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Abstract. Research on EEG based brain-computer-interfaces (BCIs)
aims at steering devices by thought. Even for simple applications, BCIs
require an extremely effective data processing to work properly because
of the low signal-to-noise-ratio (SNR) of EEG signals. Spatial filtering is
one successful preprocessing method, which extracts EEG components
carrying the most relevant information. Unlike spatial filtering with Com-
mon Spatial Patterns (CSP), Adaptive Spatial Filtering (ASF) can be
adapted to freely selectable regions of interest (ROI) and with this, arti-
facts can be actively suppressed. In this context, we compare the perfor-
mance of ASF with ROIs selected using anatomical a-priori information
and ASF with numerically optimized ROIs. Therefore, we introduce a
method for data driven spatial filter adaptation and apply the achieved
filters for classification of EEG data recorded during imaginary move-
ments of the left and right hand of four subjects. The results show, that
in the case of artifact-free datasets, ASFs with numerically optimized
ROIs achieve classification rates of up to 97.7 % while ASFs with ROIs
defined by anatomical heuristic stay at 93.7 % for the same data. Oth-
erwise, with noisy datasets, the former brake down (66.7 %) while the
latter meet 95.7 %.

1 Introduction

Steering wheel chairs, prostheses or technical instruments we use every day only
by thoughts is the proximal goal of research in context with brain-computer-
interfaces (BCIs). This is mainly beneficial for handicapped people or people
suffering from the locked-in-syndrome. In the long term, it could additionally
enrich the everyday life for all people.

The technical approach we use for ”reading thoughts” consists in recognizing
patterns of recorded electroencephalogram data (EEG) from different subjects.
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For example, motor imagery leads to a decrease of the variance of the EEG in
specific frequency bands over the motor cortex [1]. This event-related desyn-
chronization (ERD) can be used to infer the intention of the user of the BCI
[2]. The main problem in this context is the low signal-to-noise-ratio (SNR) of
the recorded EEG. This has led to the development of spatial filters, extracting
that component of the EEG that carries the most relevant information about
the classification task. One of the most successful algorithms for spatial filter-
ing in the context of BCIs is the Common Spatial Patterns (CSP) algorithm
([3], [4]). For two conditions (i.e., imaginary movement of right and left hand),
it minimizes the variance of one dataset, while maximizing the variance of the
other dataset. This leads to spatial filters that enable very good classification
results in combination with linear classification algorithms. However, the CSP
algorithm is not robust against artifacts like eye activity or mental states that
are not induced by the imagination of the specific movement.

To overcome this disadvantage we use the Adaptive Spatial Filters (ASF)
algorithm [5]. In ASF, it is presumed that the imagination of a specific movement
causes a change of the EEG in one specific location of the cortex. Since it is well
known that imaginary movements of a limb cause an ERD in that part of the
motor cortex representing the specific limb [1], this a-priori knowledge can be
used to design a spatial filter that attenuates all EEG activity not originating
in this region of interest (ROI). With ASFs, we thus only pick out information
originating from the desired sources, and eliminate unwanted EEG activity.

To obtain a good adaptation of the spatial filters to the desired EEG sources,
it is necessary to estimate their true origins. This estimation can be based on
heuristic a-priori knowledge or on source localization by solving data driven op-
timization problems. The former does not require time-consuming computation
while the latter does. Hence, numerical optimization is not the choice for online
capable BCIs. In this context, our intention is to analyze the performance of
heuristic filter adaptation compared to numerically optimized filter adaptation.
We expect that this will help to improve the performance of ASFs and show
the achievable limits. More precisely, in [5] experiments with motor imagery of
the left and right hand were performed. Two ASFs were trained with a-priori
information about the approximate positions of the left and right motor cortex.
These positions were heuristically assumed as spherical regions with 5 mm radius
and midpoints located on a sphere around the center of the head with radius
6.6 cm, at the points, where radial projections of C3 and C4 cut this sphere. This
assumption was based on anatomical knowledge about the human brain, but for
sure, it does not exactly hold for all subjects. This raises the following question:
Is there a better way to define the regions of interest (ROI)? Or more precise:
How far is the location of a numerically optimized ROI from the heuristic one?
By setting up a method to numerically optimize the position of the sources for
preprocessed training data, and by comparing the achieved classification results
with the results achieved using heuristically adapted spatial filters, we will give
the answer to this question.
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The structure of the paper is the following. In Section 2, the ASF algorithm
is briefly reviewed and the numerical optimization of the ROI is described. In
Section 3, we will apply heuristically adapted ASFs as well as numerically opti-
mized ASFs on EEG data of four subjects, and compare the achieved classifica-
tion results. A discussion of the different results and some prospects on future
research will conclude the paper in Section 4.

2 Methods

2.1 Adaptive Spatial Filters

An adaptive spatial filter tries to minimize the signal variance of sources outside
a region of interest, while leaving unchanged the signal variance of sources inside
the ROI. It can be described by a filter vector w ε IRM , with M the number of
EEG electrodes. Applying it on a signal x(t) ε IRM returns the signal y(t) ε IR,
caused by sources inside the ROI:

y(t) = wT x(t). (1)

The filter vector w can be found by

w∗ = argmax
w

{f(w)} with f(w) =
wT Rx̃(t)w

wT Rx(t)w
, (2)

where Rx(t) is the covariance matrix of measured EEG data while Rx̃(t) denotes
the covariance matrix of model generated EEG data, that shows only activity
of sources originating in the ROI. For the latter, a four-shell spherical head
model is used to compute the electrical field at a position ri ε IR3 (i.e., the
EEG signal x̃i(t) of the i-th EEG electrode, i = 1 . . .M , with M the number of
EEG electrodes) caused by an electric dipole at position r′ ε IR3 [6]. The basic
equation therefore is described by

Φ(ri, t) = x̃i(t) = l(ri, r
′)T p(t). (3)

l(ri, r′) : IR3 × IR3 "→ IR3 denotes the leadfield equations, describing the pro-
jection strength of a dipole at position r′ with moment p(t) ε IR3 on a position
ri outside the head with respect to conductive and geometric properties of the
head model. Hence, with (3) we can compute the signal x̃(t) of all EEG elec-
trodes for a given dipole source and adapt a spatial filter to this dipole source
by solving (2). This maximizes signal variance, which may seem contradictory
to the goal of finding ERDs of an EEG-Signal, i.e., decreases of variance. But
these steps are independent. At first we want to attenuate the variance of all
EEG sources not within the ROI with an optimal spatial filter found by (2).
Then we can proceed with the variance information originating within the ROI
to vote for an ERD or not. The process of predefining a ROI can be carried
out by applying a-priori information about cortex positions or by data driven,
numerical optimization, i.e., source estimation.
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2.2 Optimizing the Region of Interest

While in [5] the ROI was chosen heuristically, we will now address the question
how the ROI can be optimized numerically. We will utilize source localization for
this purpose, i.e., we will try to localize the origin of the ERD changes observed
during motor imagery. The aim in source estimation is to find sources which
give the best approximation of EEG data generated by a suitable model of EEG
conduction, e.g., a dipole placed inside a four-shell head model, to real EEG
data taken from an eligible training set. If a good aproximation is obtained,
the estimated source locations should be quite close to the true source locations
inside the human brain. Therefore, adapting the ASFs to the estimated sources
should increase the achievable classification rate.

As we use the signal variance in each ROI as a classification paradigm, we look
for a dipole that gives the best approximation of the variance of the measured
EEG data. Hence, we perform source estimation using the variance of EEG data.
The main steps for estimating the source locations consist in creating a training
dataset and in constructing a suitable cost function.

Creation of the Training Dataset. We create a training dataset from EEG
data measured during motor imagery of the left and right hand (four subjects,
150 trials of 10 s per condition, see chapter 3.1 or [5] for details of the ex-
perimental setup) using the data processing chain depicted in Fig. 1. At first,
to reduce artifacts, we perform Independent Component Analysis (ICA) using
the extended Infomax algorithm [7] as implemented in [8], and manually re-
ject those components that are obviously induced by eye activity. All remaining
components are reprojected onto the observation space. Then, the most reac-
tive frequency band for each subject is determined heuristically. This is done
by computing ERD/ERS changes for electrodes C3 and C4 situated over the
motor cortex across all trials, and determining that frequency band that shows
the highest ERD during motor imagery relative to a baseline during rest. Af-
terwards, a sixth-order butterworth bandpass (BP) filter is applied to the data,
extracting the most reactive subject specific frequency band. Then, we take the
same data intervals of motor imagery that are used for later classification as
basis for our optimization (6.5 s per each condition and trial). Subsequently, the
variance of the chosen interval is computed for each trial condition, imagina-
tion of left-hand-movement (IL) and imagination of right-hand-movement (IR),
and averaged over all proper trials. At this point, we have two M -dimensional
variance vectors for each subject: variance vector of condition IL and variance
vector of condition IR. Now, as we want to extract the distinction of these two
conditions, we build the difference between them. Only the negative outcomes
of this difference will be used, because we are interested in the decrease of the
variance (ERD). Positive outcomes are set to zero. Finally, the absolute values of
the remaining variances are computed, since only absolute (positive) variances
can be modeled. The result forms the data input for the optimization problem,
which is described in the next subsection.
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Fig. 1. Data processing chain to compute the training dataset for each subject. See
text for more details.

Derivation of the Cost Function. Before we go to the next step of the dipole
source estimation, let us assume the following:

– The superposition of many sources originating in each region of interest can
be represented by only one single electric dipole.

– For each condition, a dipole can be characterized by a time-invariant di-
pole position vector r′ and a dipole moment vector p(t) with time-invariant
orientation, each ε IR3.

– The EEG data is of zero mean (due to bandpass filtering) and of stationary
variance during each training condition.

Now, we will derive a cost function J(r′, p) : IR3 × IR3 "→ IR. In general, the
cost function should express the difference of the reconstructed signal variance
and the signal variance of the training set. Our choice is

J [r′, p(t)] = ‖ σ2
x(t) − σ2

x̃(t) ‖2
2 (4)

with σ2
x(t) the variance of the training set data x(t) and σ2

x̃(t) the variance of

the model generated data x̃(t), each ε IRM . Now, let us consider the signal of one
single EEG channel xi(t) ε IR. We can expand the difference of the variances by
expressing the variance operators as sample variances (zero-mean assumption)
such that

σ2
xi[n] − σ2

x̃i[n] =
1

2N

N∑

n=−N

xi[n]2 − 1
2N

N∑

n=−N

x̃i[n]2, (5)

where the variances are computed over 2N data samples. According to (3), the
model generated signal x̃i(t) of the i-th EEG electrode can be written as

x̃i[n] = l(ri, r
′)T p[n] (6)

which is the dot product of the leadfield equations and the dipole moment vector
p[n] ε IR3×1. With (6), we can rewrite the model built signal variance to

σ2
x̃i[n] =

1
2N

N∑

n=−N

[l(ri, r
′)T p[n]]2. (7)
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Now, we express the dipole moment vector p[n] by an amplitude s[n] ε IR and a
normalized moment p̃ ε IR3×1, which is independent of n due to our assumptions
(time-invariant orientation):

p[n] =
p[n]

‖p[n]‖2
s[n] = p̃ s[n]. (8)

We further get

σ2
x̃i[n] =

1
2N

N∑

n=−N

[l(ri, r
′)T p̃]2 s[n]2. (9)

The normalized moment vector p̃ is completely determined by two angles, which
are denoted as θ and ϕ in the following . We can merge together all the nonlin-
early influencing variables into a function g(r, r′, θ, ϕ) : IR3 × IR3 × IR × IR "→ IR
and write (9) as

σ2
x̃i[n] = g(ri, r

′, θ, ϕ)2
1

2N

N∑

n=−N

s[n]2 = g(ri, r
′, θ, ϕ)2 σ2

s . (10)

The second equation sign holds, as we assumed the signal variance to be sta-
tionary for one training condition (σ2

s denotes the variance of s[n]). Now, let’s
consider all available EEG channels. We can construct a M -dimensional variance
vector σ2

x̃[n] by just stacking all M components on top of each other, which re-
sults in

σ2
x̃[n] =





g(r1, r′, θ, ϕ)2 σ2
s

...
g(ri, r′, θ, ϕ)2 σ2

s
...

g(rM , r′, θ, ϕ)2 σ2
s




= diag{ggT } σ2

s (11)

with g = g(r′, θ, ϕ) : IR3 × IR × IR "→ IRM . As the electrode positions r1, ..., rM

are well known, they are not mentioned as arguments of g. Then, the final cost
function yields to

J(r′, p) = J(r′, θ, ϕ, σ2
s) =

∥∥∥∥
1

2N
diag{XXT} − diag{ggT } σ2

s

∥∥∥∥
2

2
(12)

with X ε IRM×2N the data sample matrix, containing 2N data samples of all
M EEG channels. Now, an inequality constraint for this cost function is neces-
sary, because we are only interested in sources located inside the brain (i.e., the
innermost sphere of the head model). Hence, our optimization problem can be
expressed by

min
r′,θ,ϕ,σ2

s

{J(r′, θ, ϕ, σ2
s)} s. t. ‖r′‖2 ≤ R (13)

with R ε IR the radius of the innermost head model sphere. If this optimization
problem is numerically solved for a given training dataset, we retrieve an opti-
mized dipole position r′

opt and optimized moment parameters θopt, ϕopt, σ2
s,opt.
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The optimization problem (13) is solved using sequential quadratic program-
ming as implemented in the Matlab optimization toolbox. To avoid getting stuck
in local minima, an equally with 4 cm spaced, three-dimensional grid of start
vectors r′

0,k (k = 1 . . .K, with K = 32 the number of grid points) is processed
to find the best global start vector. For each grid point k, optimal moment para-
meters are computed by minimizing the cost function J(r′ = r′

0,k, θ, ϕ, σ2
s). We

also perform the optimization under the constraint of radially oriented dipole
moments:

min
r′,θ,ϕ,σ2

s

{J(r′, θ, ϕ, σ2
s)} s. t. ‖r′‖2 ≤ R (14)




sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)



 = c r′

with c ε IR. This constraint is due to the fact that the cortical columns in the
motor cortex are usually oriented radially to the surface of the cortex [9].

Based on the optimized position of the electric dipole, we create the ROI
by placing a spherical dipole grid with radius 5 mm around the midpoint r′

opt,
while ensuring that no dipole lies outside the innermost sphere of the head model.
The moment of each grid dipole is determined by either the optimized moment
parameters in the case of unconstrained dipole orientation (13), or by the radial
constraint in the case of the radially constrained optimization problem (14).

3 Results

In this chapter, we will briefly describe the setup of the experiment that delivered
the EEG data used for the comparison of heuristically and numerically adapted
spatial filters. More detailed information can be found in [5]. Afterwards, we
will present the classification results achieved with each of the two different
adaptation methods.

3.1 Experimental Setup

Four male subjects (S1, S2, S3, S4) took part in the experiment. They were 26,
30, 27 and 24 years old. Wearing an EEG cap with 128 electrodes, the subjects
had to perform imaginary movements of the right and left hand, according to
the direction of an arrow projected on a screen. The experiment was divided
into 300 trials, each of 10 s length. The presentation of the arrow started at 3 s
after the beginning of the actual trial and ended with the beginning of the next
trial. The pointing direction of the arrow was selected from a list, created by
randomizing 150 left directions and 150 right directions. In the first 3 s of each
trial, a fixation cross replaced the arrow. The EEG data of each subject was
recorded with 500 Hz sampling frequency using a common average reference.
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3.2 Experimental Results

Per subject, we performed a heuristic as well as a numerical spatial filter adapta-
tion as described in the methods sections. The resulting ASFs were then applied
on two frequency bands of the EEG data. The first frequency band was found
during the numerical optimization (see 2.2) while the second frequency band
has been fixed between 20 Hz and 30 Hz, as ERD related to motor imagery
can also be observed for these frequencies. Then, we computed the variance for
each spatially filtered signal within 3.5 s and 10 s of each trial. This delivered a
four-dimensional feature vector for each kind of filter and each trial, whereas two
dimensions represent the activity in the ROI for the condition IR per spectral
band and the other dimensions the activity in the ROI for the condition IL per
spectral band. These feature vectors were then classified by using leave-one-out
cross validation with Fisher Linear Discriminant Analysis [10].

The results of the classification are listed in Tab. 1. For the subjects S2 and
S3, numerical optimization enhanced the classification rate according to our
expectation from 81.0 % to 85.7 % and from 93.7 % up to 97.7 %. For the
other subjects, a-priori classification still achieved the best classification results.
The ROIs of the subjects S2 and S3 (radial constraint), for which numerical
optimization improved the classification results, differ from the heuristically set
ROIs with 2.38 cm (S2, IL), 1.56 cm (S2, IR), 1.65 cm (S3, IL) and 1.97 cm
(S3, IR).

Table 1. Classification results achieved with heuristically and numerically optimized
spatial filters for subjects 1-4

Subject Frequency band 1 heuristic ASF numerically optimized ASF
unconstrained radial constraint

1 17 − 18 Hz 54.3 % 48.3 % 52.7 %
2 12 − 14 Hz 81.0 % 83.7 % 85.7 %
3 12 − 14 Hz 93.7 % 96.5 % 97.7 %
4 12 − 14 Hz 95.7 % 52.0 % 66.7 %

4 Discussion

Considering only numerically optimized filters, the adaptation using radially
constrained dipoles delivered better classification results than adaptation with
unconstrained dipole orientations. This may be due to a higher artifact resistance
of the constrained optimization problem. This property becomes clearly visible
by comparing the variance topographies of subject S3 shown in Fig. 2. Using
unconstrained numerical adaptation (Fig. 2, [b]), the model built EEG variance
reproduces both, the activity of the motor cortex and the artifacts observed in
the region of the occipital lobe. This does not happen with a radially constrained
dipole (Fig. 2, [c]).
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[a] [b] [c]

Fig. 2. Variance topographies of subject S3 and condition IR, computed from measured
EEG data [a], from unconstrained dipole modeled data [b], and from radial constrained
dipole modeled data [c]

[a] [b] [c] [d]

Fig. 3. Variance topographies of subject S4, computed from measured EEG data for
IL [a], IR [b] and from model built data variance for IL [c], IR [d]

The collapse of the numerical methods for the data of subject S1 can be
explained by the in principle poorly classifiable data set. It shows up many
artifacts. Hence, a data driven approach to feature extraction must lead to worse
results than one which is strictly independent of training data. The heuristic
approach ignores artifacts and extracts the existing classifiable information that
corresponds to the assumptions made. The poor classification rate in the case of
numerically optimized filter adaptation for subject S4 might be surprising, as the
result with a heuristically adapted spatial filter constitutes 95.7 %. But if we take
a look at the measured EEG variance of this subject (Fig. 3), the reason becomes
evident: There exists a second significant activation region for each condition (IL,
IR), which is situated over the parietal cortex. This observation suggests that,
contrary to most subjects, subject S4 recruits motor as well as parietal areas
for motor imagery. The numerical filter adaptation method introduced in this
paper is not able to handle such an occurrence, as we assumed only one activation
region for each trial condition. Future work in this context should extend this
method, to enable it to adapt to more than one activation region.

In summary, it was shown that numerical optimization of the ROI of an ASF
can enhance the quality of the extracted features and thus lead to better classi-
ficaton results. This increase in classification accuracy however is not significant
and requires an almost artifact-free data set. Furthermore, for those two sub-
jects that showed an improvement in classification accuracy, the centers of the
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heuristically chosen and numerically optimized ROIs differed on average by
1.89 cm with an average improvement in classification accurcay of 4.35 %. This
suggests that mispositioning of the ROI by several centimeters only results in
moderate decreases of classification accuracy.

We thus conclude that numerical optimization of the ROI of ASFs is a vi-
able option if artifact-free training data is available, and very high classification
accuracies are desired. However, heuristic positioning of the ROI achieves clas-
sification accuracies close to those obtainable by numerical optimization of the
ROI without the lack of robustness associated with data driven optimization
techniques.
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