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Abstract— While most EEG based Brain-Computer-Interfaces
(BCIs) employ machine learning algorithms for classification, we
propose to utilize source localization procedures for this purpose.
Although the computational demand is considerably higher,
this approach could allow the simultaneous classification of a
multitude of conditions. We present an extension of Independent
Component Analysis (ICA) - based source localization that is
fully automatic, and apply this method to the classification of
EEG data generated by imaginary movements of the right and
left index finger. The results demonstrate that source localization
provides a viable alternative to machine learning algorithms for
BCIs.

I. INTRODUCTION

EEG based Brain-Computer-Interfaces (BCIs) currently em-
ployed for translating thoughts into commands focus on ma-
chine learning techniques to correctly classify EEG signals [1].
For several reason signals generated through motor imagery
are frequently used [2]. This approach requires the recording
of a Training set consisting of EEG data caused by distinct
conditions (e.g. imaginary movements of the left vs. the right
index finger) for the adaptation of the learning algorithm to the
specific user. The learned algorithm in turn is applied for the
real-time classification of EEG data and often further adapted
on-line.

Machine learning techniques offer several advantages, e.g.
the low computational demand after the training has been
completed, and the small number of electrodes necessary for
correct classification. While encouraging results have been
obtained for the classification of a maximum of two conditions
[3], no such results have been reported, to the authors’
knowledge, for more than two conditions. Since the number
of conditions is directly related to the information transfer

rate of BCIs [4], the capability to classify a multitude of
conditions would significantly increase the usability of BCIs,
e.g. by increasing the spelling rate of spelling devices.

Towards this goal we propose the use of EEG source
localization. By reconstructing the sources of the measured
surface potentials we can make use of two neuro-physiological
principles, the lateralization of electrocortical activity (e.g., a
stronger activation of the left sensomotoric cortex when the
right hand is moved), and the spatially distributed represen-
tation of different extremities in motoric- and sensomotoric
cortex. This should lead to spatially distinct activations during
real as well as imaginary movements of different extremities
[5]. These activations can be differentiated by sufficiently ac-
curate source localization procedures, leading to BCIs capable
of classifying a multitude of conditions.

A further advantage of BCIs based on source localization
would be the robustness against small variations in the EEG
signal. Changes in EEG patterns over time and subjects require
repeated training sessions if machine learning algorithms are
employed. By contrast, as long as the spatial location of
sources remains constant BCIs based on source localization
procedures would be unaffected by such variations.

One problem associated with source localization though is
that the most commonly applied methods such as the BESA
algorithm (BESA, MEGIS Software Inc.) are based on user
defined constraints (e.g., the number of dipoles) that require an
interactive fitting procedure. Since BCIs require autonomous
use, these source localization procedures can not be employed
for BCIs.

In this paper, we present an extension of EEG source
localization based on Independent Component Analysis (ICA)
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Fig. 1. EEG Source Localization for BCIs: Real as well as imaginary movements of the left or right index finger lead to brain activity contra-lateral to the
movement. This activity can be visualized using our approach and employed for classification. The two images show the activity density function (ADF) for
real movements of the left (A) and right (B) index finger averaged over all available trials, and superimposed on an fMRI - image from the publicly available
MNI database.

to allow for the automatic localization and identification of
task-relevant current sources generating the measured surface
potentials. This method is applied to electrocortical activity
generated by imaginary movements of the left and right index
finger. We demonstrate that the obtained activity maps can
be used to classify the two conditions, thereby proving the
general feasibility of source localization for BCIs.

II. METHODS

For the reconstruction of current source activity we apply
equivalent current dipole localization in combination with
Independent Component Analysis (ICA) [6]. By applying ICA
to the EEG data we decompose the measurements into N
maximally independent components (ICs), where N is the
number of independent EEG electrodes. Each of the resulting
ICs is then represented through an equivalent current dipole
within a four-shell spherical head model [7]. Since the number
of sources found to be responsible for a given set of EEG
measurements is usually well below the number of electrodes,
and thus the number of obtained ICs, the problem remains to
identify ICs that constitute task relevant activity, and discard
ICs that represent irrelevant activity, noise or indeterminacies
in the ICA algorithm. This is done either by clustering, i.e. by
determining which ICs are common across subjects and trials,
by visual inspection, or by discarding all ICs whose residual
variance (RV) exceed a certain threshold. However, all of these
approaches are not feasible for application in BCIs. While
clustering appears to be a reliable method for identifying task-
relevant components [8], the BCI requirement of real-time
classification renders the comparison of components across

subjects and trials unfeasible. With respect to visual inspection
as a means of identifying task relevant activity, a supervisor
is required for the classification of the obtained ICs, and thus
violates the requirement of automatic classification of a BCI.
Finally, discarding ICs with a high residual variance is not
applicable because the current sources caused by imaginary
movements are usually weaker as compared to overt move-
ments, and are thus contaminated by noise to a much greater
extend. This in turn leads to high RV even in relevant ICs.

Here, we present a method to automatically identify task-
relevant components, based on the observation that the ob-
tained sets of ICs vary if ICA is applied several times to
the same data set with only the initial conditions of the
ICA algorithm being varied. Specifically, if each IC is rep-
resented by one equivalent current dipole within a spherical
head model, the positions of some ICs vary with the initial
conditions of the ICA algorithm, while the positions of other
ICs remain constant. The obtained ICs thus divide into two
classes, those dependent and those independent of the initial
conditions of the ICA algorithm. We conjecture that only
those ICs are task-relevant that are independent of the initial
conditions of the ICA algorithm. The locations of these ICs
are identified in the following way. Applying ICA M times
with different random initial conditions to the same data set
we obtain M × N components, each of which is represented
by a single equivalent current dipole. Due to the randomness
of the ICA algorithm’s initial conditions the positions of
ICs dependent on the initial conditions are also random. In
contrast, we obtain an accumulation of dipoles at positions
represented by ICs independent of the ICA algorithm’s initial



conditions. We thus regard the observed dipole distribution as
realizations of an unknown activity density function (ADF),
describing the relative probability of areas being involved
in task-relevant information processing. This ADF can be
estimated by using Gaussian Kernel - functions, where each IC
is furthermore weighted by a function of its RV. This is done
to exclude ICs corresponding to spatially distributed activity
that can not be represented by a single dipole. The result is a
continuous function for the head model, peaking at locations
where accumulations of dipoles occur. These peaks represent
the positions of ICs independent of initial conditions of the
ICA algorithm, and are hence considered to identify areas of
task-relevant activity.

If x̃i ∈ R3, i = 1 . . . M × N describes the location and the
orientation of each IC as determined by ICA and subsequent
localization within a four shell spherical head model, the ADF
is formally expressed as

ADF(x) =
1

Vf

M×N
∑

i=1

f(RV i) · g(x, x̃i) (1)

where

g(x, x̃i) =

√

1

πRg
exp

−‖x − x̃i‖

Rg
(2)

is the Gaussian Kernel, and

f(RVi) = c · [1 − tanh(a · RVi − b)] (3)

the function weighting each IC according to its RV. This
ensures that ICs with an unacceptable high RV are excluded
from the analysis. The parameters used in the evaluation are
shown in Table I, with M describing the number of electrodes,
N the number of repeated application of the ICA - algorithm,
Vf and Rg determining the amplitude and extent of the
Gaussian Kernel, and a, b, and c determining the shape of
the function weighting each IC as a function of its RV.

In this way we have a method available for the fully
automatic localization of task-relevant current sources gen-
erating the EEG. This in turn can be utilized for BCIs in
the following way. To classify K conditions, in a preliminary
study EEG activity caused by real movements of K different
extremities is recorded. The location of maximal activation
within motor areas for each extremity k = 1 . . . K, termed
xmax,k, is then determined as given by the corresponding
ADF. For the classification of unknown EEG signals caused
by imaginary movements of the same extremities the ADF
representing the unknown EEG data is computed, and the
resulting activities ADF(xmax,k), k = 1 . . . K are compared.
The index of maximal activation maxk=1...K {ADF(xmax,k)}
determines the classification of the unknown EEG set.

III. RESULTS

To test our method, we recorded EEG signals caused by real
and imaginary movements of the left and right index finger
from one subject (age 26, normal vision, no known neurolog-
ical disorders and no prior experience with BCIs or imaginary
movements). The subject sat in a shielded and dimly lit room

TABLE I
PARAMETERS FOR (1) - (3)

M N Vf Rg a b c

60 50 1 20 30 10 0.5

in front of a computer screen, and was instructed to perform
real and imaginary tapping movements with the left or right
index finger. These tapping movements were to be performed
in synchrony with a centrally displayed grey box, flashing with
a frequency of 1.33 Hz on a black background. A control
condition was added in which the subject passively had to
watch the flashing box. Each of the five blocks (real movement
right (MR), real movement left (ML), imaginary movement
right (IR), imaginary movement left (IL), no movement (NG))
consisted of 100 movements/flashes, and was repeated ten
times in pseudo-randomized order. Each block was followed
by a break of five seconds in which the instructions for the next
block were displayed. EEG was recorded continuously with
BrainAmp-Amplifiers (BrainProducts Inc.) with 60 channels
according to the extended 10-20 system at 5kHz sampling
rate. Additionally vertical and horizontal eye movements were
monitored. The data was recorded with FPz as reference, and
re-referenced offline to common average reference.

To ensure that no covert muscle activation took place
during the imaginary conditions, EMG activity was recorded
bipolarely using standard forearm flexor placement [9]. EMG
recordings were then band-pass filtered with 4 Hz and 100
Hz cut-off frequencies and half-rectified. Trials of imaginary
movements were chosen to be rejected, if the mean EMG
activity during the trial exceeded 10% of the maximal EMG
activity of the corresponding real movememt [10]. No trials
had to be rejected.

Ocular correction was performed [11], and trials with onset
of flashing boxes were averaged separately for each condition.
For conditions MR and ML the grand average of all 1000 trials
for each condition was taken. For conditions IR and IL the
average was computed for each block of 100 trials separately.
This resulted in one data set per condition MR and ML, and
ten data sets per condition IR and IL.

To prove the general applicability of our method for BCIs,
the following steps were then applied to each of the data
sets with the parameters shown in Table I. First, the grand
average of condition NG was subtracted from each data set to
eliminate task irrelevant activity (e.g. visual evoked responses).
Subsequently, ICA was applied M times to the data set by
using the Infomax - algorithm [12] as implemented in EEGLab
[13]. This resulted in M × N ICs, each of which was then
localized in four-shell spherical head model with standardized
electrode positions [7]. In a fourth step, the locations of all
ICs were used to compute the ADF as given in (1).

This resulted in one ADF for each of conditions MR and
ML, and ten ADFs for each of conditions IR and IL. The
classification procedure was then done in the following way.
In a first step, the location of maximal activity for conditions
MR and ML was determined as given by the corresponding



ADFs, i.e.,

xmax,MR = maxx {ADFMR(x)} (4)

and
xmax,ML = maxx {ADFML(x)} . (5)

To determine the correct classification of a data set Ix caused
by an imaginary movement, its respective ADF was evaluated
at the positions of maximal activation for real movements
xmax,MR and xmax,ML. If the activity ADFIx(xmax,MR) exceeded
the activity ADFIx(xmax,ML), the data set was classified as
being caused by an imaginary movement of the right index
finger and vice versa.

This procedure was used to classify all 20 data sets, and
resulted in nine out of ten correct classifications for condition
IR, and eight out of ten correct classifications for condition IL.
Thus a total of 17 out of 20 data sets (85%) were correctly
classified.

IV. DISCUSSION

In this article, we proposed to utilize EEG source localiza-
tion for BCIs. Even though the computational demand required
by source localization is considerably higher than for machine
learning algorithms, source localization approaches could offer
the advantage of classifying a multitude of conditions. We
pointed out some of the problems associated with the applica-
tion of source localization to BCIs, specifically the requirement
of fully automatic source localization. This problem was
solved by extending ICA based source localization, utilizing
inherent properties of ICA - algorithms and Kernel functions
to estimate an activity density function. This was based on
the conjecture that only task - relevant ICs are independent
of the initial conditions of the ICA algorithm. We tested our
approach on 20 EEG sets of imaginary movements of the left
or right index finger, and showed how a correct classification
of 85% could be obtained.

While we used a relatively large number of trials as input for
the source reconstruction process, and obtained a classification
error of 15%, these results were obtained without any previous
training of the subject. We therefore conclude that source
localization provides a viable alternative to machine learning
algorithms for BCIs. While we expect a significant decrease of
the classification error through training, our approach might be
especially promising for subjects who are not able to perform
extensive training procedures.

Further studies have to show if source localization ap-
proaches can hold the promise of classifying a multitude
of conditions simultaneously. Furthermore, the signal-to-noise
requirements for correct classification have to be further in-
vestigated, and the algorithms improved to handle noisy data.
This is necessary to minimize the number of averages required
for correct classification, and thus to improve the achievable
information transfer rate.
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