer, and
M. Hasselmo, Eds. Cambridge, MA:
MIT Press, 1996, vol. 8, pp. 145–151.

[47] S. Makeig, T.-P. Jung, D. Ghahremani,
A. J. Bell, and T. J. Sejnowski, BBlind
separation of auditory event-related brain
responses into independent components,[
Proc. Nat. Acad. Sci. USA, vol. 94,
pp. 10979–10984, 1997.

[48] T. P. Jung, S. Makeig, M. J. Mckeown,
A. J. Bell, T. W. Lee, and T. J. Sejnowski,
BImaging brain dynamics using independent
component analysis,[ Proc. IEEE, vol. 89,
no. 7, pp. 1107–1122, 2001.

[49] S. Makeig, BAuditory event-related dynamics
of the EEG spectrum and effects of exposure
to tones,[ Electroenceph. Clin. Neurophys.,
vol. 86, pp. 283–293, 1993.

[50] T. P. Jung, S. Makeig, M. Westerfield,
J. Townsend, E. Courchesne, and
T. J. Sejnowski, BAnalysis and visualization of
single-trial event-related potentials,[ Human
Brain Map., vol. 14, pp. 166–185, 2001.

ABOUT THE AUTHORS

Chin-Teng (CT) Lin (Fellow, IEEE) received the B.S.

degree from National Chiao-Tung University

(NCTU), Taiwan, R.O.C., in 1986 and the Ph.D.

degree in electrical engineering from Purdue

University, West Lafayette, IN, in 1992.

He is currently the Chair Professor of Electri-

cal and Computer Engineering, Dean of Academic

Affairs, and Director of the Brain Research

Center at NCTU. He is coauthor of Neural Fuzzy

SystemsVA Neuro-Fuzzy Synergism to Intelli-

gent Systems (Englewood Cliffs, NJ: Prentice Hall, 1996) and the author

of Neural Fuzzy Control Systems with Structure

and Parameter Learning (Singapore: World Sci-

entific, 1994). He is an Associate Editor of the

International Journal of Speech Technology.

Dr. Lin was a Distinguished Lecturer of the IEEE Circuits and Systems

Society from 2003 to 2005. He has been President of the Asia Pacific

Neural Network Assembly since 2004. He was named one of the 38th Ten

Outstanding Rising Stars in Taiwan (2000). He currently is an Associate

Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMSVPART I: REGULAR

PAPERS and PART II: ANALOG AND DIGITAL SIGNAL PROCESSING; IEEE TRANSAC-

TIONS ON SYSTEMS, MAN, AND CYBERNETICS, IEEE TRANSACTIONS ON FUZZY

SYSTEMS.

Li-Wei Ko received the B.S. degree in mathemat-

ics from National Chung Cheng University, Chiayi,

Taiwan, R.O.C., in 2001, the M.S. degree in

educational measurement and statistics from

National Taichung University, Taichung, Taiwan,

in 2004, and the Ph.D. degree in electrical and

control engineering from National Chiao-Tung

University (NCTU), Hsinchu, Taiwan, in 2007.

He is currently an Executive Officer with the

Brain Research Center, NCTU. His research inter-

ests are in the areas of machine learning, brain computer interface,

cognitive neural engineering, and biomedical signal processing.

Jin-Chern Chiou (Member, IEEE) received the

M.S. and Ph.D. degrees in aerospace engineering

science from the University of Colorado at

Boulder, Boulder, in 1986 and 1990, respectively.

Before joining the Department of Electrical and

Control Engineering, National Chiao-Tung Univer-

sity (NCTU), Taiwan, R.O.C., in 1992, he was with

the Center for Space Structure and Control,

University of Colorado, as a Research Associate

(1991–1992). His research interests include micro-

electromechanical systems (MEMS), biomedical chips, gas sensors, and

modeling and control of multibody dynamic systems. He has published

more than 50 journal papers. He is the coauthor of advanced reference

books on MEMS technology and application, CD-ROM system technology,

and mechanics and control of large flexible structures. He has received

five U.S. patents with three pending and eight R.O.C. patents with three

pending.

Dr. Chiou has received several awards from the Acer Foundation, Y. Z.

Hsu Foundation, Taiwan Information Storage Association, Institute for

Biotechnology and Medicine Industry, NCTU, and National Science

Council, R.O.C., for his outstanding MEMS, biomedical device, and control

research.

Jeng-Ren Duann (Member, IEEE) received the B.S.

and M.S. degrees in biomedical engineering and

the Ph.D. degree in physics from Chung Yuan

University, Taiwan, R.O.C., in 1990, 1992, and 1999,

respectively.

He was a Research Associate with the Compu-

tational Neurobiology Laboratory, The Salk Insti-

tute, San Diego, CA. He is currently an Assistant

Project Scientist with the Institute for Neural

Computation, University of California, San Diego.

He is the author of FMRLAB, a freely downloadable Matlab toolbox for

functinal neuroimaging data analysis using independent component

analysis. His research interests are in the areas of biomedical signal and

image processing, biosystem simulation and modeling, structural and

functional human brain mapping and applications in cognitive neurosci-

ence, and functional cardiac imaging.

Lin et al.: Noninvasive Neural Prostheses Using Mobile and Wireless EEG

1182 Proceedings of the IEEE | Vol. 96, No. 7, July 2008



Ruey-Song Huang received the B.S. and M.S.

degrees in electrical engineering from National

Chung Cheng University, Chiayi, Taiwan, R.O.C., in

1996 and 1998, respectively, and the M.S. and

Ph.D. degrees in cognitive science from the

University of California San Diego (UCSD), La Jolla,

CA, in 2003 and 2006, respectively.

He is currently a Postdoctoral Fellow with the

Swartz Center for Computational Neuroscience,

UCSD. His research interests are in the areas of

cognitive neuroscience, human brain mapping, and multimodal neuro-

imaging (fMRI and EEG).

Sheng-Fu Liang was born in Tainan, Taiwan,

R.O.C., in 1971. He received the B.S. and M.S.

degrees in control engineering and the Ph.D.

degree in electrical and control engineering from

National Chiao-Tung University (NCTU), Taiwan, in

1994, 1996, and 2000, respectively.

From 2001 to 2005, he was a Research

Assistant Professor in the Department of Electrical

and Control Engineering, NCTU. In 2005, he joined

the Department of Biological Science and Tech-

nology, NCTU, where he was an Assistant Professor. Currently, he is an

Assistant Professor in the Department of Computer Science and

Information Engineering, National Cheng-Kung University, Tainan, and

a Collaborative Researcher with the Brain Research Center, NCTU. His

current research interests are biomedical engineering, biomedical

signal/image processing, machine learning, and multimedia signal

processing.

Tzai-Wen Chiu received the B.S. degree in nursing

from National Taiwan University, Taipei, Taiwan,

R.O.C., in 1995 and the M.S. and Ph.D. degrees in

physiology from the Medical College, National

Cheng Kung University, Tainan, Taiwan, in 1997

and 2004, respectively.

From 2005 to 2006, she was a Research

Associate with the Bat Laboratory, Department

of Psychology, Art and Science College, University

of Washington, Seattle. In 2006, she joined the

Brain Research Center, National Chiao-Tung University, as a Research

Assistant Professor. Her research interests are biosignal processing,

cognitive neuroscience, neural plasticity, neural mechanisms of sound

coding, and tinnitus.

Tzyy-Ping Jung (Senior Member, IEEE) received

the B.S. degree in electronics engineering from

National Chiao-Tung University, Taiwan, R.O.C., in

1984 and the M.S. and Ph.D. degrees in electrical

engineering from The Ohio State University,

Columbus, in 1989 and 1993, respectively.

He was a Research Associate with the Compu-

tational Neurobiology Laboratory, The Salk Insti-

tute, San Diego, CA. He is currently an Associate

Research Scientist with the Institute for Neural

Computation, University of California San Diego. He is also Associate

Director of the Swartz Center for Computational Neuroscience, UCSD. His

research interests are in the areas of biomedical signal processing,

cognitive neuroscience, machine learning, time-frequency analysis of

human EEG, functional neuroimaging, and brain–computer interfaces

and interactions.

Dr. Jung received the 2008 ICA Unsupervised Learning Pioneer Award

from the Society for Photo-Optical Instrumentation Engineers in 2008.

Lin et al.: Noninvasive Neural Prostheses Using Mobile and Wireless EEG

Vol. 96, No. 7, July 2008 | Proceedings of the IEEE 1183


