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Beamforming in Noninvasive Brain–Computer
Interfaces
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Abstract—Spatial filtering (SF) constitutes an integral part
of building EEG-based brain–computer interfaces (BCIs). Algo-
rithms frequently used for SF, such as common spatial patterns
(CSPs) and independent component analysis, require labeled train-
ing data for identifying filters that provide information on a sub-
ject’s intention, which renders these algorithms susceptible to over-
fitting on artifactual EEG components. In this study, beamforming
is employed to construct spatial filters that extract EEG sources
originating within predefined regions of interest within the brain.
In this way, neurophysiological knowledge on which brain regions
are relevant for a certain experimental paradigm can be utilized
to construct unsupervised spatial filters that are robust against ar-
tifactual EEG components. Beamforming is experimentally com-
pared with CSP and Laplacian spatial filtering (LP) in a two-class
motor-imagery paradigm. It is demonstrated that beamforming
outperforms CSP and LP on noisy datasets, while CSP and beam-
forming perform almost equally well on datasets with few artifac-
tual trials. It is concluded that beamforming constitutes an alter-
native method for SF that might be particularly useful for BCIs
used in clinical settings, i.e., in an environment where artifact-free
datasets are difficult to obtain.

Index Terms—Beamforming, brain-computer interfaces, com-
mon spatial patterns, electroencephalography, motor imagery,
spatial filtering.

I. INTRODUCTION

NONINVASIVE brain–computer interfaces (BCIs) are de-
vices that infer a subject’s intention from noninvasive

measurements of brain activity. BCIs thereby enable subjects
to communicate without utilizing the peripheral nervous sys-
tem. This is of particular interest to subjects with damage to
the peripheral nervous system, e.g., caused by amyotrophic lat-
eral sclerosis (ALS) or brain stem stroke, for which normal
communication is impaired or even impossible. A general in-
troduction to research on noninvasive BCIs is given in [24]. In
principle, any noninvasive recording modality of brain activity,

Manuscript received April 30, 2008; revised August 19, 2008 and October
1, 2008. First published December 2, 2008; current version published May 6,
2009. Asterisk indicates corresponding author.

*M. Grosse-Wentrup was with the Institute of Automatic Control Engineer-
ing (LSR), Technische Universität München, Munich 80290, Germany. He is
now with the Department of Empirical Inference, Max-Planck-Institute for Bio-
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such as EEG, magnetoencephalography (MEG), or functional
MRI (fMRI), can be used to construct a noninvasive BCI. Of
these modalities, EEG is the most affordable and most widely
available. Accordingly, the work presented in this paper focuses
on EEG recordings. However, all results can be adapted to MEG
recordings with relative ease.

One of the largest obstacles to constructing powerful BCIs
based on EEG is the low signal-to-noise ratio (SNR) of EEG
recordings. The components of the EEG providing information
on the user’s intention are usually heavily cloaked by ongoing
background activity of the brain, hindering an effective infer-
ence of the user’s intention. One commonly employed strategy to
improve the SNR is linear spatial filtering (SF). Here, EEG mea-
surements from multiple sites on the scalp are linearly combined
in order to optimally attenuate EEG sources not providing infor-
mation on the user’s intention. Constructing good spatial filters,
however, is a difficult problem since it is, in general, unknown
which characteristics of the EEG provide maximum information
on the user’s intention, i.e., how the user’s intention is encoded
in the electric field of the brain. It is known, however, that sub-
jects are capable of intentionally inducing changes in the power
of spectral components of the electric field of the brain. For ex-
ample, motor imagery of different limbs can be used to induce
event-related synchronization/desynchronization (ERS/ERD) in
those areas of the motor cortex representing the specific limbs
(as reviewed in [19]). As first demonstrated in [20], this can be
used to construct a noninvasive BCI. Most BCIs based on EEG
are currently based on motor-imagery paradigms [13], which are
also the type of paradigm used in the experimental evaluation
of this paper. In this context, linear spatial filters are considered
optimal if they maximally attenuate the variance of those EEG
sources that are not modulated by motor imagery.

One of the most successful algorithms for SF in noninvasive
BCIs based on motor imagery is the common spatial patterns
(CSPs) algorithm, introduced to the BCI community in [21].
CSP is a supervised algorithm designed for two-class paradigms.
It constructs linear spatial filters that maximize the ratio of
class-conditional variances of extracted EEG sources. Excel-
lent classification results have been reported using CSP, e.g.,
in one of the winning entries to the BCI competition 2003 [2].
Furthermore, there is evidence that CSP is optimal in terms of
maximizing mutual information of extracted features and the
subject’s intention [9]. However, being a supervised algorithm,
CSP suffers from overfitting phenomena [3]. Instead of extract-
ing sources providing information on the subject’s intention,
CSP often focuses on artifactual components. This is due to the
fact that the variance of artifactual EEG components often ex-
ceeds that of endogenous components of the brain. If a certain
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type of artifact is more pronounced in the EEG training data of
one class than in the EEG data of the other class, the ratio of
class-conditional variances is maximized by extracting the arti-
factual EEG component that does not provide information on the
subject’s intention. Note that in the context of CSP, overfitting
should not be understood as necessarily overfitting on the 0–1
loss function used for classification, but rather as overfitting on
the CSP loss function of the ratio of class-conditional variances.

Another popular approach to SF in noninvasive BCIs is in-
dependent component analysis (ICA) (see [5] for a general in-
troduction to ICA and [4] for an introduction to SF in BCIs by
ICA). ICA computes spatial filters in an unsupervised manner
by decomposing the observed EEG into statistically indepen-
dent components (ICs). However, after computing the ICs, it is
necessary to identify those that provide maximum information
on the subject’s intention. To the best of the authors’ knowl-
edge, this has only been demonstrated using labeled training
data, which make SF by ICA susceptible to overfitting as well.

In general, supervised algorithms such as CSP and ICA per-
form well if the recorded EEG data are not contaminated by
artifacts. For noisy datasets, supervised methods tend to focus
on artifactual components, which often results in unsatisfactory
classification results. While this is not of primary concern in re-
search environments where experiments can be carried out with
healthy subjects under optimal conditions, EEG data recorded
from patients in clinical environments are usually heavily con-
taminated by artifacts, e.g., as caused by electric devices used for
life support or monitoring purposes or by medical care during
the recording session. It is hence desirable to develop algorithms
for SF that perform well on noisy datasets, i.e., that are more
robust against artifactual components of the EEG.

One way to render SF more robust against artifactual compo-
nents is to focus on unsupervised methods that do not rely on
labeled training data. In motor-imagery paradigms, it has been
demonstrated that Laplacian spatial filtering (LP) substantially
increases classification accuracy without being prone to overfit-
ting [14]. Laplacian spatial filters, however, assign weights to
each electrode in a rather ad hoc manner that cannot be regarded
as optimal. Furthermore, in LP, only few electrodes are used,
thereby discarding potentially useful information recorded at
other locations on the scalp.

In this paper, a different approach to unsupervised SF is
proposed. In many experimental paradigms, neurophysiological
knowledge is available on which regions of the brain provide in-
formation on a subject’s intention. For example, it is well known
that in motor-imagery paradigms, EEG components originating
in those areas of the motor cortex that represent the specific
limbs provide information on the user’s intention [10], [19].
In this study, linear spatial filters are presented that utilize this
a priori knowledge by optimally attenuating the variance of all
EEG sources not originating in chosen regions of interest (ROIs)
within the brain. By choosing ROIs according to neurophysio-
logical a priori knowledge for a given paradigm, it is possible to
construct linear spatial filters that: 1) optimally attenuate EEG
sources that do not provide information on the subject’s inten-
tion and 2) are robust against artifactual EEG components due
to their unsupervised nature.

In EEG/MEG analysis, spatial filters extracting sources from
certain regions within the brain are commonly known as beam-
formers (reviewed in [8]). In fact, the beamforming approach
presented here is similar to the MaxSNR beamformer well
known in the area of array signal processing (cf., [23]). How-
ever, to the best of the authors’ knowledge, this paper is the first
to apply the concept of beamforming in the context of nonin-
vasive BCIs. However, note that a preliminary version of this
paper has been presented in [11].

This paper is organized as follows. In Section II-A, the nota-
tion used throughout this paper is introduced. The beamforming
approach to linear SF is presented in Section II-B and the prop-
erties of the obtained beamformer are discussed in Section II-C.
In Section III, experimental results from a two-class motor-
imagery paradigm of ten healthy subjects are presented. Clas-
sification results obtained with beamforming, CSP, and LP are
compared, and the feasibility of BCIs with real-time feedback
based on beamforming is demonstrated. This paper concludes
with a discussion of the results in Section IV.

II. METHODS

A. Notation

Throughout this paper, vectors are denoted by bold letters
and matrices by capital letters. Accordingly, x(t) ∈ RM refers
to one sample of EEG data recorded at time t at M electrodes.
If the time index is dropped, x is treated as an M -dimensional
stationary random variable. A spatial filter is denoted by w ∈
RM , and the spatially filtered EEG data by y(t) = wTx(t) ∈ R.
Spatial covariance matrices are denoted by R(·) .

B. SF by Beamforming

In this section, a spatial filter is derived that optimally atten-
uates the variance of EEG sources outside a predefined ROI.
In general, it is desirable to completely eliminate EEG sources
originating outside the ROI. However, this is not possible due
to the ill-posed nature of the inverse problem of EEG. In EEG
recordings, the continuous current distribution within the brain,
which gives rise to the EEG, is mapped onto a finite number of
measurement electrodes. This corresponds to a mapping from an
infinite- to a finite-dimensional space. Accordingly, estimating
EEG sources originating in a certain ROI constitutes an under-
determined problem. The best one can do is to find a spatial filter
that, in some sense, optimally attenuates all sources outside the
ROI. Since it is assumed here that only variance changes pro-
vide information on the subject’s intention, optimal attenuation
is defined as maximizing the ratio of variances of EEG sources
originating inside and outside the ROI. In mathematical terms,
the goal is to compute a spatially filtered EEG signal

y(t) = w∗Tx(t) (1)

with

w∗ = argmax
w∈RM

{
wTRROIw

wTROutw

}
(2)

and RROI/Out ∈ RM ×M the spatial covariance matrices of
those components of the EEG originating within/outside the

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on May 15, 2009 at 19:38 from IEEE Xplore.  Restrictions apply.



GROSSE-WENTRUP et al.: BEAMFORMING IN NONINVASIVE BRAIN–COMPUTER INTERFACES 1211

ROI and measured at the M electrodes. Since (2) is in the form
of the well-known Rayleigh quotient, solutions to (2) are given
by the eigenvectors of the generalized eigenvalue problem

RROIw = λROutw. (3)

Since it further holds that for an eigenvalue λ∗ with associated
eigenvector w∗

λ∗ =
w∗TRROIw∗

w∗TROutw∗ (4)

the eigenvector of (3) with the largest eigenvalue constitutes the
desired beamformer.

It then remains to determine the covariance matrices
RROI/Out . These cannot be computed directly from measured
data and thus have to be approximated. Toward this, first note
that the EEG generated by the brain and measured at M loca-
tions on the scalp is given by [17]

x(t) =
∫

V
L(r, r′)P (r′, t)dV (r′) (5)

with V being the volume of the brain, P : R3 × R %→ R3 the
tissue dipole moment (source strength) at position r′ and time
t in x-, y-, and z-direction, r ∈ R3M the vector describing
the x-, y-, and z-position of the M sensors on the scalp, and
L : R3 × R3 %→ RM ×3 the so-called leadfield equation, describ-
ing the projection strength of a source with dipole moment in
x-, y-, and z-direction at position r′ to the measured electric
potentials at the sensor locations r. Note that the leadfield equa-
tion incorporates all geometric and conductive properties of the
head. Without loss of generality, it is assumed that x has zero
mean. The integral in (5) can be split up into the contributions
to the EEG from within and outside the ROI, resulting in

x(t) =
∫

ROI
L(r, r′)P (r′, t)dV (r′)

+
∫

V \ROI
L(r, r′)P (r′, t)dV (r′)

= xROI(t) + xOut(t). (6)

Assuming stationarity of the EEG and uncorrelatedness of EEG
sources within and outside the ROI, the covariance matrix of the
EEG recordings is given by

Rx = RROI + ROut . (7)

Inserting (7) into (3) then results in

RROIw = λ̃Rxw (8)

with λ̃ = λ/(1 + λ). Since Rx can be estimated from recorded
EEG data, only RROI remains to be determined. This can be ap-
proached by first approximating the integral of the contribution
of sources within the ROI to the measured EEG in (6) as

xROI(t) = α
J∑

j=1

L(r, r′
j )P (r′

j , t) (9)

with r′
j , j = 1, . . . , J, being the locations of an equally spaced

grid with J points within the ROI and α some numerical con-
stant. The electric field at the M electrodes on the scalp due to

sources within the ROI can thus be approximated as

xROI(t) = αLp(t) (10)

with the leadfield matrix L ∈ RM ×3J describing the projection
strength in x-, y-, and z-direction of the sources at the J grid
points to the M electrodes, and p(t) ∈ R3J representing the
dipole moments of the J sources. Since x has zero mean and
the EEG is assumed to be stationary, the covariance matrix of
xROI can be written as

RROI = α2LRpLT (11)

with Rp being the source covariance matrix of sources within
the ROI. Inserting (11) into (8) and letting λ̂ = λ̃/α2 , the desired
spatial filter is finally obtained as the eigenvector with the largest
eigenvalue of the generalized eigenvalue problem

LRpLTw = λ̂Rxw. (12)

The leadfield matrix L describes the projection of sources within
the ROI to the EEG electrodes, and thus, implicitly defines the
ROI. It has to be computed using a suitable model of EEG vol-
ume conduction (reviewed in [1]). In this study, a four-shell
spherical head model is utilized [22]. Furthermore, the covari-
ance matrix of EEG sources within the ROI has to be specified.
In absence of any prior knowledge, it is assumed that Rp equals
the identity matrix. The eigenvector of (3) with the largest eigen-
value, which constitutes the desired beamformer w∗, can then be
computed with standard tools for numerical computation (e.g.,
with the command eig in MATLAB).

C. Beamformer Properties

In the derivation of the beamformer, several assumptions are
made that warrant further discussion.

First, it is assumed that EEG sources within and outside the
ROI are uncorrelated. This assumption is probably violated for
sources outside but close to the ROI. Nevertheless, this is a
useful assumption since it allows formulating the generalized
eigenvalue problem in terms of the observed EEG covariance
matrix. In this way, the beamformer can be adapted to recorded
data. In principle, it is also possible to estimate the covariance
matrix ROut in the same manner as RROI , i.e., using a purely
model-based approach, and compute the desired spatial filter
directly from (3). However, if the beamformer is adapted to
the recorded data, then the attenuation of sources focuses on
regions of the brain outside the ROI that interfere most with
sources inside the ROI. In this way, the beamformer is adapted
to the subject- and task-specific current distribution within the
brain.

Second, it is assumed that the EEG is stationary, implying that
the covariance matrices of sources within and outside the ROI
do not change over time. There is evidence, however, that EEG
displays nonstationary behavior [18]. While this is neglected in
the derivation of the beamformer, the nonstationary nature of
EEG signals can be taken into account by updating the EEG
covariance matrix Rx in certain intervals and computing a new
spatial filter using the updated covariance matrix. In this way,
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TABLE I
PERCENTAGE OF TRIALS CONTAMINATED BY ARTIFACTS

a quasi-static beamformer can be realized. The performance of
such an update scheme is investigated in Section III.

Third, the source covariance matrix Rp is assumed to equal
the identity matrix. This implies that all EEG sources within
the ROI are uncorrelated and of equal strength. This surely con-
stitutes an unrealistic assumption. However, in absence of any
knowledge on the actual source covariance matrix for a given
dataset, this is the most simple prior. It should be noted, however,
that the absolute strength of sources within the ROI is irrelevant
since any scaling of Rp is absorbed into the eigenvalues in (12),
and thus, has no influence on the obtained beamformer.

Finally, it should be emphasized that any model of EEG vol-
ume conduction can be used to compute the leadfield matrix
in (12). For reasons of simplicity, only a four-shell spheri-
cal headmodel is considered in this study. It can be expected
that more realistic models, such as boundary element or finite-
element models (BEM/FEM) [1], also lead to more accurate
beamformers.

III. EXPERIMENTAL RESULTS

In this section, SF by beamforming is compared with CSP
and LP on experimental data from a two-class motor-imagery
paradigm. Two different beamforming schemes are investigated,
termed static and block-adaptive beamforming (SBF-BBF).
CSP and LP are chosen for comparison with beamforming due
to their excellent performance in motor-imagery paradigms and
popularity in the BCI community. Furthermore, preliminary re-
sults from a study with real-time feedback are presented.

A. Experimental Paradigm

The experimental paradigm adopted in this study was as fol-
lows. Each subject was seated in a dimly lit and shielded room,
approximately 2 m in front of a silver screen. A trial started with
the central display of a white fixation cross. After 3 s, a white
arrow was superimposed on the fixation cross, either pointing to
the left or the right. Subjects were instructed to perform haptic
motor imagery of the left or the right hand during display of the
arrow, as indicated by the direction of the arrow. After another
7 s, the arrow was removed, indicating the end of the trial and
start of the next trial. While subjects were explicitly instructed
to perform haptic motor imagery with the specified hand, i.e., to
imagine feeling instead of visualizing how their hands moved,
the exact choice of which type of imaginary movement, i.e.,
moving the fingers up and down, gripping an object, etc., was
left unspecified. A total of 150 trials per condition were carried
out by each subject, with trials presented in pseudorandom-
ized order. Note that in the employed experimental paradigm,
subjects were not free to choose when to initiate a certain mo-
tor imagination. Hence, this study is restricted to synchronous
BCIs.

B. Experimental Data

Ten healthy subjects (S1–S10) participated in the experimen-
tal evaluation. Of these, two were females, eight were right
handed, and their average age was 25.6 years with a standard
deviation of 2.5 years. Subject S3 had already participated twice
in a BCI experiment, while all other subjects were naive to BCIs.
EEG was recorded at M = 128 electrodes placed according to
the extended 10–20 system. Data were recorded at 500 Hz with
electrode Cz as reference. Four BrainAmp amplifiers were used
for this purpose, using a temporal analog high-pass filter with
a time constant of 10 s. The data were re-referenced to com-
mon average reference offline. Electrode impedances were be-
low 10 kΩ for all electrodes and subjects at the beginning of
each recording session. No trials were rejected and no artifact
correction was performed. For each subject, the locations of
the 128 electrodes were measured in three dimensions using a
Zebris ultrasound tracking system and stored for further offline
analysis.

After the recording sessions, the recorded EEG of each sub-
ject was visually inspected for eye blinks, movement artifacts,
and artifacts caused by interference of electric devices by an ex-
perienced EEG user. This was not done to reject artifactual trials,
but rather to assess the percentage of trials contaminated by ar-
tifacts. The percentage of trials for each subject determined to
contain substantial amounts of artifacts during the actual motor-
imagery phase are summarized in Table I. Note that while man-
ual labeling of artifactual trials by an experienced EEG user
is a subjective measure, we believe this to constitute a more
sensitive measure than an automatic identification of artifactual
trials. The recorded EEG data and trials marked as artifactual
can be made available upon request. As can be seen from Table I,
subjects S3 and S4 displayed very few artifactual trials (below
10%), subjects S6–S9 displayed a moderate amount of artifac-
tual trials (between 10% and 20%), and subjects S1, S2, S5, and
S10 showed a large amount of artifactual trials (above 20% and
up to 74%). Subsequently, subjects S3 and S4 will be referred
to as clean subjects, subjects S6–S9 as moderate subjects, and
subjects S1, S2, S5, and S10 as noisy subjects.

C. Evaluation Procedure

To evaluate the performance of the different algorithms for
SF as a function of the amount of available training data, a boot-
strapping procedure was employed. For each subject, n trials
from each class were drawn randomly from the recorded data
and used as the training set, while the remaining trials served
as the test set. Then, SF, feature computation, and classification
were performed as described next. For each size of the training
set, this procedure was repeated ten times in order to obtain a
sensible estimate of the classification accuracy. The size of the
training set was varied from n = 10 to n = 100 trials per class
in steps of ten trials.
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Furthermore, two different time windows were investigated
for all spatial filter and feature computations in order to as-
sess the influence of different trial length on performance. The
first time window, subsequently termed the long time window,
ranged from 3.5–10 s within each trial, i.e., 500 ms after pre-
sentation of the instruction until the end of the trial. The sec-
ond time window, subsequently termed the short time window,
ranged from 3.5 to 6 s within each trial. Note that the length
of the short time window corresponds to what is suggested for
CSP in [3]. Time windows were chosen to start 500 ms after
visual presentation of the motor-imagery instruction because
subjects require several hundred milliseconds to initiate motor
imagery of the specified hand. This is reflected in ERD/ERS
onset roughly 500 ms after presentation of the instruction [19].

1) SF by CSP: SF by CSP was carried out with the pa-
rameters proposed in [3]. First, the recorded EEG data were
bandpass-filtered between 7 and 30 Hz using a sixth-order But-
terworth filter. Then, class-conditional covariance matrices were
computed using data in the specified time window of the train-
ing set only. CSP spatial filters were computed by solving the
associated generalized eigenvalue problem with diagonal load-
ing to increase numerical stability. The obtained spatial filters
with the three largest/smallest eigenvalues were then combined
in the SF matrix WCSP ∈ RM ×6 .

2) LP: For LP, the large Laplacian spatial filter as described
in [14] was employed. Specifically, electrodes C3/C4, situated
over the left/right motor cortex, were chosen as the filter centers,
and the four second closest electrodes to C3/C4 were used to
compute the surface Laplacian, thereby forming the SF matrix
WLP ∈ RM ×2 .

3) SF by SBF: In SBF, beamformers are computed once us-
ing a set of (unlabeled) training data. The beamformers are then
applied to new data, i.e., the test set, without further update.
Static beamformers were computed here by first high-pass fil-
tering the recorded EEG with 0.5 Hz cutoff frequency using a
sixth-order Butterworth filter in order to remove baseline drifts.
The EEG covariance matrix Rx was then computed using the
temporally filtered data of all trials in the training set and the
specified time window. In order to direct two beamformers at
the left and right motor cortex, respectively, two spherical ROIs
of 1 cm radius located 1.9 cm radially below electrodes C3
and C4 were chosen. The associated leadfield matrices LC3 and
LC4 were computed by placing radially oriented dipoles onto an
equidistant grid of 2 mm grid distance within each of the ROIs,
and calculating the projection strength to each of the M = 128
electrodes using a four-shell spherical head model [22]. Note
that for each subject, the measured electrode locations were ra-
dially projected onto the outermost shell of the employed head
model. Assuming a unit source covariance matrix Rp, the two
desired beamformers were then determined by computing the
eigenvector with the largest eigenvalue of (12) for each of the
two leadfield matrices LC3 and LC4 . Again, diagonal loading
was used in the eigenvector computation to improve numerical
stability. The two eigenvectors were finally combined to form
the SF matrix WSBF ∈ RM ×2 .

4) SF by BBF: In BBF, beamformers are not computed from
a fixed set of EEG data, but rather recomputed for each trial. In

this way, beamformers can be adapted to nonstationarities in the
recorded EEG. Here, the parameters employed for BBF were
chosen identical to those used in SBF, as described earlier. For
each trial, a separate EEG covariance matrix was then estimated
using the (unlabeled) data from the specified time window, and
a trial-specific SF matrix WBBF ∈ RM ×2 was computed as de-
scribed earlier.

5) Feature Computation and Classification: For all SF
methods described earlier, the same feature computation and
classification procedure was employed.

First, the SF matrix W(·) was used to compute the spatially
filtered EEG signal y(t) = WT

(·)x(t). Note that here x(t) refers
to the raw EEG data, i.e., the original EEG recordings without
previous temporal filtering. For each trial, a feature vector was
then computed by first-bandpass filtering each component of the
spatially filtered EEG signal in 20 frequency bands of 2 Hz width
ranging from 1 to 41 Hz (again using sixth-order Butterworth
filters), and afterwards, computing the log-bandpower in each
frequency band using the specified time window. This resulted in
a feature vector of 120 dimensions for CSP, and of 40 dimensions
for Laplacian filtering, SBF, and BBF.

For actual classification, logistic regression with l1 regular-
ization, as described in [12], was employed. This linear classi-
fier was chosen for two reasons. First, nonlinear classifiers do
not significantly improve classification accuracy in noninvasive
BCIs based on bandpower features while needlessly increas-
ing complexity [7], [15]. Second, only some frequency bands
provide information on the user’s intention in motor-imagery
paradigms, and these frequency bands vary across subjects [19].
It can thus be expected that most dimensions of the feature vec-
tor are irrelevant, but it is unknown which ones are relevant for
a certain subject. For this class of classification problems, i.e., a
high-dimensional feature space with mostly irrelevant features,
it is proved in [16] that logistic regression with l1 regularization
possesses a sample complexity that only grows logarithmically
in the number of irrelevant features. Rotationally invariant clas-
sifiers, such as support vector machines, have a worst case sam-
ple complexity that grows linearly in the number of irrelevant
features. Hence, for this class of problems, logistic regression
with l1 regularization can be expected to display a faster con-
vergence (in terms of the required amount of training data) to
its minimum error than other state-of-the-art classification al-
gorithms. Note that logistic regression using l1 regularization
leads to sparse weight vectors, and thus, can also be understood
as a feature selection procedure. For each subject, training set,
and algorithm used for SF, the l1 regularization constant was
determined by fivefold cross-validation on the training set. This
regularization constant was then used to train another classifier
using all features from the training set, and the resulting logistic
regression model was used to classify the trials in the test set.

D. Results

The obtained classification results are shown in Table II and
Fig. 1 for the long time window, and in Table III and Fig. 2 for
the short time window, both times as a function of the number
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TABLE II
MEAN CLASSIFICATION ACCURACY FOR THE Long TIME WINDOW IN PERCENT AS A FUNCTION OF THE NUMBER

OF TRAINING TRIALS PER CONDITION FOR SF BY CSPS, SBF, BBF, AND LP

Fig. 1. Classification accuracies in percent for subjects S1–S10 using the long time window as a function of the number of training trials per condition for SF by
CSPs, SBF, BBF, and LP.

of training trials per condition. The mean performance of all
subjects across all training set sizes is shown in Table IV.

In general, the obtained classification results differ substan-
tially between subjects. Subjects S3 and S4 achieve classifica-
tion accuracies close to 100% for all SF methods, while subjects

S1 and S7 do not perform substantially above chance level for
any type of SF. The performance of the remaining six subjects
ranges from mediocre to rather well, with substantial differ-
ences due to the algorithm used for SF. It is noteworthy that
the capability of subjects to operate a BCI appears not to be
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TABLE III
MEAN CLASSIFICATION ACCURACY FOR THE Short TIME WINDOW IN PERCENT AS A FUNCTION OF THE NUMBER

OF TRAINING TRIALS PER CONDITION FOR SF BY CSPS, SBF, BBF, AND LP

Fig. 2. Classification accuracies in percent for subjects S1–S10 using the short time window as a function of the number of training trials per condition for SF
by CSPs, SBF, BBF, and LP.

determined by the percentage of artifactual trials. While sub-
jects S3 and S4 with the lowest percentage of artifactual trials
(cf., Table I) also perform best, subject S2 achieves very high
classification accuracies using unsupervised methods in spite of
more than 50% of all trials containing substantial amounts of

artifacts. Conversely, subject S7 does not achieve classification
accuracies substantially above chance in spite of only a moder-
ate amount of artifactual trials (14.6%). Regarding the different
time windows used in the computation of the spatial filters and
the classification procedure, it is noteworthy that, on average, all
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TABLE IV
MEAN CLASSIFICATION ACCURACY IN PERCENT FOR DIFFERENT SUBJECT

TYPES (USING THE LONG /SHORT TIME WINDOW) ACROSS ALL
TRAINING SET SIZES

methods for SF perform better when using the long time window
(cf., Table IV). However, note that substantial subject-specific
differences can be observed for SF by CSP. Specifically, the
short time window performs better than the long time window
on subjects S2 and S9 when using CSP. On average, however,
this is counterbalanced by superior performance of the other
subjects using the long time window. Hence, if not stated dif-
ferently, classification results will subsequently refer to the long
time window.

Regarding a comparison of the algorithms used for SF, dif-
ferent algorithms perform best for different subjects. Averaging
across all training set sizes, best performance across both time
windows is achieved for three subjects by using CSP (S1, S6,
and S9), for four subjects by using SBF (S3, S5, S7, and S10),
for two subjects by using BBF (S4 and S8), and for one sub-
ject by using LP (S2). If only the maximum training set size is
considered, five subjects perform best when using CSP (S1, S3,
S4, S6, and S9), three subjects perform best by using SBF (S2,
S5, and S7), and two subjects perform best by using BBF (S8
and S10). However, it should be noted that differences due to
different SF within subjects range from minor (e.g., in subjects
S3 and S4) to quite substantial (e.g., in subject S10).

Regarding the performance of SF for different types of sub-
jects (cf., Section III-B and Table I), considerable differences
can be observed (see Table IV). For noisy subjects, SBF out-
performs CSP by, on average, 11.5% and LP by, on average,
5.5%. SBF and BBF perform similar with a slight advantage for
SBF of 2%. This observation is also valid but less pronounced
for moderate subjects, for which SBF outperforms CSP and LP
by 5.5% and 2.2%, respectively. For clean subjects, no sub-
stantial differences between the different algorithms used for
SF can be observed, i.e., differences are below 2%. If only the
maximum training set size is considered, SF by CSP slightly
outperforms the other methods on the clean subjects, but dif-
ferences again remain below 2%. Finally, averaged across all
subjects and training set sizes, SBF outperforms LP by 3.6%,
which, in turn, outperforms CSP by 3%. However, note that the
average performance across all subjects is biased by a larger
number of noisy than clean subjects.

In summary, the performance of different spatial filters is
strongly subject-specific and varies with the percentage of trials
containing substantial amounts of artifacts. While CSP performs
slightly better than the other approaches for virtually artifact-
free EEG recordings, beamforming performs substantially better
than CSP and LP on EEG recordings heavily contaminated by
artifacts. On average, no substantial differences can be observed
between SBF and BBF.

E. Spatial Filters and Spectral Band Weighting

Fig. 3 illustrates how the subject-specific performance of the
SF algorithms is reflected in the weights assigned to each spec-
tral band in the classification procedure.

As can be seen in this figure, the classification procedure
generally concentrates on the µ- and β-band (roughly around
12 Hz and from 25 to 35 Hz, respectively), which is in agreement
with previous reports on motor imagery [19]. However, there are
spatial filter-specific differences. While for SF by CSP, the clas-
sification procedure assigns strongest weights to the µ-band,
both beamforming and LP appear to favor the β-band. This
observation is particularly pronounced for subject S3. How-
ever, note that in spite of a focus on different spectral bands,
all spatial filters achieve excellent classification results for sub-
ject S3. As of now, we cannot provide an explanation for this
observation.

Typical spatial filters focusing on the left motor cortex com-
puted for subjects S3, S6, and S8 (using the long time window)
are shown in Fig. 4. These subjects are chosen since S3 shows
excellent performance for all spatial filters, S6 performs best
when using CSP, and S8 performs best when using beamform-
ing. Interestingly, spatial filters computed for subject S3 differ
notably in spite of similar classification performance. While a
typical spatial filter obtained by CSP shows a dipolar pattern
with an additional focus on the contralateral hemisphere, spa-
tial filters obtained by beamforming display a center-surround
pattern that is similar to the Laplacian spatial filter. This is
in agreement with the previous observation that in subject S3,
beamforming and LP favor similar spectral weighting in the
β-band, while CSP appears to lead to a focus on the µ-band
(cf., Fig. 3). However, note that spatial filters obtained by beam-
forming appear more complex than the corresponding Laplacian
spatial filter, which is also reflected in a higher classification ac-
curacy. Further note that for subject S3, all spatial filters focus
on an area directly underneath electrode C3. This is different
for subject S6, for which CSP has a slightly more central and
parietal focus than the other spatial filters. This illustrates an
advantage of the supervised CSP approach, i.e., the capability
to automatically determine the region of the brain most relevant
for inferring the subject’s intention. In subject S6, beamforming
and LP probably slightly miss the most relevant ROI, result-
ing in a slight decrease in classification accuracy in comparison
to CSP. However, the last row of Fig. 4, showing spatial fil-
ters computed for subject S8, illustrates that in some subjects,
CSP fails to construct sensible spatial filters. Here, CSP does
not compute spatial filters with a strong focus, resulting in a
classification accuracy only slightly above chance. In compari-
son, both beamforming approaches compute spatial filters with
a strong focus on and close to electrode C3 that appear similar in
shape to the spatial filter computed by CSP for subject S3. Ac-
cordingly, the beamforming approaches achieve a classification
accuracy close to 80% in subject S8. Finally, note that subject
S8 displayed only a moderate amount of artifactual trials, indi-
cating that contamination by artifacts is not the only cause for
the failure of CSP to compute sensible spatial filters in some
subjects.
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Fig. 3. Normalized mean absolute weights of different spectral bands across all training set sizes and both time windows as determined by the l1 -regularized
logistic regression classifier for CSPs, SBF, BBF, and LP.

Fig. 4. Set of typical spatial filters focusing on left motor cortex obtained by
CSPs, SBF, BBF, and LP for training set size of 100 trials per condition and
the long time window. Plotted with [6]. Colors indicate normalized electrode
weights.

F. Beamforming With Real-Time Feedback

To establish the feasibility of beamforming for BCIs with
real-time feedback, the experimental setup was adapted in the
following way. First, a certain number of training trials were
recorded using the same experimental paradigm as described in
Section III-A. This training dataset was then used to compute
two static beamformers and train a logistic regression classifier
with l1 regularization, as described earlier. After training, real-
time feedback was provided to the BCI user. This was carried
out by sending the recorded EEG data via transmission control
protocol (TCP)/IP to MATLAB/Simulink running at 500 Hz.
The two static beamformers were then applied to every new
data sample, and the resulting two extracted EEG components
were bandpass-filtered as in the offline evaluation procedure.

The variances of the temporally and spatially filtered time series
within a trial were then calculated recursively at every sample
step (i.e., not using a sliding window but in an accumulative
manner), and the current estimate was fed into the previously
trained logistic regression model. The output of the model at
each sample point, ranging from 0 to 1, was then presented to
the subject by drawing a white filled square on the screen. The
output of the model was linearly mapped to the horizontal posi-
tion of the square, with an output of 0 mapped to the left border
and an output of 1 mapped to the right border of the screen. The
horizontal position of the square thus informed the BCI user of
the certainty of the classifier about her/his intention (with the
left/right border of the screen indicating 100% certainty of an
imaginary movement of the left/right hand). To further motivate
the subject, two white boxes were drawn at the left and right
borders of the screen into which the subject had to move the
white square. Also, the color of the centrally displayed arrow
was set to green or red, depending on whether the output of
the classifier lead to a correct decision or an error. Each trial
ended after a preset time, or if a certain threshold of certainty
of the classifier was achieved. This threshold criterion was only
checked after a certain minimum time into each trial to ensure
sensible estimates of the variances of the EEG components.
Finally, each trial began with a pause of 3 s.

Due to the excellent performance in the offline experiment,
subject S4 was asked to perform again in the online experiment.
Twenty five trials per condition were recorded as training data,
corresponding to a training time of 8 min and 20 s. For the online
experiment, the regularization constant used to train the logistic
regression model was not determined by cross validation, but
rather heuristically tuned on the offline datasets to a generic
value found to work well across subjects. Then, five blocks of
20 trials per condition were carried out with feedback provided,
with a break of approximately 2 min between each block. The
obtained classification results are shown in Table V, along with
the minimum and maximum trial lengths and the thresholds for
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TABLE V
RESULTS OF THE ONLINE EXPERIMENT FOR SUBJECT S4

termination of a trial. The mean classification accuracy across
all blocks was 90.0%, which is within the range expected due to
the classification accuracy obtained by subject S4 in the offline
experiment using the SBF approach with the same amount
of training data (cf., Table II). A video of this experiment
can be watched at http://www.lsr.ei.tum.de/research/videos/
biomedical-engineering/one-dimensional-cursor-control-by-a-
non-invasive-brain-computer-interface/.

IV. DISCUSSION

In this paper, an alternative to supervised algorithms for SF
in the context of noninvasive BCIs was presented. Based on the
principle of beamforming, spatial filters were constructed that
extract EEG sources originating within specific ROIs within
the brain. In this way, neurophysiological a priori knowledge
can be utilized to optimally attenuate EEG sources not pro-
viding information on a subject’s intention for a given exper-
imental paradigm. The main advantage of beamforming is its
unsupervised nature, rendering it robust against artifactual EEG
components.

The proposed algorithm was experimentally validated in a
two-class motor-imagery paradigm, and it was shown that SF
by beamforming substantially outperforms SF by CSP if the
recorded EEG is strongly contaminated by artifactual compo-
nents. On virtually artifact-free datasets, CSP performed slightly
better than beamforming. Furthermore, beamforming could be
shown to consistently outperform LP. Finally, the feasibility of
constructing BCIs with real-time feedback using beamformers
was demonstrated.

It should be noted that in this study, only a two-class motor-
imagery paradigm has been considered. In principle, SF via
beamforming can be extended easily to multiclass paradigms.
For example, in motor-imagery paradigms using multiple body
parts, several beamformers can be constructed, with the ROIs
focused on those regions of the motor cortex representing the
specific parts of the body. However, it remains to be experimen-
tally established if beamforming also displays the advantageous
properties observed here if it is applied to ROIs buried deep
within the cortex, e.g., if motor imagery of the feet is utilized.

Regarding a fair comparison of CSP and beamforming, it
should be further noted that both algorithms can be improved
in several ways. Instead of automatically selecting a set of spa-
tial filters obtained by CSP, spatial filters can also be visually
inspected and selected according to prior knowledge on mean-
ingful filter topographies. While this can be expected to increase
the robustness of CSP, it requires expert supervision, and thus,
limits the routine applicability of BCIs. Further note that several
heuristics exist to fine-tune CSP [3]. In the case of beamforming,

the probably most relevant factor affecting classification accu-
racy is a misplaced ROI. In this study, ROIs were chosen rather
arbitrarily at locations assumed to include the left and right mo-
tor cortex. It is expected that classification performance can be
further improved by a subject-specific adaptation of the loca-
tion and size of the ROIs using cross-validation on the training
set. Furthermore, it would be interesting to determine optimal
generic, i.e., subject-independent, ROIs for a given experimental
paradigm. For other factors that affect beamformer performance
and could be improved on, also confer Section II-C.

In summary, we do not wish to argue that either CSP or beam-
forming perform superior in general, but rather see both methods
as complimentary approaches to SF in noninvasive BCIs. While
CSP probably provides theoretically optimal spatial filters [9],
beamforming can be particularly useful if CSP fails to compute
sensible spatial filters—whether this is due to subjects not being
able to induce strong modulations of their µ-rhythm, a strong
contamination of the recorded EEG by artifactual components,
or too few training trials being available. As such, we believe
that beamforming might prove to be particularly useful when
working with subjects in later stages of ALS since experiments
here usually have to be conducted in clinical environments un-
der nonoptimal conditions. Finally, we would like to point out
that the observation of CSP and beamforming favoring different
spectral bands might indicate that both approaches extract (at
least partially) independent information on the subject’s inten-
tion. As such, a combination of CSP and beamforming might
prove to be useful.
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