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This dissertation contains several projects, each providing a solution 

contributing to an aspect of group-level source-level EEG analysis. I explore different 

methods to extract better EEG measures from individual subjects: regression to reduce 

confounds originated from temporal proximity of cognitive events, optimal low-pass 

filtering to calculate better ERPs and collaborative averaging to obtain better measures 

from small numbers of trials. I introduce two methods for combining source-based 

EEG information, calculated with ICA and equivalent dipole localization, across 

subjects in a study: Measure Projection Analysis (MPA) allows study-level analysis 

for measures, such as ERP and ERSP, that are associated with single brain areas while 



 

xxvi 

Network Projection Analysis enables combining network measures, such as effective 

connectivity, associated with an ordered pair of brain area.  

The last two chapters of the dissertation are dedicated to discussing meta-

analysis, i.e. combing information across multiple studies. This is a subject that is well 

developed in the fMRI field but is new in the field of source-based EEG analysis. I 

introduce a user-friendly schema (Hierarchical Event Descriptors, or HED), based on 

established cognitive ontologies, to describe cognitive event and states in a 

hierarchical and machine readable manner. HED facilitates automated meta-analysis 

and can benefit researchers by simplifying statistical designs and streamlining event 

information handling.  

The current EEG analysis-publication workflow mostly documents qualitative 

descriptions of event-related EEG dynamics. This makes it difficult to look for 

comparable results in the literature since search options are limited to textual 

descriptions and/or similar-appearing results depicted in the paper figures. In the final 

chapter I demonstrate a method for quantitative comparison of source-resolved results 

(e.g., ERPs, ERSPs) across different EEG studies. The proposed source-resolved EEG 

measure search engine receives search queries composed of event-related EEG 

measures, each associated with an estimated brain source location to be compared 

using Measure Projection Analysis (MPA) to all records in the search engine database 

accumulated by automated data analysis workflows applied to data of multiple studies. 

A similarity-ranked list of events from other studies that have elicited similar EEG 
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dynamics in nearby source-locations is then returned to the user along with their 

experiment and event metadata. 



1 

Chapter 1  

Introduction 

 

In this dissertation I present a set of methods that enable the calculation of 

EEG source dynamics at the subject level and analyses of this information in and 

across studies. This is a worthwhile goal for three reasons (a) to further our 

understanding of human brain we need to be able to make statements that apply to 

more than a single participant, or small group of participants; (b) A large portion of 

the knowledge produced in EEG analysis field starts from digital data but is ultimately 

presented and published as natural text or figures, and hence is not accessible to meta-

analysis and ‘big data’ analytics. Developing methods to facilitate automated 

knowledge generation from multiple studies and schemas to make collected data 

understandable to computer algorithms  will significantly impact the pace of progress 

in cognitive neuroscience and brain computer interface (BCI) fields, (c) Collaborative 

filtering [1-3] and other newly proposed advanced methods for BCI design can benefit 

from priors obtained from large number of participants. Future commercial 

applications of BCI technology are likely to depend on the success of these methods in 

increasing the accuracy and robustness of BCI classifier while shortening the 

calibration time [4].  
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Each of the chapters in this dissertation is focused on providing a solution 

contributing to an aspect of group-level source-level EEG analysis:  

In  Chapter 2, I introduce the EEGLAB workflow.  It forms the basis of the 

EEG analysis discussed in other chapters. The presented workflow is based on ICA 

and dipole representation of sources. Other methods of source reconstruction and 

representation (e.g. Loreta variants [5-8] or  2-D cortical patch presentation [9, 10]) 

may be used in conjunction with the methods proposed in this dissertation with minor 

changes in notation, e.g. 3-D Gaussian densities representing dipoles in chapters of 

this dissertation may be replaced by current density estimates, obtained from Loreta 

variants, over 2-D (cortical) or 3-D brain locations. 

In  Chapter 3, I discuss the issue of polarity normalization for group-level 

analysis of ERPs from ICA sources. This is an issue that is rarely discussed yet has 

important statistical implications if not handled properly. We see that an intuitive and 

practical solution exists to tackle this problem.  

In  Chapter 4, I show how an Eye-related IC detection algorithm based on data 

from a very large number of studies can perform as well as a method that requires 

human intervention. As we see in  Chapter 5 an automated method for this task is 

necessary for separating out and processing brain-related ICs in large-scale analyses.  

 Chapter 5 is a window into the potential of source-based EEG meta-analysis 

methods. It shows how much can be learned from a large number of brain source 
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represented by dipoles even when only their location and orientation information are 

used. 

In  Chapter 6, the Measure Projection Analysis (MPA) method is presented. It 

is a natural extension of the Gaussian smoothing process introduced in  Chapter 5 from 

scalar values into vectors repressing EEG measures (ERP, ERSP). MPA is one of the 

major contributions of this dissertation. 

Investigating individual variability is an active area of research with practical 

applications in medicine and performance training. In  Chapter 7, I discuss how 

subjects and recording sessions, each associated with a discrete set of equivalent 

dipoles, can be compared in MPA framework.  

 Chapter 8 shows an example of using BCI features in MPA and how it can lead 

to results that are compatible with the neuroscience literature and may contribute to 

our understanding of human brain. 

In  Chapter 9, I extend the MPA methodology introduced in Chapter 6 to pairs 

of brain regions. The proposed method, called Network Projection Analysis or NPA, 

allows combining effective connectivity measures (e.g. dDTF [11, 12]) across subjects 

to study brain network dynamics. 

Estimation of accurate EEG measures is necessary for obtaining statistically 

significant results at group level. I show in  Chapter 10 that a proposed method for 
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adaptive low-pass filtering of ERPs can have a sizable effect on study-level results 

obtained from MPA.  

The concept of ‘optimally predictive pattern’, introduced in  Chapter 10, is 

exploited  Chapter 11 and an algorithm for increasing the accuracy of measure 

estimation from a small number (<30) of single trials is presented. The results show 

that single subject EEG analysis could benefit from the group-level estimates. 

In  Chapter 12, I continue to explore ways to improve the estimation of EEG 

measures. Making conclusions based on results from a single EEG study requires 

careful attention to potential confounds and a major portion of these are caused by 

temporal proximity of cognitive events. This proximity is often inevitable in 

experimental paradigms, e.g. feedback request stimuli are often shorty followed by 

button press or other types of response. I show how the assumption that time-locked 

EEG dynamics from nearby events are linearly added together at each time point leads 

to the use linear regression for EEG measure estimation. The results in this chapter 

indicate that regression can provide significantly better estimates compared to 

averaging. By automating the removal of a large portion of confounds, temporal 

regression can also improve meta-analysis. 

The last two chapters of my thesis are dedicated to discussing meta-analysis, 

i.e. combing information across multiple studies. This is a subject that is well 

developed in the fMRI field ([13-18]) but is new in the field of source-based EEG 
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analysis. In  Chapter 13 I introduce a user-friendly schema (Hierarchical Event 

Descriptors, or HED), based on established cognitive ontologies, to describe cognitive 

event and states in a hierarchical and machine readable manner. HED facilitates 

automated meta-analysis and can benefit researchers by simplifying statistical designs 

and streamlining event information handling. 

Lastly, in  Chapter 14, I propose an EEG Search Engine that receives EEG 

measures, sets of brain regions of interest (ROIs), and HED tags as input queries and 

returns patterns from different studies that are most similar to these queries. The 

proposed search engine is built on MPA and uses a database of source-resolved EEG 

measures obtained from multiple studies.  

Such a database can benefit from the various algorithms proposed in this 

dissertation: HED tags will be needed to describe events so they may be matched to 

input queries, temporal regression may be used to remove confound, optimal low-pass 

filtering may be employed to adaptively remove high-frequency noise, or collaborative 

averaging may be applied to better estimate measure from few trials. It is also possible 

to extend the engine and search across patterns of network connectivity with NPA. 

The vision of enabling and exploiting comprehensive multi-study measure 

databases is one of the main motivations behind my dissertation. Such databases in 

fMRI, such as BrainMap [13-16] have greatly impacted the field (over 118 publication 



6 

 

 

in 2012 cited BrainMap papers) and it is time for EEG analysis to benefit from similar 

resources. 
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Chapter 2  

EEGLAB Workflow  

 

2.1 Introduction 

EEGLAB is one of the most popular EEG analysis software toolkits used in 

laboratories around the world (based on a recent survey of 687 research respondents 

[19]). I was involved in the development of functions and toolboxes for EEGLAB 

during the eight year period of 2005-2013.  Many of signal processing steps used in 

EEGLAB are common to other EEG analysis environments.  However EEGLAB 

offers the most options for processing data separated into independent sources using 

ICA algorithm [20, 21]. 

2.2 Application of ICA in EEG Analysis 

 ICA [20] has become a method of widespread interest for analysis of EEG data 

[22], [23], [24], [25], [26]. In this approach to EEG source analysis, unaveraged 

continuous or epoched EEG data from multiple scalp channels are decomposed into 

independent component (IC) processes by learning a set of spatial filters that have 

fixed relative projections to the recording electrodes and produce maximally 
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independent individual time courses from the data. ICA thus learns what independent 

processes (information sources) contribute to the data and also reveals their individual 

scalp projection patterns (scalp maps), thereby simplifying the EEG inverse source 

localization problem to that of estimating where each source is generated, a much 

simpler problem than estimating the source distributions of their ever-varying linear 

mixtures as recorded by the scalp electrodes themselves.  

 The IC filters linearly transform the representational basis of EEG data from a 

channel matrix (scalp channels by time points) to a sum of independent component 

processes with maximally independent time courses and fixed scalp projections (scalp 

maps, with often strongly overlapping topographies). Many ICs predominately 

account for the contributions to the channel data from a non-brain (‘artifactual’) 

source process -- for example potentials arising from eye movements, scalp muscle 

activity, the electrocardiogram, line noise, etc., while many other ICs are compatible 

with a source within the brain itself, in particular within its convoluted cortical shell in 

which most of the spatially organized potentials reaching the scalp are generated [27].  

2.3 Equivalent Dipole Model for ICs 

 Many of the brain-based (‘non-artifactual’) IC scalp topographies may be 

modeled as the projection of a single equivalent dipole inside the brain volume [26].  

ICA algorithms return many such ‘dipolar’ IC data sources (those for which most of 

the spatial variance of the electric field pattern they produce on the scalp is accounted 
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for by the projection of a single ‘equivalent’ dipole). On average, the more 

independent the resulting ICs returned by an linear ICA decomposition method, the 

more near-dipolar ICs are returned [28]. Such dipolar ICs are compatible with an 

origin in locally-synchronous cortical field activity within a single cortical patch, 

which by biophysics must be located near to and oriented predominantly perpendicular 

to the equivalent dipole [29]  (A few clearly brain-based ICs may have scalp maps 

very closely resembling the summed projection of two bilateral cortical patches that 

contribute synchronous activity to the scalp signals). 

 Finding the actual cortical patch (or patches) generating a given dipolar IC 

may be difficult [10], as it requires (at least) a good quality MR head image for the 

subject and accurately recorded scalp electrode positions [30]. Given a good estimate 

of where the scalp electrodes were placed on the head, and a near-dipolar IC scalp 

map, the location of the equivalent dipole may be found reliably, in many cases with 

less than a centimeter error when 3-D electrode positions are recorded (Akalin Acar, 

submitted) and an accurate skull conductance value is used in the analysis. 

Biophysical simulations also show that the equivalent dipole for a cm2-scale cortical 

patch source is, on average, less than 2 mm from the center of the generating patch 

(Akalin Acar, unpublished). Thus, a unique advantage of ICA applied to EEG is that 

localizing sources from its single-source IC scalp maps avoids uncertainties associated 

with multiple local minima that limit the accuracy of estimates of the more complex 

source distributions computed from scalp maps that sum projections of multiple 
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sources -- for example nearly all raw EEG scalp maps or maps for later peak latencies 

in ERP waveforms. Of course this level of spatial accuracy is only possible using 

single-subject head models, which are possible only when an MRI head image is 

available (as it was not for our subjects). 

2.4 EEGLAB Workflow 

Figure  2.1 shows EEGLAB single session and group analysis workflows. The 

preprocessing step often involves the following operations in this order: 

1. High-pass filtering: The main reason for this step is to remove DC and very 

low frequency (<0.1Hz) drifts due to capacitance coupling and other factors as 

these are often much larger in amplitude than the EEG signal. Also, since the 

dynamics of EEG in low frequencies EEG (<1 Hz) are significantly different 

from higher frequency [31], and lower frequencies contain significantly more 

power, ICA results on data high-passed at 1 Hz often better relate to dipolar 

brain sources. It is suggested then to perform ICA on data high-passed at 1 Hz. 

2. Removal of electrical power line noise (optional): 60 Hz (or 50 Hz in other 

countries) electrical power line noisy is often strongly present in raw EEG. 

ICA is often able to separate line noise into a subspace of a few scalpmaps, but 

if an experiment involves a significant head rotation or other movement that 

changes the relative position of electrodes to external power lines ICA may fail 

to properly remove the line noise, or ICA results may be degraded by this 
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noise. It is then recommended to remove this noise either by application of a 

notch filter, or using the more advanced ‘CleanLine’ method [32]. 

3. Noisy channel detection: EEG sensors may lose their electrical connection with 

the scalp during an experiment, e.g. due to subject movement, drying of the 

conductive gel, etc.. This loss of connection may be intermittent, e.g. a few 

seconds, or may continue for most of the experiment. Such poorly affixed 

electrodes often pick up a significant amount of noise and their inclusion in 

subsequent analysis may significantly degrade the quality of results. These nosy 

channels are often detected by visual inspection or with automated methods that 

examine the statistics of their activations (e.g. via correlation to neighboring 

channels, amplitude statistics), and then excluded from the analysis. 

4. Re-referencing: The goal of referencing is to remove any so-called ‘common 

noise’ from all channels. This is performed by estimating the time course of 

common noise and then removing it, at each time point, from all channels. The 

three most popular ways to estimate the common noise are (a) merely sensing right 

or left mastoid signal (detected by the electrode below the ear). This is based on 

the assumption that this channel receives the least amount of EEG and hence it 

should be dominated by the common noise. (b) Measuring the average of left and 

right mastoid EEG channels (this provides less lateralized bias). (c) Computing the 

average of all channels: This offers the least amount of spatial bias. It is important 

to remember that re-referencing reduces the rank of the EEG data by one (1), and 
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that proper care (e.g. by computing PCA up to the rank of the new data) should be 

taken when applying ICA to the resulting rank-deficient data. 

5. Data Exclusion: It is usually necessary to exclude portions of the data that contain 

artifacts before applying ICA as they often have significantly higher amplitude and 

degrade ICA decomposition quality for uncontaminated portions of the data. This 

‘data cleaning’ step may be performed visually or by automated methods that 

examine the statistics (e.g. unusual amplitudes) of small windows of the data. 

Recently an advanced artifact correction method, called Artifact Subspace 

Reconstruction (ASR) [33] is proposed that eliminates high amplitude noise from 

data segments while maintaining and their full-rank. 

After these preprocessing steps have been performed, the ICA algorithms can 

be applied to the whole data, or to the segments of interest (e.g. excluding segments 

between experiment blocks when participants were resting and not engaged in the 

experiment). Also, ICA may be applied to data high-passed over 1-Hz and the ICA 

unmixing matrix then be applied to data that includes lower, e.g. 0.1 – 1 Hz 

frequencies. This is sub-optimal in terms of mutual information reduction expected 

from ICA but may allow for the analysis of low-frequency dynamics of brain sources 

found by ICA. 

The next step is to find single or a bilaterally symmetric pair of, equivalent 

dipoles that explain a large portion (e.g. over 85%) of the variance of scalp maps 

obtained from ICA (see section  6.2 for a more detailed discussion). After identifying 
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time markers associated with cognitive events of interest, segments of EEG, or epochs, 

surrounding these markers are extracted to form an ‘epoched dataset’. EEG measures 

(such as ERP, ERSP, etc.) are then calculated for ICs of interest from epochs that are 

deemed to be relatively free of noise (either by visual inspection or via the use of 

automated methods). These calculated measures are then aggregated across all 

recording session in a study and used for group analysis. Figure  2.2 shows a flowchart 

of this workflow. 

Before the introduction of the Measure Projection Toolbox (MPT, see  Chapter 

6), IC clustering with PCA and k-means (see section  6.3.6) was the recommended 

method for group analysis in EEGLAB. Due to the large number of tunable 

parameters in this method (e.g. number of clusters and the relative weights for 

different measures), the practical application of IC clustering often involves an 

iterative process (see Group Study  Analysis in Figure  2.1) of selecting a set of 

parameters, which is typically done by visually inspecting the results for (subjectively) 

‘nice looking’ clusters and changing the parameters to obtain ‘better looking’ results 

(e.g. more compact clusters or more clusters with significant differences across 

conditions). A detailed analysis of IC clustering and its drawbacks is provided section 

 6.5. 
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2.6 Figures 

 

Figure  2.1. EEGLAB single session and group analysis workflows. 
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Figure  2.2. EEGLAB single session analysis workflow. 
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Chapter 3  

EEG Independent Component 

Polarity Normalization by Two-way 

Partitioning 

 

3.1 Abstract 

Independent Component Analysis (ICA) is a popular method for finding 

independent brain and artifact sources in EEG data. But there exists an inherent 

indeterminacy in the polarity of the scalp map and activation associated with each 

Independent Component (IC), when considered separately from its associated time 

course, that can interfere with the comparison and interpretation of the learned IC 

topographies from multiple subjects. These polarities need to be assigned in a 

consistent manner to allow IC activations to be used in multi-subject inference or in 

training Brain Computer Interface (BCI) models based on IC activations from more 

than one subject or recording session. Here we propose two IC map polarity 

normalization methods, both based on solving a Two-way Partitioning problem. The 
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first method uses convex relaxation while the second employs a Monte-Carlo 

approach. We test these methods on two sample studies and show that both generate 

reliable and equally well-formed solutions. However, the Monte-Carlo approach can 

be up to 89 times faster and is applicable to larger problems. 

3.2 Introduction 

Independent Component Analysis (ICA) is a popular method for finding 

maximally distinct brain and artifact sources in EEG data [20, 22, 25, 34]. The 

effectiveness of ICA in EEG analysis is rooted in the linear mixing of electrical 

potentials generated by brain and artifact sources at scalp recording electrodes, and in 

the ability of ICA algorithms to undo this mixing by exploiting statistical properties of 

the signals (e.g., by assuming spatial stationarity of the source projections to the scalp 

channels and statistical independence among the source activities). In particular, the 

input EEG channel data matrix 𝐷 ∈ 𝑅𝑛×𝑚 (𝑛 channels by 𝑚 samples) can be 

factorized into two matrices: 

 𝐷 = 𝑆 𝐴 (1) 

where: 
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𝑆 ∈ 𝑅𝑛×𝑛 is the Source projection matrix: each column of this matrix contains the 

spatial (topographical) pattern of electrical potential produced by a single ICA source 

(IC) at the scalp channels. 

𝐴 ∈ 𝑅𝑛×𝑚 is the Source activation matrix: each row of this matrix contains the 

temporal dynamics of source activity. 

Because this is a blind source separation problem (i.e., both of the 

multiplicative matrix factors are unknown), there are two inherent indeterminacies, 

one is the ordering of the ICs (i.e., of the columns of S, which is irrelevant for EEG 

analysis); the other is the scaling, which is by Equation (1) split across the component 

activations and topographic source projections (scalp maps) [35]. The only observable 

quantity for each source is its projected potential at the scalp electrodes, which 

remains the same if both scalp map factor and activation vectors are multiplied by, 

respectively, any non-zero scaling factor and its inverse. Normalization of the 

component scalp maps to give them a unit L2 norm (in the appropriate physical units, 

e.g., microvolts) partially fixes this problem, but an ambiguity in the joint scalp map 

and activation time course polarities (i.e., of the +-1 signs) still remains for each IC 

separately (i.e., for each column of S). To perform multi-subject analyses and online 

classifier learning, it is desirable to make the IC scalp map polarities from nearby and 

potentially equivalent sources across subjects and/or sessions maximally coherent. 



20 

 

 

Otherwise, when calculating averages over IC activities, polarity reversals may result 

in erroneous signal cancellation.  

Although joint decomposition methods such as group-ICA [36], [37], [38], 

[39] [40], multi-set canonical correlation analysis [41] [42], and J-BSS [43] [44] have 

been proposed to solve this problem, these methods are often based on one of two 

assumptions (see [45] for detailed discussion):  (a) subjects share common group-level 

scalp maps. This is not accurate since cortical folding is different across subjects [27]; 

(b) there are linear dependencies across activations of different subjects resulting in 

shared event-locked group IC component measure features. The latter could be only 

true if these activities are time-locked to certain experimental events and these events 

produce salient ERPs with significant similarities across subjects. This assumption 

may not be valid when there are no time-locked events (e.g., for resting EEG), in time 

periods further than a few seconds from events of interest, or in the case of many EEG 

phenomena that occur in time-frequency domain (ERSP) in such a way as to 

contribute few or no features to average ERPs (e.g., changes in alertness level [46]). 

Alternatively, the path we follow is to achieve polarity normalization by forcing ICs 

with similar scalp maps to have similar polarities (i.e., when signals are real, making 

the inner product of their scalp map vectors positive). Here we first show how this can 

be achieved using convex relaxation of a two-way partitioning problem. 

3.3 Methods 
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3.3.1 Problem Description 

We want to find a vector of scalp map polarities 𝑥 ∈ 𝑅𝑛, 𝑥𝑖 ∈ {−1, 1}, 𝑖 = 1. .𝑛 

in a study with 𝑛 ICs that minimizes the negative sum of normalized scalp map inner 

products 

  𝑊𝑖,𝑗 =
−𝑆𝑗

𝑇𝑆𝑖
‖𝑆𝑖‖�𝑆𝑗�

  (2) 

where the inner products comprise the components of a matrix 𝑊 and 𝑆𝑖 is the ith 

column of the study source projection matrix 𝑆. This matrix is created by 

concatenating select columns of ICA source projections matrices from different 

sessions and/or subjects in the study. The IC selection criterion is a low residual 

variance in fitting the IC scalp map with an equivalent dipole model associated with a 

cortical source.  The scalar quantity Tx Wx , subject to the constraint that the 

components of x are either +1 or -1, provides an aggregate measure of total 

dissimilarity across scalp maps in the study, the quantity we desire to minimize with 

respect to the x-component signs. This is because  

 𝑥𝑇𝑊𝑥 =  ∑ 𝑥𝑖 ∑ 𝑊𝑖,𝑗𝑥𝑗𝑗=1..𝑛𝑖=1..𝑛 = ∑ 𝑥𝑖𝑥𝑗𝑊𝑖,𝑗𝑖,𝑗=1..𝑛  (3) 

gives the sum of scalp map inner products after changing their polarities according to 

the signs of the components of the 𝑥 vector. We can formulate this as the following 

optimization problem, also called a Two-way Partitioning problem [47]: 
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 minimize𝑓0 =  𝑥𝑇 𝑊𝑥, subject to        𝑥𝑖 ∈ {−1, 1}. (4) 

Note that this problem is not convex since the domain of 𝑥𝑖 ∈ {−1, 1} is not 

convex. A possible convex relaxation candidate for this problem could be to allow 

𝑥𝑖 ∈ [−1, 1], but our experiments show that this does not produce useful results since 

the continuous scaling permitted by this relaxation dominates the solution, so that 

using sign(𝑥) for x allowed to vary in value continuously on the interval does not 

effectively minimize the objective function in Equation (4). 

3.3.2 Convex solution 

An alternative convex formulation which is effective in finding approximation 

solutions to Equation (4) can be derived by re-writing it in the equivalent form 

 minimize    tr(𝑊𝑋), 

 subject to   𝑋 ⪰ 0, 

 rank(𝑋) = 1, 

 𝑋𝑖𝑖 = 1, 𝑖 = 1, . . . ,𝑛   (5) 

with symmetric positive semi-definite variable 𝑋 ∈ 𝕊𝑛, 𝑋 = 𝑥𝑥𝑡 (since tr(𝑊𝑋) =

 ∑ 𝑋𝑖,𝑗𝑊𝑖,𝑗𝑖,𝑗=1..𝑛    and 𝑋𝑖𝑗 = 𝑥𝑖𝑥𝑗). We then  employ convex relaxation, a popular 

method in optimization [47], and drop the  rank(𝑋) = 1 constraint to obtain the 

convex optimization problem  

  minimize tr(𝑊𝑋),     
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 subject to   𝑋 ≥ 0,   𝑋𝑖𝑖 = 1, 𝑖 = 1, . . . , 𝑛 (6) 

Since this new problem is less constrained, its optimal value will provide a 

lower bound on the optimal value of the original problem (Equation (4)).  After 

solving problem Equation (4), we are able to obtain the vector of polarities 𝑥 from 

𝑋 = 𝑥𝑡𝑥 using the real Schur decomposition 𝑋 = 𝑈𝑄𝑈𝑇where U is a unitary matrix 

(𝑈−1 = 𝑈𝑇) and 𝑄 is an upper triangular (in this symmetric case, diagonal) matrix. If 

𝑋 is low rank (recall that we have relaxed the problem by allowing it to have a rank 

larger than one), we can ignore all elements of this matrix except the highest value on 

the diagonal, located at 𝑄𝑛,𝑛.  Equation 7 below shows how to obtain 𝑥 (the polarity 

vector) from the last column of 𝑈: 

 𝑋 = 𝑈𝑄𝑈𝑇 ,𝑄 ~ �
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎

�
𝑋~𝑥𝑥𝑡
����� 𝑥 = sign(𝑈𝑛). (7) 

3.3.3 Monte Carlo solution 

Another way to solve Equation (4) is to use a Monte Carlo approach and at 

each step calculate the cost function 𝑓0 for a change in the polarity of a subset of scalp 

maps. If the new cost value is lower, the polarity change is accepted. Given enough 

(infinite) time, iterative execution of the above algorithm, using subsets of random 

size, can find the best solution to Equation (4). The number of subsets of size k

selected from 𝑛 scalp maps is 
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 �𝑛𝑘� = 𝑛!
𝑘!(𝑛−𝑘)!

 (8) 

and grows quickly with k . We empirically found that as k  increases the performance 

of Monte Carlo algorithm (total 𝑓0 reduction in a few thousand iterations) is 

significant reduced. This is due to a reduction, at larger k  values, in the proportion of 

subsets whose polarity reversal produces a lower cost function relative to the total 

number of possible subsets. 

We chose 1k = (change the polarity of only one scalp map in each iteration) 

since the performance of the Monte-Carlo method on the polarity normalization 

problem was best for this value. We also accelerated the Monte Carlo algorithm by 

calculating, at each iteration, the change in the cost function 

 ∆𝑓0𝑖 = −2∑ 𝑥𝑗𝑊𝑖𝑗𝑗=1..𝑛,𝑗≠𝑖  (9) 

for a polarity ix reversal in each scalp map and only selecting a single random scalp 

map from the subset of maps with 0 0if∆ < . In this implementation, iterations 

continued until either a maximum number of iterations (5000) was reached or no new 

polarity reversals were found to give a better solution. Since the Monte Carlo is 

stochastic and can thus produce a different solution for each execution, we used the 

best solution (lowest of ) across three runs, each starting from the original polarity 

vector and using a different random generator seed value. 
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3.4 Results 

We used data from two studies. Study A consisted of data from 15 sessions in 

which 8 subjects performed a Rapid Serial Visual Presentation (RSVP) task [48]  (the 

raw data are available at ftp://sccn.ucsd.edu/pub/ headit/RSVP, the EEGLAB Study 

files at ftp://sccn.ucsd.edu/pub/ measure_projection/rsvp_study). Each session 

comprised 504 4.9-s image bursts of 49 oval image clips from a large satellite image 

of London presented at a rate of 12/s. Some (60%) of these bursts contained one image 

in which a target white airplane shape was introduced at a random position and 

orientation. Following each burst, subjects were asked to press one of two buttons to 

indicate whether or not they had detected a target airplane in the burst. For further 

details see [48]. 

After preprocessing each subject data set using EEGLAB 

(sccn.ucsd.edu/eeglab) and custom Matlab functions to re-reference the active-

reference Biosemi EEG data to an electrode over the right mastoid, we performed 

high-pass filtering above 2 Hz, and rejected channels and data containing non-

stereotypical artifacts. An ICA decomposition was then performed for each recording 

session using extended Infomax ICA [20]. To focus the analysis on cortical source 

[28], the subset of ICs that could be represented by an equivalent dipole model with 

low error was selected for analysis (here, this was defined as more than 85% of 

channel variance in the IC scalp map being accounted for by a single equivalent dipole 
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or, in a few cases, a bilaterally symmetric equivalent dipole pair). ICs with equivalent 

dipoles located outside the MNI brain volume (e.g., those with an minimum distance 

to the MNI brain surface larger than 1 mm) were removed as non-brain artifact 

processes, leaving 266 IC scalp maps. 

Figure  3.1 shows a number of these scalp maps with rectangles enclosing 

sample IC pairs with a similar pattern but reversed polarities. Our goal is to minimize 

such occurrences by changing the polarity of some of these scalp maps.  

Study B consisted of data from 119 ADHD and control subjects in a “Rotated 

Head” P-300 study [49-51]. A similar workflow as Study A, except with high-pass 

filtering above 1 Hz instead of 2 Hz, was used to obtain 4,345 IC scalp maps. 

We used the CVX Matlab library to solve the convex relaxation of the two-

way partitioning problem (Equation (6)) associated with the polarity normalization of 

scalp maps in Study A and obtained matrix 𝑋. A Schur decomposion (Equation (7)) 

was used to find polarity vector 𝑥.  

Figure  3.2 (left) shows the matrix 𝑋 and the rank = 1 approximation of it, 

𝑋1 = 𝑥𝑇𝑥, for scalp maps from Study A is displayed in  

Figure  3.2 (right). The visual similarity of these plots together suggests that 

that the answer to the convex relaxation problem (Equation (6)) should be close to the 

answer of the original non-convex problem (Equation (5)). 
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We then applied the learned (optimized) polarity vector 𝑥 to normalize scalp 

maps by multiplying appropriate columns of the ICA mixing (scalp map) matrix: 

 𝑆𝑖norm = 𝑥𝑖  𝑆𝑖 , 𝑖 = 1, . . ,𝑛 (10) 

Figure  3.3 shows IC scalp maps of Study A from Figure  3.2.  (Left) Matrix X 

obtained from convex relaxation with normalized polarities. Each IC pair indicated in 

Figure  3.2.  (Left) Matrix X obtained from convex relaxation with a rectangle (IC-pairs 

with apparent reverse polarities) has a common polarity for the two ICs in Figure  3.3, 

indicating that at least in these cases our polarity optimization method has been 

successful. 

We then performed three numerical tests: first we tested the reliability of the 

solutions obtained from convex relaxation and Monte Carlo methods by randomly 

negating the polarities of some maps in Study A (with 50% probability) in 100 trials 

and calculating the solutions from both methods in each trial. We then compared these 

solutions, both in terms of the cost function of , and the calculated polarity vector x . 

We observed that in 100% of trials the solutions from the two methods were identical 

and the final cost function was close to (less than 3% different than) the lower bound 

that may be obtained by solving the Lagrange dual problem [5] for Equation (4): 

𝐿(𝑥, 𝑣) =  𝑥𝑇𝑊𝑥 + �𝑣𝑖

𝑛

𝑖=1

(𝑥𝑖2 − 1) = 𝑥𝑇�𝑊 + diag(𝑣)�𝑥 − 1𝑇𝑣 
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𝑔(𝑣) = inf
𝑥

 𝑥𝑇�𝑊 + diag(𝑣)�𝑥 − 1𝑇𝑣 = �−1𝑇𝑣      𝑊 + diag(𝑣) ≥ 0
−∞         otherwise,          

 

maximize   𝑔(𝑣) = −1𝑇𝑣 

 subject to  𝑊 + diag(𝑣) ≥ 0 (11) 

This suggests that our relaxed solution is close or equal to the solution of 

Equation (4). We also observed that both methods perfectly compensated for the 

random negation of polarities in each trial and produced a normalization vector that, 

when multiplied element-wise by random trial polarity reversals, resulted in 

effectively the same unique set of final scalp map polarities (up to a trivial global sign 

flip of all the maps). This implies that both polarity normalization methods produce 

reliable solutions. 

In the next two tests we compared the two polarity normalization methods by 

applying them to groups of random subsets of scalp maps with different sizes. Each 

group contained a fixed number of random subsets with equal number of scalp maps 

(each subset was drawn independently from all study scalp maps and contained no 

duplicates). The polarities of scalp maps in each subset were randomly negated (with 

50% probability) and then both normalization methods were applied to each subset 

(both methods were applied to the same data). 

In a second test, we used Study A IC scalp maps. Subsets of study IC scalp 

maps were created in groups associated with 11 subset sizes linearly distributed 

between 50 and 260. Each group contained 50 subsets of equal size. In the third test 



29 

 

 

we used Study B scalp maps. Here, 20 groups were created for subset sizes 

logarithmically distributed between 50 and 524. Each of these groups contained 10 

subsets, again, with equal numbers of scalp maps. 

Paired t-test statistical comparisons between cost function of values of the two 

normalization methods showed no significant performance difference. In the second 

test, the significance of the difference was p < 0.1, and for the third test, p < 0.13. In 

combination, the statistical significance of this difference, combining data from both 

tests, was p  < 0.16. 

Figure  3.4 shows average execution times versus subset size for data from 

second and third tests on a powerful PC (Dual AMD Opteron 6238 2.6GHz twelve-

core processors, 128GB RAM). Because of the high memory requirement and long 

execution time required, we did not try the convex optimization method on subsets 

with more than 524 scalp maps. As Figure  3.4 shows, the execution time of the convex 

method is significantly (p < 3×10-27) longer. The average speed up using the Monte 

Carlo method was 31±0.6 times for all subset size groups and 89±4.5 times for groups 

of subsets containing 524 IC scalp maps. 

To demonstrate the application of our polarity normalization method in 

analyzing real data, we applied this method to 64 ICs of Study A with equivalent 

dipoles located in or near (distance < 10 mm) occipital areas (from LONI Atlas [52]). 

Figure  3.5 shows these dipoles. We calculated the average of target – non-target ERPs 
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of all these ICs and compared it to averages calculated from 10,000 bootstrap 

permutations with random polarities. Figure  3.6 shows these results with significant 

(p<0.05) peaks at 340 and 570 ms in agreement with reported visual target (versus 

non-target) detection ERPs in the literature [53, 54]. 

3.5 Discussion and Conclusion 

We showed that ICA scalp map polarities can be normalized by solving a two-

way partitioning problem created from their pairwise inner products. We also 

introduced two methods to solve the resulting problem and compared their 

performance in terms of solution quality and execution speed.  Our implementation of 

Monte Carlo method performed as well as convex optimization but ran significantly 

faster. It also had lower memory usage and could be scaled to larger problem sizes.  

Time-domain analysis of multi-subject source activity often depends on scalp 

map polarities. For example, scalp map polarities affect ERP polarities that are used as 

input features to both Measure Projection Analysis [15] and IC clustering [27-30] as 

implemented in the EEGLAB environment [31, 32]. Training of source-based cross-

subject brain computer interface (BCI) classifiers may also depend on scalp map 

polarity consistency and benefit from normalization methods demonstrated here. 

Matlab code implementing both these methods is included in the free, open source 

Measure Projection Toolbox (MPT) [15]. MPT automatically performs polarity 

normalization when importing ERP data. 
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There has been some work [33, 34] to assign correct IC scalp map polarities in 

channels where these polarities are inverted due to noise in ICA calculations. This 

noise is assumed to originate from having insufficient data, or from limitations of the 

ICA algorithm leading to it finding a ‘local’ instead of a global ICA solution. This 

problem is fully separate from the polarity normalization concept discussed here as the 

indeterminacy in scalp maps that we address is an inherent feature of the ICA 

algorithm and exists even if a global (true) solution is found by ICA. 

Here we used pairwise inner product of normalized scalp maps for polarity 

normalization but alternative measures such as inner product of ERP time courses may 

also be used for this purpose. A drawback of the latter is that it could complicate the 

calculation of statistical significance of ERP averages since IC polarities would be 

normalized in a manner that encourages non-zero averages.  

A comparison between ERP results obtained from group-ICA and subject-

specific ICA component map polarity normalization is out of scope of this chapter, 

especially since such comparison would also depend on the type of group-level 

analysis performed on subject-specific ICA equivalent dipoles (e.g., PCA-based 

clustering or Measure Projection analysis). 

A future direction is to take advantage of brain source location information and 

to incorporate this information as well as scalp map and/or ERP time course inner 

products in the pairwise IC matrix. This will highly weight polarity conflicts in nearby 
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sources and prefer solutions that result in higher spatial consistency values across 

time-domain measures such as ERPs. 

3.6 Acknowledgments 

The research described in Chapter 3 of this thesis was sponsored by the Army 

Research Laboratory and was accomplished under Cooperative Agreement Number 

W911NF-10-2-0022 and NIH grant 1R01MH084819-03.  The views and the 

conclusions contained in this document are those of the authors and should not be 

interpreted as representing the official policies, either expressed or implied, of the 

Army Research Laboratory or the U.S Government.  The U.S Government is 

authorized to reproduce and distribute reprints for Government purposes 

notwithstanding any copyright notation herein. The authors thank an anonymous 

reviewer for suggesting use of the Monte Carlo approach. 

 Chapter 3, in full is currently being prepared for submission for publication of 

the material by N. Bigdely-Shamlo, K. Kreutz-Delgado and S. Makeig. The 

dissertation author was the primary investigator and author of this material. 

3.7 Figures 
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Figure  3.1.  Sample study-A IC scalp maps before polarity normalization. IC pairs for 
which one IC is a candidate for polarity reversal are surrounded by colored rectangles. 

 

Figure  3.2.  (Left) Matrix X obtained from convex relaxation (Equation (6)), (Right) 
Rank = 1 approximation of X from Equation (7). 
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Figure  3.3. Sample study-A IC scalp maps after polarity normalization using convex 
relaxation. Dashed rectangles indicate the IC pairs highlighted in Figure  3.1 as 
candidates for polarity change. The polarities of all these pairs are changed after 
applying convex polarity normalization. 
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Figure  3.4.  A comparison of execution times for the convex relaxation and Monte 
Carlo methods. Dashed lines show interpolated values using best fits to the formula 

by ax= . 
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Figure  3.5.  Equivalent dipole models for the 64 ICs in Study A located within 10 mm 
of the occipital brain region as per the LONI cortical atlas [52]. 
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Figure  3.6. Average ERP of 64 occipital ICs of study A after polarity normalization. 
The blue area shows the p>0.05 confidence bounds obtained from 10,000 bootstrap 
iterations with random IC polarities. 
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Chapter 4  

Detecting Eye Activity Related ICs 

(EyeCatch) 

 

4.1 Abstract 

Independent component analysis (ICA) can find distinct sources of 

electroencephalographic (EEG) activity, both brain-based and artifactual, and has 

become a common pre-preprocessing step in analysis of EEG data. The highly non-

Gaussian nature of the EEG signals is what makes them amenable to analysis via ICA 

techniques.  Distinguishing between the brain and non-brain independent components 

(ICs) accounting for, e.g., eye or muscle activities is an important step in data analysis. 

Here we present a fully automated method to identify eye-movement related EEG 

components by analyzing the spatial distribution of their scalp projections (scalp 

maps). The EyeCatch method developed in this chapter compares each input scalp 

map to a database of eye-related IC scalp maps obtained by data-mining over half a 

million IC scalp maps obtained from 80,006 EEG datasets associated with a diverse 

set of EEG studies and paradigms. To our knowledge this is the largest sample of IC 
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scalp maps that has ever been analyzed. Our result show comparable performance to a 

previous state-of-art semi-automated method, CORRMAP [55], while eliminating the 

need for human intervention.  

4.2 Introduction 

Finding EEG sources through the application of ICA data decomposition has 

become a popular EEG analysis method [20-25]. An important aspect of ICA is it 

allows us to analyze EEG using ICA by separating brain source processes from the 

contributions to the scalp data from muscle and eye-movement related processes [56]. 

There are several algorithms proposed for this task: ADJUST [57] is a fully automatic 

algorithm that uses a combination of spatial and temporal features of independent 

components (ICs) to classify blinks, eye movements, and generic discontinuities. The 

method is based on a handful of spatial features (e.g., variance differences across 

groups of channels) manually constructed in a trial and error manner. When temporal 

information is not available, or when the EEG epochs are too short to obtain reliable 

statistics on temporal features, the performance of the ADJUST algorithm is unknown.  

CORRMAPP [55] is a semi-automated method that classifies eye-related ICs solely 

based on the correlation of their spatial projections (scalp maps) with one, or a few, 

templates. Each template is initially specified by the user and later refined by iterative 

clustering and averaging of detected eye components.  
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Here we present EyeCatch, a method that uses a large database of exemplar eye 

scalp maps instead of the single user-initiated template used in CORRMAP. The 

exemplar database is generated by analysis of a very large set of IC scalp maps from 

multiple studies to capture relevant eye component topographies while being robust to 

normal variations in subject anatomy, electrode locations, ICA decomposition quality, 

etc.  

4.3 Methods 

4.3.1 Scalp maps Database Preprocessing 

We first gathered 106,749 single-subject EEG data sets from file servers of the 

UC San Diego Swartz Center for Computational Neuroscience  (data collected during 

the period 2002-2012) and selected those with an ICA decomposition (nearly all 

determined by Extended Infomax [24] or AMICA [58, 59]) and unique dipolar IC 

source models computed using EEGLAB [21, 60]. From the selected 80,006 data sets 

we extracted 638,512 distinct IC scalp maps interpolated on a 67×67 2-D scalp grid 

using the topoplot() function in EEGLAB. 

4.3.2 Eye-related template scalp map dataset 

The eye-related scalp map template dataset was created in two stages. First we 

selected a single eye-movement related template scalp map from a well-studied Rapid 

Serial Visual Presentation (RSVP) experiment [48] and calculated its correlations with 
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the 265 scalp maps from three other laboratory studies. The ten IC scalp maps most 

highly correlated with the template were visually judged to be eye-activity related and 

added to the eye-elated IC scalp map template database.  Next, we sorted 499 IC scalp 

maps from an Attention-Shift study [61] by their maximum correlation to any of the 

scalp maps in the template database and visually selected 25 eye-activity related 

component scalp maps to add to the template database.  

Next we calculated the highest absolute correlation between all 638,512 

distinct IC scalp maps and any of the eye-related scalp maps in the template database.  

After sorting by this value and visual inspection, the scalp maps most highly 

correlated with any template map (max(|r|)>0.994) were clustered into 24 clusters 

using Affinity Propagation [62]. Sixteen of these clusters mostly contained scalp maps 

associated with a single type of eye-related activity (e.g., vertical or horizontal eye 

movements, or eye blinks). The rest were considered to be brain source ICs whose 

maps had some similarity to eye-activity related maps.  We then visually inspected 

each of the sixteen eye-related scalp map clusters, and retained only scalp maps that 

were more similar than a visually appropriate correlation threshold to the cluster 

exemplar (cluster thresholds: 0.8<|r|<0.97; median 0.94). After final visual adjustment 

(eliminating 13 ICs) we obtained a template database of 3,452 eye-activity related IC 

scalp maps. 

The EyeCatch algorithm then simply calculates the maximum absolute 

correlation between an input scalp map and all 3,452 eye-activity related template 
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scalp maps in its database (i.e. by calculating the absolute correlation between an input 

scalp map and all template scalp maps and then take the maximum one). Cross 

validation results showed that this typically was more reliable than more complex 

nearest-neighbor distance weighted averaging methods. 

4.4 Results 

Figure  4.1 shows a sample 96 IC scalp maps in the EyeCatch template database. 

Many of these represent variations on a single type of template (e.g., accounting for 

EEG artifact produced by horizontal eye movements or eye blinks) arising from 

differences in subject anatomy, electrode locations, etc. Including this variability 

provides an advantage when using a simple similarity-based classification method and 

can be achieved only by processing data from a large sample of subjects and recording 

conditions. 

We compared the performance of EyeCatch with the reported results of the 

semi-automatic CORMAP algorithm. The 4,256 IC scalp maps used in the 

CORRMAP paper [55] plus the ratings of these maps by eleven experts were kindly 

provided to us by the authors of [9]. We applied EyeCatch to these scalp maps using a 

range of decision correlation thresholds (between 0.95 and 0.99) and compared the 

results to the average of the [0|1] votes from the 11 experts who judged each given IC 

scalp map as either accounting for eye-movement activity (e.g., blinks or lateral eye 

movements) or not. Using Matlab (Mathworks, Inc.), 7.85 s were required to obtain 
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maximum correlation values for the 4,256 input maps (1.8 ms per map). Figure  4.2 

shows the correlations between the EyeCatch output (length 4,256 vector of binary 

[0|1] values] and the expert vote averages  (vector of range [0,1] values) for a range of 

EyeCatch maximum-correlation decision thresholds.  

We also calculated the Receiver Operator Characteristic (ROC) curve [63] using the 

majority vote of the 11 experts as binary ground truth (thereby identifying 125 lateral 

eye movement or blink-related scalp maps) and the maximum absolute correlation 

similarity between each test scalp map and the 125 scalp maps in the EyeCatch 

template database as the detection variable.  

Figure  4.3 displays this ROC curve. The area under the ROC curve is 0.993, 

demonstrating that EyeCatch has both high sensitivity and specificity. 

4.5 Conclusions 

As seen in Figure  4.2, for a range of decision correlation thresholds (from 95.5% 

to 98.3%) correlation to mean expert votes is above 0.8. This is highly comparable to 

the reported performance of CORRMAP, for which mean correlations with expert 

judgments for each study were 0.85-0.91 for lateral eye movements and 0.83-0.99 for 

blinks. However, once a database has been constructed, the EyeCatch algorithm is 

fully automated and does not involve the user interaction required by CORRMAP.  
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Our results show that high-performance eye-related IC classification can be 

achieved by using a large volume of data and relatively simple measures (here, scalp 

map correlation thresholding). This suggests that solving other problems in EEG 

analysis, from muscle-related component detection to robust Brain Computer Interface 

design, may also benefit from exploiting large databases spanning many EEG studies. 

This is consistent with current thinking in many application domains, that given 

enough data ("big data") even relatively simple algorithms can produce highly 

informative results. 

However, still better performance for detecting both eye-activity and other non-

brain (‘artifact’) IC types might be obtained by jointly considering IC scalps and time 

courses.  For example, saccade and blink ICs have strong, fairly predictable time 

domain features; ICs accounting for scalp muscle (electromyographic, EMG) activity 

have characteristic spectral profiles, etc. 

A freely available, open-source implementation of the EyeCatch algorithm 

running on Matlab is available in the Measure Projection Toolbox (MPT), an 

EEGLAB plug-in [64]. Documentation and stand-alone downloads are available at 

http://sccn.ucsd.edu/wiki/EyeCatch. 
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4.7 Figures 
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Figure  4.1. A sample 96 template component scalp maps  (of 3,452) in the EyeCatch 
eye-related component template. 
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Figure  4.2. Correlations between eye-activity related component scalp map judgments 
by EyeCatch and the average votes (whether each component is eye activity related or 
not) from eleven experts as a function of the EyeCatch maximum-correlation decision 
threshold.  
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Figure  4.3. Receiver Operator Characteristic (ROC) curve for EyeCatch scalp map 
classification and expert majority voting on the CORRMAP paper component scalp 
map collection (area under the curve = 0.993). 
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Chapter 5  

Imaging half a million ICA-

component scalp maps reveals EEG 

source hotspots 

 

5.1 Introduction 

 Finding EEG sources by applying ICA decomposition followed by single 

dipole fitting to each ICA component has become a popular and useful EEG source 

imaging approach [21, 28]. The probability of finding an independent component (IC) 

equivalent dipole in a brain area depends on two factors (a) The chance of finding the 

IC during the application of ICA to EEG. This depends, at least, on the relative 

session-average magnitude of IC contribution to channel data (since ICA gives higher 

priorities to separating sources with higher amplitudes) and is itself is a function of 

cortical electrophysiology and the task being performed by the subject. For example, 

[65] contrasted ICA source densities across groups of participants performing several 

stimulus response tasks. (b) The quality of forward electrical model available 
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associated with sources in the brain area (otherwise associated ICs cannot be modelled 

well enough by the equivalent dipole model and are hence ignored). Since in many 

cases a generic (not subject-specific) template forward electrical model is used, for 

each brain area the degree of anatomical variability across subjects, and hence 

deviation of the actual forward electrical field model from the template model, could 

influence the probability of observing an IC equivalent dipole. Here we present results 

of a large-scale analysis of ICA-derived EEG source locations and directions obtained 

from a diverse set EEG studies (including data from [65]). 

5.2 Methods 

5.2.1 Data Preprocessing 

 We first gathered 106,749 single-subject EEG data sets from file servers of the 

UCSD Swartz Center for Computational Neuroscience (2002-2012) and selected those 

that had an existing ICA decomposition (nearly all determined by extended infomax or 

AMICA) and localized dipolar sources computed from that decomposition. Of these, 

80,006 had a unique equivalent dipole-fit solution (in terms of location and direction, 

obtained by use of the function dipfit() in EEGLAB), resulting in over 4 million 

(4,377,055) potentially dipolar sources (bilaterally symmetric component scalp maps 

were modeled using two bilaterally symmetrically located dipoles). Among these, 

638,512 (15%) were unique (had distinct component scalp maps), from which 262,636 

(41%) sources could be fit well by a one (or on occasion two) dipole model (e.g., with 
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> 85% of scalp-map variance accounted for). Lastly, we removed likely eye and 

muscle sources by only retaining sources inside the MNI modal brain volume (≥ 1 mm 

to CSF border) and then applying the EyeCatch algorithm (see Chapter 4) to remove 

remaining eye movement-related components. This resulted in 135,794 equivalent 

dipoles for brain EEG sources. 

5.2.2 Dipole Density Calculation 

 To speed the computations, we represented the distribution of these source 

locations by calculating the numbers of dipoles in model brain voxels on a 3-D grid 

with 2-mm spacing. This voxel representation enabled the use of fast Matlab functions 

that act on data volumes. The maximum amount of spatial noise introduced during this 

process was √3 = 1.7𝑚𝑚 which is not significant compared to the uncertainly in 

dipole location due to inaccuracies in the localization process (up to 20 mm). 

 To make sure that all dipoles contribute equally to the results, we multiplied 

the count value in each voxel 𝑁𝑗 , 𝑗 = 1. .𝑚 (𝑚 = 249,686 brain voxels) by a 

correction factor 𝑓𝑗 , 𝑗 = 1. .𝑚. This value was calculated at each location 𝑗 by first 

placing a 3-D Gaussian with 19.5 mm std. (the value used  in subsequent smoothing) 

at 𝑗 and then setting 𝑓𝑗 to the inverse of density mass that lays inside brain volume. 

This normalizes the total dipole mass inside brain volume to one (since after 

preprocessing the remaining dipoles are assumed to be of cortical origin). 
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 We then applied spatial Gaussian (19.5-mm std.) smoothing to calculate the 

overall dipole density at each location while taking into account uncertainties in dipole 

localization (e.g., from errors in forward and inverse head modeling). To do this, we 

performed 15 iterations of 3-D smoothing, using  the smooth3() Matlab function, by , 

at each iteration, convolving the corrected dipole count values 𝑁𝑗𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑁𝑗𝑓𝑗 , 𝑖 =

1. .𝑚 with a 1.3 mm Gaussian. This resulted in an overall 1.3*15=19.5 mm Gaussian 

smoothing. 

 To calculate the probability that the calculated dipole density in each voxel 

was higher than what would most likely be observed by chance, we performed 

bootstrap dipole density calculations using 200 permutations of placing the same 

number of dipoles in random voxel locations. Significance P value at each location 

was calculated as the ratio of random permutation with equal or more density at the 

location. 

5.2.3 Calculating Average Dipole Residual Variance 

Residual variance (RV) is a ratio of scalp map variance that can be explained 

by a dipole source model and defined as follows. For each scalp map 𝑆𝑖, 𝑖 = 1. .𝑛 

modeled by a dipole scalp map 𝑆𝑖
𝐷𝑖𝑝𝑜𝑙𝑒 , 𝑖 = 1. .𝑛, the residual variance is defined as: 

( )
( )

Dipole
i i

i
i

Var S SRV
Var S

−
= .   ( 5.1) 
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 We then calculate the average residual variance 𝑅𝑉𝑗 at brain voxel 𝑗 = 1. .𝑚 

using the formula 

𝑅𝑉𝚥���� =
∑ 𝑅𝑉𝑖𝑃𝑖,𝑗𝑛
𝑖=1.
∑ 𝑃𝑖,𝑗𝑛
𝑖=1.

 ( 5.2) 

where 𝑃𝑖,𝑗 is the dipole 𝐷𝑖 , 𝑖 = 1. .𝑛 density at voxel 𝑗 = 1. .𝑚 and 𝑅𝑉𝑖 is the residual 

variance of this dipole. 

5.2.4 Calculating Average Dipole Orientation 

 The uncertainty in the polarity of ICA scalp maps results in an uncertainty in 

the direction (but not the orientation) of associated equivalent dipoles (when such 

maps are well represented by such a model). 

 One way to calculate the average orientation of a number of dipoles is to 

remove direction information by representing each dipole orientation by a tensor. For 

dipole 𝐷𝑖 , 𝑖 = 1. .𝑛 (𝑛 = 135,794 dipoles) with dipole vector iv , matrix * T
i i iV v v=

represent the orientation but not the direction of the dipole. To calculate the average 

orientations, we can use the (unweighted) covariance formula: 

1 1
( ) *

n n
T

i i i
i i

C Cov D v v V
= =

= = =∑ ∑  ( 5.3) 
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 Matrix C represents an ellipsoid whose first principal direction (the 

eigenvector of C associated with its largest eigenvalue) points to the dominant 

orientation of dipoles 1..i nD = .  

 To include dipole location information in our averaging we have to calculate a 

weighted average at each location, emphasizing the orientations of nearby dipoles. Let 

iα be the weight of dipole iD , obtained from a probability density representation of 

the dipole (here we use a 19.5 std. Gaussian normalized to have unit total density in 

brain volume). The formula for calculating the weighted covariance matrix is  

1 1
( ) *

n n
T

i i i i i
i i

C Cov D k v v k Vα α
= =

= = =∑ ∑  ( 5.4) 

where 𝑘 is a scalar constant and can be ignored since it does not affect the eigenvector 

structure of C . 

 We represented each dipole orientation by a covariance matrix and performed 

Gaussian smoothing with 19.5 mm std. independently for each matrix element in the 

same way we calculated dipole densities in 5.2.1. This resulted in 𝑚 covariance 

matrices 𝐶𝑗 , 𝑖 = 1. .𝑚, each associated with a different voxel. 

 The shape of the ellipsoid represented by 𝐶𝑗 indicates the degree of dipole 

orientation preference or anisotropy.  Fractional Anisotropy (FA) is a scalar value 

between zero and one that quantifies this orientation preference. FA is extensively 
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used in Diffusion Tensor Imaging (DTI) [66] and is calculated from the eigenvalues (

1λ , 2λ , 3λ ) of the weighted covariance matrix 𝐶𝑗 as 

 
2 2 2

1 2 1 3 2 3

2 2 2
1 2 3

( ) ( ) ( )1
2

FA
λ λ λ λ λ λ

λ λ λ

− + − + −
=

+ +
.  ( 5.5) 

Note than if all the eigenvalue are equal (the isotropic or spherical) the FA is 0. If all 

dipole orientations are the same, the FA is 1. 

 We calculated FA values for 𝐶𝑗 , 𝑖 = 1. .𝑚 and obtained their significance P 

values by performing 200 bootstrap iterations. In each iteration the directions of the 

original 𝑛 dipoles was replaced by the directions of 𝑛 randomly selected dipoles from 

the original dipoles (allowing repetitions for a more conservative statistical estimate). 

Weighted covariance and FA calculations were then repeated for each iterations and 

significance P value of FA at each location was calculated as the ratio of FA values 

among all bootstrap iteration that were higher than the original FA value for the voxel. 

5.2.5 Defining the radial vector direction for each voxel 

Source orientations are often investigated in terms of principal radial and 

tangential axis relative to the boundary of the cortex, i.e. Cerebrospinal fluid (CSF) 

[67]. To compare our computed average dipole orientations to the radial orientation 

we first need to define this orientation for each brain location.  
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It is intuitive to define the radial direction for points near the boundary of the 

cortex (i.e. CSF) as the perpendicular direction to this boundary. In other words, this 

direction can be found by connecting the each point to the closest point of outer 

cortical surface (e.g. CSF). It is then only logical to extend this definition of radial 

direction to all voxels in the brain.  

 To accelerate the calculation of radial direction for brain voxels, instead of 

finding the closest point for each voxel we can use a highly efficient distance 

transform algorithm implemented in the bwdist() Matlab function. The input to this 

function is a binary mask and the output is the distance from each voxel to the closest 

point with a non-zero (true) in the input mask (Figure  5.8a) and the output is the 

distance from each voxel to the closest out-of-brain location (Figure  5.8b). The radial 

orientation for each voxel may be obtained by calculating the gradient of this distance 

(Figure  5.8c). Figure  5.9 shows radial orientation field for MNI [68] brain volume. 

Once radial orientations are calculated, the angle between each orientation jr  

at location j  and the average dipole orientation (the first eigenvector of C , jw ) may 

be calculated as 

1cos ( )
.

T
j j

j j

r w

r w
θ −= .   ( 5.6) 

5.3 Results 



57 

 

 

 Figure  5.1 shows the histogram of remaining scalp-map variance not accounted 

for by dipole model (a single dipole or dual symmetric dipole). It suggests that most 

sources are well modeled by the dipole model (median residual variance = 5.8%). 

Figure  5.2 shows calculated brain source equivalent dipole locations, plotted as 

counts in 8-mm3 voxels in the MNI template cortex [68]. In Figure  5.3 dipole density 

in this image (following Gaussian smoothing and partial volume effect correction) is 

displayed. Figure  5.4 shows areas with unexpectedly high dipole density (p<0.05, 

FDR [69] corrected of multiple comparisons). Table  5.1 shows anatomical regions 

(based on the LONI project Probabilistic Atlas [52] and the Talairach Atlas [70], 

respectively) with highest dipole densities, along with the ratios of average dipole 

density in each region to mean dipole density through the brain volume.  

 Figure  5.6 shows Fractional Anisotropy (FA) at different brain locations. FA 

values for locations where FA is not significant (p>=0.01) are set to zero. Figure  5.7 

shows average dipole orientations for different areas colored by FA. Figure  5.9 shows 

radial orientation field for MNI brain volume and Figure  5.10 shows the angle (in 

degrees) between average dipole orientation and the radial vector at each location with 

significant (p<0.01) FA. 

5.4 Discussion 
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 Our dipole density results show the activation of anatomic areas involved in 

executive function, particularly response planning (e.g., mid-cingulate gyrus), resting 

periods (e.g., default network-related activity in precuneus [71]), visual response areas 

(e.g., lateral occipital), and hand sensorimotor cortex (e.g., parietal gyrus, hand-area 

mu rhythms during finger movement inhibition). This is consistent with the type of 

tasks commonly used in this collection of psychophysical EEG experiments in which 

participants performed quick visual perceptual decisions leading to finger press 

responses. To our knowledge, this is the first large-scale EEG analysis that combines 

ICA-derived source location information across a diverse set of studies and paradigms. 

The compactness of the ‘hotspots’ in the density image suggests that despite 

differences in tasks, head models and electrode numbers, placements, and registration 

methods, several compact component process clusters appear in the ICA 

decompositions of many or most typical experiment sessions. 

 Our results in Figure  5.5 and Table  5.1 indicate that there are significant 

differences in how well cortical sources at different regions can be modeled by dipoles 

using template forward models (e.g. MNI). Certain areas such as frontal and temporal 

regions have a significantly higher residual variance than average, while others such as 

occipital, precuneus and cuneus have a lower than average residual variance (RV) 

(FDR-corrected p < 0.05). The increase in RV in frontal areas may be partially due to 

the increased inaccuracy of forward models caused by the less spherical, more 

convoluted shape of scalp in these areas. 
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 As shown in Figure  5.6, Fractional Anisotropy of EEG dipole orientation 

values is high for most brain areas (median FA = 0.73). This could be mostly due to 

the anatomical similarity in cortical orientation across subjects. Also, the angle 

between the average dipole orientation and the radial direction in 53% of voxels is less 

than 30 degrees (see Figure  5.10 and Figure  5.11), a fact that may have contributed to 

high FA values. Our results are not adequate to resolve the relationship between these 

factors together and the distributions of cortical sources as detected by EEG. In fact 

our results encourage further research to explain the preponderance of radial EEG 

dipole sources. 

 Source orientation coherence across individuals modulates the strength of 

group-level event-related potentials (ERPs) calculated at channel locations. This is 

because similarly oriented sources contribute similarity to each channel, strengthening 

the group-level ERP. It is expected then that areas with low FA in Figure  5.6 to 

produce less prominent ERPs of this type. On the other hand, ICA-based group-level 

ERPs, for example obtained from Measure Projection Analysis (see  Chapter 6), should 

be relatively unaffected by low FA since they average ERP of different participants 

from dipoles at particular brain areas regardless of dipole orientations.  
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5.6 Figures 

 

Figure  5.1. Histogram of equivalent dipole scalp map residual variances of brain 
dipoles (median = 5.8%). 
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Figure  5.2. Over 130k EEG independent component (IC) brain source equivalent 
dipole locations, plotted as counts in 8-mm3 MNI template brain voxels. 
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Figure  5.3. (top) Axial view of computed dipole source density across the datasets. 
(bottom) Sagittal view. 
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Figure  5.4. (top) Axial distribution of brain areas with higher than random equivalent 
dipole density (p < .05, FDR corrected). (bottom) Sagittal density. 

 



64 

 

 

 

Figure  5.5. Average residual variance (two-tailed p<0.01). 
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Figure  5.6. Fractional Anisotropy at different brain locations (p<0.01). 
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Figure  5.7. Average dipole orientations colored by fractional anisotropy at different 
brain locations. 

 

 

Figure  5.8. (a) Sample 2D slice of anatomical (MNI) brain volume mask. (b) Distance 
transform of image (a). (c) Radial vectors calculated from the gradient of (b). 

(b) (c) (a) 
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Figure  5.9. Three views of radial orientations for MNI brain volume. 
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Figure  5.10. Angle (in degrees) between average dipole orientation and the radial 
vector at each location (p<0.01). 
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Figure  5.11. Histogram of the angle between radial orientation and the average dipole 
orientation at each brain voxel. Most IC equivalent dipole orientations have a <30 
degree angle with the radial orientation. 

 

 

 

 



70 

 

 

Table  5.1. Anatomical regions with high dipole density. 

Anatomical Region 

Dipole 

Density 

Ratio 

 Anatomical Region 
Dipole Density 

Ratio 

R Cingulate Gyrus 2.62 
 

L Inferior Frontal Gyrus 0.65 

R Precuneus 2.49 
 

L Putamen 0.64 

L Cingulate Gyrus 2.47 
 

R Parahippocampal 

Gyrus 
0.58 

L Precuneus 2.32 
 

L Fusiform Gyrus 0.51 

R Caudate 1.88 
 

R Fusiform Gyrus 0.5 

R Cuneus 1.73 
 

R Inferior Temporal 

Gyrus 
0.5 

L Caudate 1.66 
 

L Parahippocampal 

Gyrus 
0.48 

R Precentral Gyrus 1.66 
 

R Hippocampus 0.46 

L Precentral Gyrus 1.55 
 

R Middle Orbitofrontal 

Gyrus 
0.44 

R Postcentral Gyrus 1.54 
 

R Lateral Orbitofrontal 

Gyrus 
0.44 

R Superior Occipital 
Gyrus 1.52  

L Inferior Temporal 
Gyrus 

0.43 

L Cuneus 1.44 
 

L Hippocampus 0.4 
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Table 5.1., continued. 

Anatomical Region 

Dipole 

Density 

Ratio 

 Anatomical Region 
Dipole Density 

Ratio 

L Postcentral Gyrus 1.42 
 

L Lateral Orbitofrontal 

Gyrus 
0.4 

R Superior Parietal Gyrus 1.27  
L Middle Orbitofrontal 

Gyrus 
0.36 

L Superior Occipital 

Gyrus 
1.26 

 
Cerebellum 0.32 

L Superior Frontal Gyrus 1.23 
 

Brodmann Area 24 2.73 

R Superior Frontal Gyrus 1.22 
 

Brodmann Area 33 2.71 

L Superior Parietal Gyrus 1.19 
 

Brodmann Area 23 2.61 

R Lingual Gyrus 1.14 
 

Brodmann Area 31 2.54 

R Inferior Occipital 

Gyrus 
1.09 

 
Brodmann Area 29 2.05 

R Angular Gyrus 1.06 
 

Brodmann Area 3 

Primary Somatosensory 
1.82 

L Lingual Gyrus 1.04  
Brodmann Area 4 

Primary Motor 
1.81 

L Middle Occipital Gyrus 1.01  Brodmann Area 30 1.62 

L Angular Gyrus 0.98 
 

Brodmann Area 5 1.59 
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Table 5.1., continued. 

Anatomical Region 

Dipole 

Density 

Ratio 
 

Anatomical Region 
Dipole Density 

Ratio 

R Gyrus Rectus 0.91 
 

Brodmann Area 6 

Premotor and 

Supplementary Motor 

1.43 

L Inferior Occipital 

Gyrus 
0.9 

 

Brodmann Area 7 

Somatosensory 

Association 

1.31 

R Middle Frontal Gyrus 0.87 
 

Brodmann Area 18 

Secondary visual (V2) 
1.24 

R Putamen 0.84 
 

Brodmann Area 2 

Primary Somatosensory 
1.22 

L Supramarginal Gyrus 0.83 
 

Brodmann Area 41 

Primary and Association 

Auditory 

1.2 

L Insular Cortex 0.81 
 

Brodmann Area 17 
Primary visual (V1) 

1.17 

L Superior Temporal 

Gyrus 
0.8 

 
Brodmann Area 27 0.95 

L Gyrus Rectus 0.79  
Brodmann Area 19 

Associative visual (V3) 
0.94 
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Table 5.1., continued. 

Anatomical Region 

Dipole 

Density 

Ratio 
 

Anatomical Region 
Dipole Density 

Ratio 

R Superior Temporal 

Gyrus 
0.73 

 

Brodmann Area 22 

Auditory processing 
0.92 

L Middle Frontal Gyrus 0.73 
   

R Insular Cortex 0.7 
   

L Middle Temporal 

Gyrus 
0.7 

   

R Inferior Frontal Gyrus 0.66    
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Table  5.2. Average residual variance (RV) of anatomical regions with significantly 
low or high RV (FDR-corrected two-tailed p value < 0.05). Each area is marked as 
‘High’ or ‘Low’ in the table as ‘type of significance’ depending on whether the 
average RV was higher or lower than what would be observed if the distribution of 
RVs was random. 

Anatomica

l Region 

Average 

Residual 

Variance 

(%) 

Type of 

significance 
 

Anatomical 

Region 

Average 

Residual 

Variance 

(%) 

Type of 

significance 

R Inferior 

Occipital 

Gyrus 

4.9 Low 
 

R Inferior 

Temporal 

Gyrus 

7.4 High 

L Inferior 

Occipital 

Gyrus 

5 Low 
 

L 

Supramargi

nal Gyrus 

7.4 High 

R Middle 

Occipital 

Gyrus 

5.5 Low 
 

L Inferior 

Frontal 

Gyrus 

7.4 High 

R Superior 

Occipital 

Gyrus 

5.5 Low 
 

R Superior 

Frontal 

Gyrus 

7.4 High 

 

R Cuneus 

 

 

5.6 Low 
 

R Superior 

Temporal 

Gyrus 

7.5 High 
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Table  5.2., continued. 

Anatomica

l Region 

Average 

Residual 

Variance 

(%) 

Type of 

significance  

Anatomical 

Region 

Average 

Residual 

Variance 

(%) 

Type of 

significance 

L 

Precuneus 
5.7 Low 

 

R 

Supramargi

nal Gyrus 

7.5 High 

R Lingual 

Gyrus 
5.7 Low 

 

L 
Parahippoca
mpal Gyrus 

7.5 High 

L Superior 

Occipital 

Gyrus 

5.8 Low 
 

R Angular 
Gyrus 

7.5 High 

L Lingual 

Gyrus 
5.8 Low 

 

L Gyrus 

Rectus 
7.6 High 

L Cuneus 6 Low 
 

R Middle 
Frontal 
Gyrus 

7.6 High 

L Middle 

Occipital 

Gyrus 

6 Low 
 

L Middle 

Frontal 

Gyrus 

7.6 High 

Cerebellum 6 Low 
 

R Caudate 7.6 High 
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Table  5.2., continued. 

Anatomical 

Region 

Average 

Residua

l 

Varianc

e (%) 

Type of 

significance 
 

Anatomical 

Region 

Average 

Residual 

Variance 

(%) 

Type of 

significance 

L 
Postcentral 

Gyrus 
6.2 Low  

L Angular 
Gyrus 

7.7 High 

L 

Precentral 

Gyrus 

6.4 Low 
 

R Gyrus 

Rectus 
7.8 High 

L Middle 

Temporal 

Gyrus 

6.7 High 
 

R Insular 
Cortex 

7.8 High 

R Cingulate 

Gyrus 
6.7 High 

 Brainstem 7.8 High 

L Cingulate 

Gyrus 
6.8 High 

 

L Middle 
Orbitofrontal 

Gyrus 

7.8 High 

L Lateral 

Orbitofront

al Gyrus 

 

7 High  

R Middle 

Orbitofronta

l Gyrus 

7.9 High 
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Table  5.2., continued. 

Anatomica

l Region 

Average 

Residua

l 

Varianc

e (%) 

Type of 

significance  

Anatomical 

Region 

Average 

Residual 

Variance 

(%) 

Type of 

significance 

L Inferior 

Temporal 

Gyrus 

7 High 
 

L 

Hippocamp

us 

8 High 

R Middle 

Temporal 

Gyrus 

7.1 High 
 

R Putamen 8.2 High 

R Fusiform 

Gyrus 
7.1 High 

 

R 

Parahippoca

mpal Gyrus 

8.3 High 

L Superior 

Frontal 

Gyrus 

7.2 High 
 

R 

Hippocamp

us 

8.8 High 
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Chapter 6  

Measure Projection Analysis: A 

Probabilistic Approach to EEG 

Source Comparison and Multi-

Subject Inference 

 

6.1 Abstract 

 A crucial question for the analysis of multi-subject and/or multi-session 

electroencephalographic (EEG) data is how to combine information across multiple 

recordings from different subjects and/or sessions, each associated with its own set of 

source processes and scalp projections. Here we introduce a novel statistical method 

for characterizing the spatial consistency of EEG dynamics across a set of data 

records. Measure Projection Analysis (MPA) first finds voxels in a common template 

brain space at which a given dynamic measure is consistent across nearby source 

locations, then computes local-mean EEG measure values for this voxel subspace 
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using a statistical model of source localization error and between-subject anatomical 

variation. Finally, clustering the mean measure voxel values in this locally consistent 

brain subspace finds brain spatial domains exhibiting distinguishable measure features 

and provides 3-D maps plus statistical significance estimates for each EEG measure of 

interest. Applied to sufficient high-quality data, the scalp projections of many 

maximally independent component (IC) processes contributing to recorded high-

density EEG data closely match the projection of a single equivalent dipole located in 

or near brain cortex. We demonstrate the application of MPA to a multi-subject EEG 

study decomposed using independent component analysis (ICA), compare the results 

to k-means IC clustering in EEGLAB (sccn.ucsd.edu/eeglab), and use surrogate data 

to test MPA robustness. A Measure Projection Toolbox (MPT) plug-in for EEGLAB 

is available for download (sccn.ucsd.edu/wiki/MPT). Together, MPA and ICA allow 

use of EEG as a 3-D cortical imaging modality with near-cm scale spatial resolution.  
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6.2 Introduction 

 Because of the very broad biophysical point-spread function governing volume 

conduction of areal potentials generated in the human brain to scalp electrodes 

measuring their summed electroencephalographic (EEG) activity, proper analysis of 

event-related or ongoing EEG dynamics should best focus on EEG source activities 

and corresponding (3-D) brain source locations rather than on scalp channel activity 

records and (2-D) channel locations. Comparing 3-D source locations and source 

dynamics across subjects and sessions of an EEG study is, however, more difficult that 

simply equating scalp channel locations across subject and sessions, as is typical in 

EEG studies that analyze the scalp channel signals directly. 

 Here we introduce a probabilistic approach, Measure Projection Analysis 

(MPA), for population-level inference from source-resolved EEG signals. This 

approach provides, for each EEG measure of interest, 3-D maps of separable brain 

domains with separable source measures plus statistical estimates of measure 

differences across group and/or conditions. Although source-level locations and 

dynamics used in MPA might be derived from any EEG source discovery method, 

e.g., beamforming or trial-averaged event-related potential (ERP) source analysis, we 

here demonstrate its application to an example EEG study decomposed using 

independent component analysis (ICA) and compare its results to those of the PCA-
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based independent component (IC) clustering available in EEGLAB (Delorme & 

Makeig, 2004).  

 ICA [20] has become a method of widespread interest for analysis of EEG data 

[22], [23], [24], [25], [26]. In this approach to EEG source analysis, unaveraged 

continuous or epoched EEG data from multiple scalp channels are decomposed into 

independent component (IC) processes by learning a set of spatial filters that have 

fixed relative projections to the recording electrodes and produce maximally 

independent individual time courses from the data. ICA thus learns what independent 

processes (information sources) contribute to the data and also reveals their individual 

scalp projection patterns (scalp maps), thereby simplifying the EEG inverse source 

localization problem to that of estimating where each source is generated, a much 

simpler problem than estimating the source distributions of their ever-varying linear 

mixtures as recorded by the scalp electrodes themselves.  

 The IC filters linearly transform the representational basis of EEG data from a 

channel matrix (scalp channels by time points) to a sum of independent component 

processes with maximally independent time courses and fixed scalp projections (scalp 

maps, with often strongly overlapping topographies). Many ICs predominately 

account for the contributions to the channel data from a non-brain (‘artifactual’) 

source process -- for example potentials arising from eye movements, scalp muscle 

activity, the electrocardiogram, line noise, etc., while many other ICs are compatible 
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with a source within the brain itself, in particular within its convoluted cortical shell in 

which most of the spatially organized potentials reaching the scalp are generated [27].  

 Many of the brain-based (‘non-artifactual’) IC scalp topographies may be 

modeled as the projection of a single equivalent dipole inside the brain volume [26].  

ICA algorithms return many such ‘dipolar’ IC data sources (those for which most of 

the spatial variance of the electric field pattern they produce on the scalp is accounted 

for by the projection of a single ‘equivalent’ dipole). On average, the more 

independent the resulting ICs returned by an linear ICA decomposition method, the 

more near-dipolar ICs are returned [28]. Such dipolar ICs are compatible with an 

origin in locally-synchronous cortical field activity within a single cortical patch, 

which by biophysics must be located near to and oriented predominantly perpendicular 

to the equivalent dipole [29]  (A few clearly brain-based ICs may have scalp maps 

very closely resembling the summed projection of two bilateral cortical patches that 

contribute synchronous activity to the scalp signals). 

 Finding the actual cortical patch (or patches) generating a given dipolar IC 

may be difficult [10], as it requires (at least) a good quality MR head image for the 

subject and accurately recorded scalp electrode positions [30]. Given a good estimate 

of where the scalp electrodes were placed on the head, and a near-dipolar IC scalp 

map, the location of the equivalent dipole may be found reliably, in many cases with 

less than a centimeter error when 3-D electrode positions are recorded (Akalin Acar, 

submitted) and an accurate skull conductance value is used in the analysis. 
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Biophysical simulations also show that the equivalent dipole for a cm2-scale cortical 

patch source is, on average, less than 2 mm from the center of the generating patch 

(Akalin Acar, unpublished). Thus, a unique advantage of ICA applied to EEG is that 

localizing sources from its single-source IC scalp maps avoids uncertainties associated 

with multiple local minima that limit the accuracy of estimates of the more complex 

source distributions computed from scalp maps that sum projections of multiple 

sources -- for example nearly all raw EEG scalp maps or maps for later peak latencies 

in ERP waveforms. Of course this level of spatial accuracy is only possible using 

single-subject head models, which are possible only when an MRI head image is 

available (as it was not for our subjects). Using individual head models for localization 

will make it necessary to warp the cortical locations of the multiple subjects into a 

common head model to allow group Measure Projection. Results calculated, as here, 

using IC locations in a common head model may well have somewhat less spatial 

accuracy, though their accuracy might be improved in subject-level analysis by 

translating them back to associated locations in individual subject head models, 

including models constructed by warping a common template model to the recorded 3-

D positions of the scalp electrodes (Acar and Makeig, 2010). However, unless subjects 

are highly ethnographically diverse (infants and adults, for example) the choice of 

head model is unlikely to have much effect on the topology of the MPA results -- 

more anterior source domains will remain more anterior, etc. 
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 Since ICA uses waveform differences to separate independent sources, which 

depend both on the exact placements of the scalp electrodes and the individual subject 

cortical geography, optimal separation is achieved when it is applied to data channels 

recorded simultaneously from a single subject with a single scalp montage. The length 

of the training data must be sufficient for the number of recording channels.  Since 

both EEG channel locations and conductance values slightly differ across subjects and 

sessions, and positions and orientations of corresponding cortical source areas differ 

across subjects, ICA decompositions are best applied separately to each recorded 

session or smaller data set from a single recording session.   

 A standard way to analyze EEG data is to first conduct an experiment in which 

a number of (outwardly) similar events occur, typically stimulus (e.g., image) 

presentation and behavioral events (e.g., impulsive button presses).  Sets of EEG 

activity epochs recorded in some latency window around these events (experimental 

trial epochs) are extracted, averaged, and compared. A number of mean measures of 

event-related EEG trial data have been developed in recent years and incorporated into 

freely available software toolboxes including EEGLAB [21], Fieldtrip [72], the SPM 

toolkit [73], and ICALAB [74]. These measures, including average ERP time series 

and event-related spectral perturbation (ERSP) [75] and inter-trial coherence (ITC) 

time/frequency transforms, may equally be computed for single ICs as well as for 

single scalp channels. For each subject session and associated ICA decomposition, 

each IC has a unique scalp map and EEG time course. To support group-level 
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inferences about EEG measure differences across task trial conditions, subject groups, 

recording sessions, etc., IC location and EEG measure information must be integrated 

across subjects and sessions  

 In contrast to the common approach to obtaining group inferences from 

channel data, i.e. by assuming equivalence across subjects of electrode derivations 

from standardized scalp locations [76] [77], combining results across different ICA 

decompositions is non-trivial. Several methods have been proposed for this task. 

These typically fit into two categories: IC clustering [26], [78], [79] , [80] and joint 

decomposition methods such as group-ICA  [36], [37], [38], [39], multi-set canonical 

correlation analysis [41] and J-BSS [43] [44] .  

 Although the IC clustering method uses a potentially larger subspace of the 

signal (involving less dimensionality reduction than most joint decomposition 

methods) and poses fewer restrictive assumptions regarding the relationship between 

signal sources at subject and group level, it often involves tuning multiple parameters 

(relative measure weights, number of cluster, etc..), potentially reducing the 

objectivity of the analysis  and reproducibility of the results; for a recent approach to 

tackling this problem see [80]. Also, it is often impractical to calculate the significance 

of IC clusters themselves, whose averages are often used in subsequent statistical tests 

for measure differences across conditions or groups.  
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 MPA aims to solve the problem of comparing EEG source locations and 

dynamics across subjects and sessions in 3-D brain space using a probabilistic 

approach that treats the source-resolved data as samples drawn from the distribution of 

source locations and dynamics. By performing statistical comparisons on a grid of 

brain locations instead of individual sources, and focusing on a single dynamic 

measure of interest at a time, MPA reduces the number of parameters assumed in the 

analysis, and delivers estimates of the statistical reliability of the results.  Here we 

demonstrate the application of MPA by applying MPT tools to an example EEG study, 

comparing its results to standard PCA-based IC clustering, and studying the 

robustness of the MPA results using surrogate data. 

6.3 Methods  

The Measure Projection Analysis (MPA) approach introduced here comprises 

four steps: 1) After decomposition of the unaveraged EEG data by ICA into brain 

source processes (ICs), the location of each source signal used in the analysis is 

computed within a common brain template model, here in the form of a IC source 

equivalent dipole. 2) Spatial smoothing of a given dynamic measure for the equivalent 

dipole-localized ICs is performed using a truncated 3-D Gaussian spatial kernel; 3) A 

subspace of brain voxel locations with significant local IC measure similarity are 

identified (see Appendix A for a detailed description); 4) Spatial brain voxel domains 
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within the measure similarity subspace that exhibit sufficient measure differences are 

identified using affinity clustering (details in Appendix B). 

6.3.1 Experimental data 

 EEG data were collected from 128 scalp locations at a sampling rate of 256 Hz 

using a Biosemi (Amsterdam) Active View 2 system  and a whole-head elastic 

electrode cap (E-Cap, Inc.) forming a custom, near-uniform montage across the scalp, 

neck, and bony parts of the upper face. 

6.3.2 Subject task 

Our sample study consisted of data from 15 sessions recorded from 8 subjects 

performing a Rapid Serial Visual Presentation (RSVP) task [48] (the raw data are 

available at ftp://sccn.ucsd.edu/pub/headit/RSVP, the EEGLAB Study files at 

ftp://sccn.ucsd.edu/pub/measure_projection/rsvp_study). Each session comprised 504 

4.9-s image bursts of 49 oval image clips from a large satellite image of London 

presented at a rate of 12/s. Some (60%) of these bursts contained one image in which a 

target white airplane shape was introduced at a random position and orientation. 

Following each burst, subjects were asked to press one of two buttons to indicate 

whether or not they had detected a target airplane in the burst. Figure  6.1 shows a 

time-line of each RSVP burst. For further details see [48]. 

6.3.3 Data preprocessing. 
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  After preprocessing each subject data set using EEGLAB 

(sccn.ucsd.edu/eeglab) and custom Matlab functions for re-referencing, from the 

active-reference Biosemi EEG data to an electrode over the right mastoid, high-pass 

filtering above 2 Hz, and rejection of channels and data containing non-stereotypical 

artifact, an ICA decomposition was performed for each recording session. The subset 

of ICs that could be represented by an equivalent dipole model with low error (here 

defined as more than 85% of channel variance in the IC scalp map being accounted for 

by a single equivalent dipole or in a few cases a bilaterally symmetric equivalent 

dipole pair) were selected for analysis. ICs with equivalent dipoles located outside the 

MNI brain volume (e.g., those with an minimum distance to the MNI brain surface 

larger than 1 mm) were removed as artifactual, and mean event-related power spectral 

perturbations (ERSPs) to target and Nontarget images were computed for the 

remaining 260 ICs (per session mean 18, standard deviation ± 8). 

6.3.4 ERSP measure projection 

Figure  6.2A represents the processing pipeline schematically. To apply MPA 

to the RSVP study we used a Measure Projection Toolbox (MPT) for MATLAB (The 

Mathworks, Inc.) implementing MPA and operating as an EEGLAB plug-in (freely 

available for download at sccn.ucsd.edu/wiki/MPT). To compare MPA results to those 

of IC clustering as implemented in EEGLAB, we set the standard deviation of the 

three-dimensional Gaussian representing each equivalent dipole location probability 

density to 12 mm. This parameter reflected a heuristic estimation of the combined 
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ambiguity in equivalent dipole locations arising from a) numerical inaccuracies in the 

IC component maps, b) errors in co-registering the measured channel locations with 

the standard brain model, c) inaccuracies in the forward head model, d) particularly in 

assumed conductances of skull and brain tissues, and e) difference across subjects in 

brain locations of functionally equivalent brain areas. This standard deviation value 

was also chosen in part to produce smoother spatial distributions for this rather small 

EEG study: for larger studies it might be usefully reduced. We truncated each 

Gaussian to a radius of 3 standard deviations (36 mm) to prevent spurious influences 

from distant dipoles in sparsely filled source regions.  

 Brain model: A cubic dipole source space grid with 8-mm spacing (3,908 

vertices) was situated in the brain volume in MNI (Montreal Neurological Institute 

and Hospital, [68]) space . Voxels outside the MNI brain volume were excluded. 

Local convergence values (see Appendix A for definition) were calculated using 

equation (A.2), A pairwise IC similarity matrix was constructed by estimating the 

signed mutual information between IC-pair ERSP measure vectors using a Gaussian 

distribution assumption [81]: 

2 2

1 1Mutual Information = ( ) log  (bits/sample)
2 1

sign correlation
correlation

 
 − 

 

 The reason for using an estimate of signed mutual information instead of 

correlation itself was because equal correlation intervals may reflect unequal 

information differences. For example, the difference in mutual information values 
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associated with IC measure correlation values of 0.8 and 0.9 is far greater than mutual 

information difference associated with IC correlations of 0.1 and 0.2. In addition, 

mutual information values (in bits/sample) may be meaningfully averaged. In 

switching to use of signed estimated mutual information instead of linear correlation, 

we also observed an improvement in the spatial smoothness of the obtained MPA 

significance values. 

 A significance threshold for convergence values at each brain grid location was 

obtained by bootstrap statistics. We permuted the similarity matrix (with substitution), 

in effect removing the correspondence between each IC and its associated ERSP, and 

calculated 2,000 surrogate convergence values at each voxel associated with the null 

hypothesis of no stable association between brain region and ERSP. Probability values 

were calculated by finding the percentage of bootstrap convergence values larger than 

the original convergence value (right-tail comparison). 

 A group-wise p < 0.05 threshold, corrected for multiple comparisons using 

False Discovery Rate (FDR) testing [69], gave a raw voxel significance threshold of p 

< 0.0075. Voxels with convergence probabilities lower than this threshold defined the 

ERSP ‘measure convergence subspace’ of brain voxel locations at which the local 

similarity of IC ERSPs was significantly higher than what could be expected by 

chance in these data.  
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 Condition difference tests: For each identified study domain d  and subject 

session s , statistical significance of differences between the Target and Non-Target 

condition ERSPs was computed by first projecting the ERSP associated with each 

condition c  to each voxel i  in the domain, producing projected measure ( , , )M c i d .  

We then calculated a weighted-mean measure ( , , )W d s c  across all v  domain voxels, 

each weighted by ( , )D i s , the dipole density of voxel i  in session s , and then 

normalized by total domain voxel density. 
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Above, n  is the number of component dipoles in the session and ( )jP i  is the model 

probability that dipole j is actually at domain voxel i  (see Appendix A).  

 Next, a two-tailed Student-T test was applied to the collection of session-mean 

projected measures in the two conditions to test for reliable domain-ERSP condition 

differences. For visualization, non-significant (p ≥ 0.05) values in each domain 

condition-ERSP difference were masked by replacing them with 0s. 

6.3.5 ERSP domain clustering 
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 To simplify the analysis of projected source measure values in the measure 

convergence subspace, we separated them into several distinguishable spatial domains 

by threshold-based Affinity Propagation clustering (described in Appendix B) based 

on a similarity matrix of pair-wise correlations between the projected measure values 

at each voxel position.  Affinity propagation automatically finds an appropriate 

number of clusters (below referred to as spatial domains) based on the maximum 

allowed correlation between cluster exemplars, automatically increasing the number of 

clusters until any other potential cluster exemplar becomes too similar to one of the 

existing exemplars. Here, maximal exemplar-pair similarity (forcing creation of 

additional clusters) was set to a correlation value of 0.8, and the outlier detection 

similarity threshold to a correlation value of 0.7. The method did not find any outlier 

voxels since all of the projected measures in each domain had a correlation with their 

domain exemplar higher than 0.7. The minimum correlation value is in fact an 

optional parameter: one could decide to not exclude any significant voxel from 

domain analysis by setting the minimum correlation threshold to negative infinity. 

Note that the voxel clustering procedure does not force the voxels within a single 

domain to be contiguous; for example near-identical ERSPs may be produced in 

bilaterally symmetric cortical regions, which may then be identified by affinity 

clustering as a single measure domain. Figure  6.2A summarizes the MPA steps used to 

create distinguishable spatial source domains for each EEG measure. 

6.3.6 PCA-based IC clustering 
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 In the PCA-based IC clustering approach implemented in EEGLAB (Makeig et 

al., 2002; Onton & Makeig, 2006), cross-session IC equivalence classes are typically 

defined by applying a clustering algorithm such as k-means to an L2-weighted 

combination of EEG measures of interest (e.g., IC equivalent dipole locations, scalp-

map topographies, mean power spectra, average ERPs, etc.) so as to produce a desired 

number of IC clusters (10-30). Cluster-level mean EEG measure values may then be 

calculated by averaging across the members of each IC cluster, and may then be used 

for group-level inference and event or task condition comparison. The default IC 

clustering options create a pre-clustering array that represents each IC as positioned in 

a joint-measure feature space by the following operations:  

(1) Mean EEG measure computation:  For each IC, each set of experimental trials 

(experimental ‘condition’) and each EEG measure of interest (ERP, mean power 

spectrum, ERSP, and/or Inter-Trial Coherence (ITC)), subject-mean IC measure 

values are computed and then concatenated across conditions. 

(2) Measure dimensionality reduction: Next, the dimensionality of the 

concatenated condition measures for each IC is reduced by PCA to a principal 

subspace. The subspace dimensionality is heuristically determined based on the 

amount of trial data available. Measure values associated with each IC in the PCA-

reduced coordinates are normalized by dividing them by the standard deviation of the 

first principal component. 
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(3) Equivalent dipole locations:  Dipole (x,y,z) location values in the adult 

template MNI brain space are normalized  and then multiplied by a user-specified 

scalar weight to determine their relative influence in the subsequent clustering. 

(4) Joint-measure IC-space representation: Dimensions associated with each EEG 

measure (after preprocessing steps describe above) are concatenated to represent each 

IC in a joint space. For example, ERSP information represented by 10 PCA 

dimensions may be concatenated with 5 PCA dimensions representing ERP 

information and 3 (MNI x,y,z) location dimensions representing dipole position to 

form a joint 10+5+3 = 18 dimensional space in which each IC is located. 

(5) IC clustering: ICs in this joint-measure IC space are then clustered using k-

means or some other clustering method. The number of clusters is user supplied.  

All ICs, represented by features in the resulting pre-clustering array, are then clustered 

using the k-means method implemented in the Matlab Statistics Toolbox (The 

Mathworks, Inc.). Figure  6.2B shows a flowchart of this clustering method. For more 

details and a sample application of this procedure, see [79]. 

6.3.7 PCA-based ERSP measure clustering 

 EEGLAB default (PCA) clustering was used to create 15 clusters using ERSP 

and dipole location measures. ERSP values for Target and Nontarget conditions were 

concatenated across the time dimension for each IC and were reduced to 10 principal 
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dimensions by PCA. After default normalization, equivalent dipole location values 

were weighted by the default factor 10. The MATLAB implementation of the k-means 

method was then used to form IC clusters. 

 Clustering results for different numbers of clusters were first examined by eye 

and the number of clusters was thereby adjusted such that (a) dipoles assigned to a 

given cluster formed a single, relatively focal cluster, in anatomical (MNI) space 

(although it is possible for multiple distal brain regions to display similar EEG 

dynamics, resulting in clusters with dipoles localized to multiple brain regions, we 

have found that such clusters usually appear as a consequence of cluster merging when 

the number of clusters is set too low); and  (b) clusters are maximally non-overlapping 

and contain a reasonable number of dipoles (overlapping and/or small-size clusters 

may occur when the number of clusters is either too low or too high). These criteria 

did not take into account the similarity structure of other measures (e.g., ERPs) which 

would ideally further influence the choice of cluster number.  

6.4 Results  

6.4.1 ERSP measures for PCA-based IC clusters 

 Figure  6.3 shows a scatter-plot of computed IC-pair ERP and ERSP 

similarities. Because of the inherent ambiguity in the polarity of IC activations, 

absolute-value correlations of ERPs for each IC pair was used as an upper bound on 

their ERP similarity. As can be seen in this figure, as the correlation between these 
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two sets of values is low (0.26), the similarity structures of (absolute) ERP and ERSP 

measures are far from identical. This affirms our decision here to not include ERP 

measure data in ERSP clustering. 

 Figure  6.4 and Figure  6.5 show cluster dipole locations and Target ERSP 

values averaged over ICs belonging to each cluster. Figure  6.4 shows a subset of 

clusters with large (more than 1.7-dB) mean Target ERSP values, while Figure  6.5 

shows clusters with mean Target ERSP values below 1.3 dB. Although most eye 

movement-related components were rejected as they were localized outside MNI brain 

volume, due to localization errors some of these IC were assigned to locations inside 

brain; these were concentrated in Cluster 11.   

Nontarget ERSP values were lower (p < 0.05) or close to zero for all these 

clusters. Statistical significance analysis of differences between Target and Nontarget 

ERSPs was performed by bootstrap statistics permuting Target and Nontarget 

conditions across ICs belonging to each cluster.  This statistical test was performed for 

each cluster separately. 

6.4.2 ERSP measure projection results 

 Figure  6.6A shows the significant voxels (p<0.0075; group-wise p < 0.05 

under FDR). The voxels were colored by first applying non-metric multi-dimensional 

scaling (MDS, as implemented in Matlab mdscale function with stress normalized by 

the sum of squares of the interpoint distances and other parameters set to their default 
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values) to the projected (concatenated Target and Nontarget) ERSP measures, by this 

means mapping them to a single dimension.  These 1-D MDS values were then 

mapped to the [.00, .69] hue interval in the MATLAB hue color scale (from red to 

blue) so as to display brain locations with similar projected measures in similar colors. 

Figure  6.6B shows four measure-consistent IC domains obtained from the Affinity 

Propagation method implemented as threshold-based clustering (Appendix B). These 

are colored by one-dimensional MDS of the projected measure associated with their 

most representative member (the domain exemplar, using a similar MDS procedure as 

in Figure  6.6A). By comparing Figure  6.6A and Figure  6.6B we can see how these 

four domains summarize the projected measure values: Figure  6.6A shows roughly 

four colored regions that map into the four identified measure domains shown in 

Figure  6.6B. 

 Figure  6.7 shows an alternative visualization of ERSP Domains: exemplar 

MNI cortical surface is colored by domain color, weighted by dipole density, from 

brain-grid positions radially below each cortical location. 

6.4.3 Comparison of MPA and PCA-based clustering methods 

 Next, we compared the results obtained from PCA-based IC clustering to those 

obtained using measure projection analysis (MPA).  Table  6.1 gives the cluster 

number(s) located in or near each domain. Average ERSPs for these clusters are 

highly similar to those of respective domain exemplars, indicating that here measure 
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projection analysis produced results in close agreement with IC clustering in locations 

with statistically significant ERSP similarity across subjects.  

 Our PCA-based clustering, on the other hand, gave 15 clusters, many not 

associated with any significantly convergent MPA region. For example, Clusters 2 and 

3 in Figure  6.5 are relatively far from brain areas with significant ERSP convergence 

shown in Figure  6.6A. Since MPA showed that ICs associated with these PCA-based 

clusters have fairly dissimilar ERSP measures, there is not much statistical evidence in 

the data for MPA spatial convergence in these regions to support the validity of these 

clusters. 

 Table  6.1 also lists anatomical locations associated with each ERSP domain 

based on the LONI project probabilistic atlas [52] and Brodmann areas [82] from [70]. 

The listed functional associations of these areas are based on Brodmann's Interactive 

Atlas (fmriconsulting.com/brodmann/Introduction.html). On close inspection, because 

of errors in dipole localization related to insufficient electrical head modeling in the 

complex peri-orbital regions, many eye-artifact ICs (13 out of 16 highly contributing 

ICs) in this study were localized inside the brain volume and became the main 

contributors to ERSP Domain 1 and PCA Cluster 11. In measure projection analysis, 

brain and non-brain ICs should not be mixed. Performing an additional artifact IC 

rejection step, using methods for identifying eye artifact ICs from their activity 

profiles as well as their equivalent dipole locations such as CORRMAP [55] or 
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ADJUST [57] should be done before MPA to give meaningful results in frontal 

regions.  

 Of similar concern are ICs accounting for scalp muscle activity that, for EEG 

montages with sufficient scalp coverage, have scalp maps consistent with an 

equivalent dipole at the insertion of the muscle into the skull (as seen in[78]). These 

may be differentiated from brain ICs prior to measure projection by their dipole 

locations (outside the skull) and by their characteristic electromyographic (EMG) 

spectra with a minimum below 20 Hz and a high-level plateau at higher frequencies. 

Here we removed scalp/neck muscle ICs based on their dipole locations before 

applying measure projection. 

 Domains 2 and 3 are both associated with Secondary (V2), Associative (V3) 

and Primary (V1) visual cortex (BA 18,19 and 17) [83] [84]. Domain 3 is in or near 

BA 31 which has been reported to support high-demand visual processing and 

discrimination [85]. Domain 2 is in or near bilateral BA 37 and fusiform gyrus (with a 

right bias), areas reported in a fMRI study of a visual perceptual decision-making task 

[86]. Similar low-theta band activity occurring about 400 ms after visual target 

detection in these brain areas was reported in [87]. 

 There is some evidence of mu rhythm desynchronization (suppression) in 

Domain 4, located in or near right-hand Primary Somatomotor, Primary Motor, and 

Somatosensory Association areas (BA 7,3,2,4), which may be related to mu rhythm 
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activity that appears in hand somatomotor cortex when subjects hold a button in their 

right hand [87]. Subjects were asked to wait until the end of RSVP image burst before 

pressing a response button. The mu rhythm activity in this area is thought to reflect 

cortical inhibitory (or ‘idling’) dynamics that may decrease the chance of prematurely 

pressing the button. Activation in or near BA40 and BA7 is also consistent with a 

preliminary FMRI study conducted by [54] in which BOLD activation was observed 

during rapid discrimination of visual objects accompanied by a motor response. 

 Since MPA represents each IC equivalent dipole location by a Gaussian 

density and computes MPA domains in brain regions exhibiting significant local 

measure convergence, we may expect that equivalent dipoles positioned in or near 

MPA domains will have EEG measures similar to the domain exemplar measure. To 

verify this prediction, in Figure  6.8A for one ERSP domain we plotted some such 

dipoles (e.g., those with total probability density within the domain above 0.05) and 

colored them by the correlation of their EEG measures with the domain exemplar. As 

expected, the majority of these dipoles have an ERSP similar to the domain exemplar. 

In Figure  6.8B, domain exemplar ERSPs for Target and Nontarget conditions and their 

statistically masked difference (p<0.05) are plotted.  

6.4.4 Simulation 
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To test and validate our MPA procedures, we conducted simulations to 

investigate the performance of the method across different noise levels and parameter 

choices.  

 We started by selecting four anatomical domains (Figure  6.9A: R Superior 

Parietal Gyrus, L Inferior Occipital Gyrus, L Lateral Orbitofrontal Gyrus and R 

Superior Temporal Gyrus, from LONI LPBA40 atlas [52]) in MNI space as ground 

truth and assigned to each the ERSP pattern from one our RSVP-experiment domains. 

We then placed 31 dipoles by randomly selecting locations from the ground-truth 

domains and adding Gaussian spatial noise to the dipole locations using 12-mm std. 

dev. Gaussian noise to simulate localization error and subject variability in measured 

IC equivalent dipole positions. The number of dipoles per ground-truth domain (31) 

was selected to be the average number of dipoles for which more than 10% of their 

density, modeled by a truncated 3-D Gaussian, was located in an ERSP-measure 

domain of our RSVP experiment. We considered two simulation conditions: (1) 

assigning this ERSP patterns to simulated IC dipoles associated with each ground-

truth domain (zero noise) (2) adding 0.2 dB RMS amplitude noise to the ERSP pattern 

associated with each IC dipole (simulating experiment noise). 

 We then sequentially added 142 other dipoles to the model, each placed at the 

brain volume location (in an 8-mm grid) farthest from all other existing dipoles. 

Pseudo-ERSP measures composed of random 0.2-dB white noise samples were 

assigned to these dipoles. The simulation thus contained the same number of brain 
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dipoles as our RSVP experiment, with spatially coherent measure values only in the 

four model domains. 

 MPA was then performed on this simulated collection of dipole locations and 

associated ERSP measures.  The resulting domains were then compared to ground-

truth domains for the two simulation noise conditions mentioned above (Figure  6.9B). 

We used two scoring methods to evaluate the performance of MPA method (a) 

Cohen’s kappa [88], a measure of inter-rater agreement (b) the average percentage of 

ground-truth domain locations that were associated with the correct domain in the 

results. In both scoring methods we accounted for permutations in domain labels and 

included the locations which should not be associated with any ground-truth domain 

as an extra category (they should not be assigned to any domains in the results).  

 Table  6.2 shows MPA performance scores for simulation results with a voxel 

significance p-value threshold of 0.05, maximum exemplar correlation threshold of 

0.8, and varying noise levels. To explore the sensitivity of MPA results to the choice 

of the location uncertainty parameter (the standard deviation of the Gaussian 

representing each dipole), we also tested different values of this parameter for two 

ERSP noise levels (noiseless and 0.2 dB). These simulation results show that MPA 

can recover brain domain locations with high accuracy (> %80) in the presence of 

noise, and that using inaccurate dipole density extent priors (e.g., using a 10-mm or a 

14-mm instead of the ground-truth 12-mm std. dev. for the spatial-perturbation 

Gaussian) has relatively little effect on their locations. 
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6.5 Discussion 

The localized EEG source estimates returned by ICA decomposition bring closer 

the promise of performing near cm-scale functional cortical imaging using non-

invasive EEG while retaining its fine temporal resolution. However, applying ICA-

based EEG imaging to studies involving multiple subjects and/or sessions requires a 

method for combining IC source location and activity measure information for ICs 

decomposed from multiple data sets. Here we demonstrate a first application of 

measure projection analysis (MPA) to EEG data sets collected in a visual RVSP task 

and decomposed separately using extended infomax ICA. We compare the results of 

MPA to results of applying k-means clustering jointly to the same IC source locations 

and EEG measures. Results of MPA were consistent with IC clustering but depended 

on fewer parameters and provided statistical significance values. MPA applied to 

surrogate data derived from the RVSP data demonstrated that MPA results are not 

highly sensitive to prior parameter choices.  

 While here we feature application of MPA to group and condition statistics for 

standard event-related mean measures (ERPs and ERSPs), MPA may equally well be 

applied to any other continuous or event-related EEG measure, or indeed to any 

measure at all. For example, MPA applied to recovered IC equivalent dipole locations 

from an EEG session and a measure of the subject’s memory ability might reveal 

differences in IC dipole density associated with better or worse memory performance. 
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Reliable differences in dipole density might arise from difference either in brain 

structure or dynamics during the EEG data collection. MPA has several other 

attractive features: 

6.5.1 Relative Parsimony  

Since across-subject and -session variability both in estimated and actual 

source locations and in dynamic EEG measure estimates are expected in any study, 

any model of subject group and/or session mean measures for a high-density EEG 

study must be probabilistic and therefore controlled by model expectations and 

statistical thresholds used in the analysis (in this, MPA applied to EEG data is similar 

to group-level analyses for fMRI data). Among such methods, the principle of 

parsimony (Occam’s Razor) prefers methods that characterize the data variability 

(here, across data sets) using a minimal number of free parameters. Applying MPA to 

a single- or multi-dimensional EEG measure computed for a number of EEG sources, 

each tagged with an estimated source location in a standard anatomic head model, 

requires 1) a width parameter for the Gaussian density representing each source 

location, 2) a (p-value) significance threshold that can affect the size of the measure 

convergence subspace, and 3) a maximum domain exemplar measure similarity 

threshold used in domain clustering (the outlier detection threshold is an optional 

parameter). These MPA parameters are neurophysiologically interpretable and may 

not require sensitive tuning in applications to different studies. 
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 In comparison, the PCA-based multi-measure source clustering approach 

introduced in [26] and now available in EEGLAB [21] requires two parameters per 

dynamic EEG measure (the number of principal dimensions retained and the relative 

measure weighting value), plus a relative weight for equivalent dipole location and the 

number of clusters to create (e.g., four total independent parameters for one measure, 

six parameters for two measures, etc.). Since there is no statistically motivated method 

for choosing these parameters, they may in practice be set by the experimenter to 

produce most subjectively desirable results. Because of the relatively large number of 

such variables, and the sensitivity of final clustering results to their values, 

experimenter parameter settings may have profound effects on inferences at the group-

level. This also introduces a significant and undesirable lack of objectivity in 

interpreting EEG data and hinders the calculating of significance statistics for group-

level or session-level results. Even if well-justified methods were introduced to set the 

source clustering parameters, it would be still difficult to determine the statistical 

significance (including p-values) of cluster measure means because these statistical 

methods are often based on bootstrap null-hypothesis testing that is not easily and 

directly applicable to source clusters. 

 Recently an IC source clustering method called MAGMICK has been proposed 

by [80]. MAGMICK optimizes the relative weighting of different IC source measures 

so as to increase the mean silhouette value of IC clusters and selects the number of 

clusters found using modified K-Means clustering based on the constraint that two IC 
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sources from the same session should not be clustered together. Their results show that 

MAGMICK outperforms other direct IC source clustering methods applied to data 

from a sample MEG study.  

 However, the fact that session ICs are obtained by minimizing time-course 

independence over the whole experiment is not sufficient for the independence 

constraint conclusion made in MAGMICK. This is because ICA achieves maximal 

independence only for the whole time course of the experiment; ICs from the same 

decomposition may be transiently dependent, most likely in time periods in which 

EEG dynamics are non-stationary such as periods of significant ERP or ERSP activity. 

Lastly, MAGMICK does not provide statistical significance values for its clustering 

solution. Thus, a strength of MPA is that it provides a relatively parsimonious method 

for data driven identification of brain regions exhibiting statistically consistent 

measure values. 

6.5.2 Source Measure Consistency 

 MPA provides a statistical characterization of the subspace of brain source 

locations that exhibit significant EEG measure homogeneity, and identifies, among 

such locations, spatial domains with distinctive measure features. By contrast, neither 

PCA-based multiple-measure clustering (as formulated in EEGLAB) nor Group ICA 

approaches (discussed below) provide such statistics (i.e., tests to determine whether 

within each identified cluster or factor the computed source measures are significantly 
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consistent with each other). For example, PCA-based clustering produced 15 clusters 

in our RSVP study, compared to only four MPA domains, but 9 of these clusters 

lacked significant measure homogeneity (measure convergence p-value, Eq. (A.3),  at 

their centroid was higher than 0.05) and 8 of them did not have mean measures that 

were sufficiently distinct (correlation < 0.8) from other clusters.    

6.5.3 Source Clustering Coherency 

 The MPA domain clustering procedure (used here to identify the four ERSP 

domains) is fundamentally different from the PCA-based clustering approach in that 

MPA, domain clustering is only employed to summarize projected results at 

significant brain locations and does not change the projected source measure values.  

 In contrast, cluster-mean values obtained by the PCA clustering method are 

highly dependent on the number of clusters and the specified relative measure weight 

parameters. Neither PCA-based source clustering nor Group ICA approaches use an 

explicit threshold for separating source clusters or factors based on measure 

differences. PCA clustering typically operates on a weighted combination of different 

measures, which prevents the use of meaningful similarity thresholds in threshold-

based clustering (see Appendix B of this chapter). In contrast, MPA uses meaningful 

similarity thresholds (for example, here a maximum measure correlation of 0.8) to 

identify separate brain-voxel domains whose nearby source measures have separable 

features.  
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 Using different maximum correlation thresholds only changes the granularity 

of the segmentation of brain regions exhibiting significant measure consistency into 

domains, and does not fundamentally affect the values assigned to domains. For 

example, in the MP analysis shown here, changing the maximum domain measure 

correlation to 0.9 might identify more measure domains, though the exemplar 

measures of the added (sub)domains would be quite similar. In general this value must 

be set based on the expected degree of measure noise and variability in the data which 

influences how similar two domain exemplar measures could be before they should be 

considered practically the same. Alternative clustering methods developed for 

identifying regions of similarly activated voxels in fMRI data, such as Cluster-Based 

Analysis (CBA) [89],  might also be applied to MPA. The Affinity clustering approach 

used in the MPA toolbox (Appendix B) has the advantage of finding the appropriate 

number of clusters based on the given similarity threshold without having to specify a 

final number of clusters beforehand, 

6.5.4 Cluster membership 

 PCA-based IC source clustering limits the types of group-level analysis 

methods that may be applied to EEG data. For example common clustering methods 

(e.g., k-means or linkage clustering) output a set of binary (“hard decision”) cluster 

membership values: each source either fully belongs to a certain cluster or not. As the 

formation of these clusters is often highly dependent on the multitude of clustering 
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parameters, it is difficult to separate the effect on the clustering results due to choosing 

these parameters from the contributions of group-level differences in source features.  

 As an example, a cluster of interest (e.g., having a particular target ERP 

feature) may mostly contain sources associated with a certain participant subgroup. At 

the same time, sources with similar features may exist in nearby clusters and may have 

been included if a lower number of clusters or slightly different weight parameters 

were applied to source measures during clustering. It then becomes unclear whether 

participants have meaningfully different measures (either in terms of source locations 

or ERP measure features) from a parent or alternate population, or whether the 

aggregation of sources from this subject group into a particular cluster is an artifact of 

selecting a particular set of clustering parameters. This problem could be alleviated if 

sources were given fractional (fuzzy) memberships and if noise were not introduced 

during the quantization of membership values by the clustering procedure. MPA 

allows such improvements by adopting a probabilistic spatial representation of source 

locations. 

6.5.5 Cluster shape 

 MPA operates in brain source domain coordinates and thus gives source 

domains that are not restricted in shape and may even be discontinuous. For example, 

a single domain representing bilaterally symmetric source activations may account for 

synchronous activity within two non-contiguous (but perhaps highly connected) 
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cortical areas. PCA-based IC clustering, on the other hand, does not explicitly specify 

brain areas whose EEG-source signals are reactive within a class of experimental 

conditions. K-means clustering, in particular, is biased towards creating spherical 

clusters. Further, when an IC cluster is represented by the spatial centroid of its 

member IC equivalent dipole locations, the spatial extent of each cluster is not 

investigated statistically.  Here MPA provides a statistically supported, data-driven 

model of cortical regions that exhibit consistent measure features, and the regions so 

identified may be readily compared to results of other functional imaging experiments, 

for example reported results of fMRI studies. 

6.5.6 Cluster equivalence across measures 

 Here we propose that MPA should be applied to only one dynamic measure at 

a time. Another problem associated with PCA-based IC clustering stems from the 

fundamental assumption of IC cluster equivalence across all EEG measures. In this 

method it is assumed that those ICs that are similar in one respect (for example, in 

ERP time courses) are also similar in other aspects (say in their ERSPs or mean 

spectra), so that combining different measures before clustering (e.g. by concatenating 

them to form the IC pre-clustering array, Figure  6.2B) should produce better results 

(cluster distinctiveness is increased by combining measures). This rests on the 

assumption that the similarity structures of each measure of interest are dominated by 

an identical or at least compatible IC cluster structure. If this assumption is violated, as 

our results in Fig 3 indicate for the RSVP data, combining different IC measures may 



111 

 

 

actually degrade clustering results since they attempt to merge conflicting IC 

similarity structures. 

 For example, imagine a situation in which certain brain areas produce an ERP 

response to a stimulus event class (e.g., visual targets), but that significantly different, 

yet overlapping, brain areas produce transient mean (ERSP) changes in the IC power 

spectrum following events of this class. An IC clustering performed on a combination 

of these two measures (plus equivalent dipole locations) will at best find the spatial 

overlap between the two areas associated with ERP and ERSP measures, potentially a 

much smaller area than the areas associated with each EEG measure separately. If the 

goal of the analysis is, for example, to learn about ERP responses to visual targets, it 

would appear better to use only the ERP measures and equivalent dipole locations 

instead of including both ERP and ERSP measures, as we propose for MPA.  

 It may also be possible to subdivide multi-dimensional measures into sub-

regions (for example, ERP latency ranges or time/frequency regions) and apply MPA 

to each measure region, a possibility that may deserve further examination. 

6.5.7 Subject comparisons 

When IC process clustering gives disjoint IC clusters, it is not always easy to 

compare the EEG dynamics of each subject to the group cluster solution. Some 

clusters may contain no ICs belonging to some subjects. Since so many variable 

parameters enter into a particular clustering solution, it may be difficult to argue that 
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the absence of a cluster IC from a given subject necessarily reflects the absence of 

equivalent EEG source activity for that subject. This issue worsens as the number of 

clusters increases and fewer subjects contribute ICs to each cluster. MPA overcomes 

this difficulty by probabilistic representation of dipole locations and abandoning the 

notion of discrete, disjoint IC clusters. 

6.5.8 Group-Level ICA decomposition 

 ICA was initially applied at the group level as spatial ICA decomposition of 

group fMRI data [90], [91], [92] [93]. This method has also been applied to resting-

state EEG [39] and to joint decomposition of concurrently recorded EEG-fMRI data 

[94], [36], [37], [38]. Group-ICA is implemented in the EEGIFT toolbox 

(http://icatb.sourceforge.net/) for EEG analysis. In this approach, data sets from 

multiple subjects are either, (a) concatenated in time, assuming common group IC 

scalp topographies, or (b) concatenated as separate channels, after some preprocessing 

(e.g., PCA-based dimensionality reduction), assuming shared event-locked group IC 

component measure features.   

 Each of these methods violates the physiological assumptions underlying ICA, 

arising from differences in brain anatomy and volume conduction [27]. Concatenating 

EEG recordings from different subjects along the time/latency dimension, and 

implicitly assuming that subject ICs share scalp maps, ignores significant differences 

across subjects in cortical anatomy, in particular differences in scalp projection 
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topography arising from differences in cortical folding, and in functional specificity of 

corresponding cortical areas [79]. Concatenating event-related response time series 

data from different subjects in the spatial (channel or PCA-reduced channel) 

dimension, on the other hand, assumes that ICs share strong feature similarities, in 

particular event-related response time courses. Thus, for example, for all but the very 

earliest (brainstem and primary cortical) ERP features a highly unrealistic degree of 

common event-related time-locking is assumed. Also, this ERP-oriented procedure is 

intrinsically unable to capture time-locked but not phase-locked dynamics, (as, e.g., 

captured by ERSPs).  

 In addition, during group-ICA preprocessing (as described in [95]), the channel 

data are usually strongly reduced in dimension using PCA (e.g., from 64 channels to 

30 principal components) to keep the final number of dimensions after concatenation 

(across subjects) manageable for application of ICA. As the number of participants 

increases, even more aggressive PCA dimensionality reduction is necessary to keep 

the dimensionality of the concatenated data more or less constant (since the number of 

time points used in group-ICA remains constant and the final ICA requires a certain 

number of time-points for calculation of each weight in the unmixing matrix). But 

since PCA only takes into account second-order (correlation) dependencies across 

channel data, it has lower performance in terms of reducing mutual information 

compared to ICA, and therefore the remaining dimensions after PCA preprocessing 
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may potentially lack subspace information necessary for proper ICA separation at 

either the single subject or group levels.   

 Another issue with applying group ICA decomposition to event-related EEG 

data concatenated across channels is that it injects a bias towards finding patterns that 

are common across subjects. PCA-reduced activities from each subject are (to some 

degree) time-locked to the event, and subsequent group ICA processing tries to find 

components that are common across subjects. ERPs for a subset of these group ICs 

may then just be an artifact of the Group ICA decomposition process (since the 

common subspace across subjects is amplified and concentrated into a few Group 

ICs). This bias in data preparation makes calculating proper statistics difficult if not 

impossible. One would need to perform some type of bootstrap permutation test to 

estimate the significance of the common activity discovered by this approach, though 

performing a large number of Group-ICA decompositions on surrogate trial 

collections may prove computationally impractical. 

 There are two newer methods that improve on group-ICA for performing 

group-level joint decomposition: Multiset Canonical Correlation Analysis (M-CCA) 

[41], which uses an extension of Canonical Correlation analysis to maximize the 

correlation among the extracted source activations, and blind source separation by 

joint diagonalization of cumulant matrices [43] [44]. These algorithms avoid the PCA 

dimensionality reduction of group-ICA but they both also assume that significant 

linear correlations are present across source activations. EEG source activities across a 
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group of subjects can only be hypothesized to be similar or linearly correlated if they 

are all time-locked to a relevant event type (e.g., a rhythmic stimulus) and their 

duration are limited to data intervals that contain significant ERP features, often less 

than a second after (or in some cases before) the event. Outside of such time periods, 

no reliable correlation should exist that can be exploited by group-level decomposition 

methods. This limits the applicability of these methods for high-density EEG since the 

portion of data that can be assumed to contain group-level correlations is much shorter 

than the whole recording so there will be less data available to perform blind source 

separation (e.g., as compared to Infomax ICA decomposition of data from the entire 

session). This is likely to adversely affect the performance of the decomposition.  

 Also, many EEG phenomena occur in time-frequency domain in such a way as 

to contribute few or no features to average ERPs. In particular event-related spectral 

perturbations (ERSPs) such as those induced by changes in alertness level [46] 

measure event-related changes in spectral source power regardless of the level of 

event-locked phase coherence that produces the event-locked ERP. Since all group-

level decomposition methods discussed above operate in the time domain, they are not 

amenable to time-domain Group ICA approaches. 

 Recently, [96] has suggested a method to test the inter-subject consistency of 

ICA solutions statistically based on scalp-map similarities. Because of the differences 

in dipole orientation arising from between-subject variations in cortical volumes and 

folding, ICs represented by dipoles in the same functional brain area may have 
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significantly different scalp maps. Hence this method is more suitable for different 

sessions of the same subject and should only provide a lower bound on inter-subject 

consistency (since similar scalp maps are typically associated with similar ICs but not 

necessarily vice versa). The same argument also applies to IC clusters obtained from 

this method, as they do not take into account equivalent dipole locations associated 

with ICs. 

6.6 Conclusion 

 Here we have introduced measure projection analysis (MPA), a statistical 

method for combining source-localized EEG measure information across data sets. We 

also have presented empirical and simulated results and have discussed the advantages 

of measure projection relative to previously proposed independent component 

clustering methods. Measure projection puts results of EEG research into the same 

brain imaging framework and coordinate system as other brain imaging methods, 

thereby allowing EEG to be treated and used as a three-dimensional functional 

imaging modality. 
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6.8 Figures 

 

Figure  6.1. Timeline of each RSVP burst. Participant response feedback (‘Correct’ or 
‘Incorrect’) was delivered only during Training sessions (rightmost panel). 
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Figure  6.2. Finding equivalent IC processes across subjects and/or sessions: (A) Steps 
performed during measure projection analysis (MPA) to identify brain voxel domains 
associated with significantly different measures of independent component (IC) 
processes whose brain source locations are each tagged by the location of the IC 
equivalent dipole. (B) Steps performed during PCA-based clustering to find IC 
process clusters each composed of ICs with nearby equivalent dipole locations and 
similar measures. Whereas PCA-based clustering solutions may simultaneously 
consider multiple non-dipole EEG measures (for example, condition-mean ERPs and 
ERSPs), in MPA finding spatial domains supporting each condition-mean measure is 
performed separately. 
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Figure  6.3. IC-pair ERP and ERSP similarities. Absolute-value ERP similarities are 
used to overcome the inherent ambiguity of the polarity of IC activations. Dashed line 
displays the best least-squares linear fit (Pearson correlation coefficient = 0.26). 
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Figure  6.4. Dipole locations and cluster-mean ERSPs for 6 of 15 IC clusters obtained 
from PCA-based clustering  (see Figure  6.2B) having relatively large Target event-
related ERSP values, most in the low theta frequency band (each ERSP maxima equal 
or exceeding 1.7 dB). Cluster 11 is dominated by components accounting for eye 
movement artifacts. 
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Figure  6.5. Dipole locations and mean Target ERSPs for a subset of clusters with 
weak ERSP values  (each with absolute maxima lower than 1.3 dB; compare Figure 
 6.4). 
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Figure  6.6. Measure Projection Analysis  (MPA) of ERSP (see Figure  6.2A):  (A) 
Voxels representing locations with significant convergence (p < 0.075) colored by 
multi-dimensional scaling (MDS) mapping of projected Target ERSP measures to hue 
(MATLAB ‘hue’ colormap values in the 0-0.69 interval, from red to blue).  (B) Four 
domains identified in the projected measure values, colored by 1-D MDS of the 
projected measure at their exemplar voxel.  (C) 2-D MDS image of exemplar 
similarities of the four domains. Note that Domain 1 (red, eye activities) is relatively 
distant from the other three Domains (blue, posterior cortex). 
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Figure  6.7. Alternative visualization of ERSP domains projected onto the template 
MNI cortical surface. Each cortical surface voxel is illuminated based on the domain 
color and total dipole density from brain-grid voxels located radially below the surface 
polygon. 
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Figure  6.8.  (A) ERSP Domain 2 dipoles with probability of membership in the 
domain above 0.05 are colored by the correlation of the dipole-associated measure 
with the domain exemplar. (B) (left and center) Projected Target and Non-Target 
condition ERSPs for ERSP Domain 2, and (right) their statistically masked difference 
(p<0.05). 
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Figure  6.9.  (A) Simulated ground-truth domain set consisting of four anatomical 
regions  (B) MPA results based on using 12-mm Gaussian spatial noise blurring and 
an 0.88 ERSP Signal-to-Noise Ratio (SNR). (C) Simulated dipoles including subsets 
associated with each ground-truth ERSP domain plus randomly located outliers given 
random ERSP measures. 
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Figure  6.10. (A) Simulated sample points to illustrate Threshold-based clustering. (B) 
Points colored by cluster using  without outlier detection. (C) Points colored 
by cluster using  with outlier detection ( ). 
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6.9 Appendix A - Measure Projection Analysis (MPA) 

Method Description 

 Problem. A subset of EEG independent component (IC) processes obtained by 

applying ICA decomposition to preprocessed channel activities from each recording 

session of a study consisting of multiple sessions and/or subjects may be accurately 

modeled by single (or in some cases bilaterally symmetrically located pairs of) 

equivalent dipoles located in the co-registered standard MNI brain coordinate system 

[28]. In this analysis we only consider equivalent dipoles within the MNI model brain 

volume (V), although the proposed method should also be separately applicable to 

equivalent dipoles located outside brain, such as in the eyes and at attachments of neck 

muscles to the scalp. Furthermore, we do not consider ICs that cannot be modeled 

using a single (or in some cases as dual symmetric) equivalent dipole model. 

 In practice, in any decomposition there may be an IC that can be accurately 

modeled by an equivalent dipole located at any model brain location . 

Consider a measure vector , obtained by vectorizing ERP time-course or ERSP 

time-frequency image, associated with an IC with an equivalent dipole . Measure 

vectors typically estimate mean event-related changes in IC source activity, which are 

often monotonically related to the recorded scalp potential changes accounted for by 

the IC. Because of subject differences in skull thickness and brain dynamics, these 

( )D x 3x V R∈ ⊂
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measure vectors may have dissimilar and unknown differences in scale and/or offset 

across subjects. For example, two subjects may show a similar (circa 10-Hz) central-

lateral mu rhythm desynchronization pattern (reduction in power) during hand-motor 

imagery, but the maximum dB change for each subject may be quite different, as 

reflected in ERSP measures for one or more ICs from each subject’s data. 

 During the set of experimental sessions in the study, up to n IC processes 

associated with n distinct equivalent dipoles  (with indices ) 

may be active. We desire to estimate an interpolated measure vector , defined 

across possible brain locations , and to estimate the statistical significance (p -

value) of this assignment at each of these locations. These p-values are associated with 

the (null) hypothesis that the measure vectors have a random spatial distribution in the 

brain and there is no significant similarity between them within neighborhoods 

centered at brain locations . 

 Approach. Let  be the standard deviation of a spherical 3-D multivariate 

Gaussian with covariance  centered at an estimated dipole location . We 

spherically truncate the density at a radial distance (to center) of . After 

normalization to insure that densities both deep inside the brain volume and near the 

brain surface have unity mass within the brain volume, this truncated Gaussian is used 

to represent the probability density of the true equivalent dipole location given its 

estimated location. The parameter  encapsulates errors in dipole localization arising 
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through errors in tissue conductivity estimates, head co-registration, numerical data 

decomposition, data noise, and between-subject variability in the locations (with 

respect to the head model) of equivalent functional cortical areas. We place a 

renormalized truncated Gaussian at each estimated dipole location. According to this 

model, the probability of estimated dipole  being truly located at position is

, where is the estimated location of (and TN is a 

normalized truncated Gaussian distribution). For an arbitrary location , the 

expected, or projected, value for the measure vector is 

           (A.1) 

If an equivalent dipole were truly located at , it would have the measure 

projection  provided by (A.1). We want an estimate of  given by

, where is the probability that . Since the 

probabilities have to sum to one ( ), it is natural to define . 

 This gives (1) and shows that our estimate is given by a convex combination 

(weighted average) of measure values that depends on equivalent dipole location

. 
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 Now that we have an estimate of the measure vector at each brain voxel 

location, we need to estimate the probability distribution of projected measures  

under the null hypothesis that an estimated measure vector is actually produced by a 

random, set of measure vectors  in the spatial neighborhood. This is necessary to 

be able to assign any statistical meaning to the projected values. There are at least two 

ways to do so.  

 The first is to calculate p-values for each dimension of projected measure 

vector . There are, however, two drawbacks to this approach. Firstly, unknown 

scale and constant offset differences associated with measure values for different 

subjects may act as additional sources of variability (unless an effective measure 

normalization method is applied) reducing the power of statistical testing. Second, if 

measure vector  is high-dimensional, the issue of robustly correcting for 

multiple comparisons becomes critical, especially when a high-resolution spatial grid 

is placed in the brain volume. For example, an ERSP measure may typically consist of 

a matrix of 200 latencies by 100 frequencies giving 20,000 dimensions -- if brain 

voxels with 8-mm spacing are investigated, there will be about 4,000 locations 

examined, each associated with a 20,000-dimension vector. This would result in 

performing about 8x107 t-tests or some other type of null-hypothesis tests, which is 

undesirable: although methods for robust correction for multiple comparisons, 

including cluster-based techniques [97] and Gaussian random field theory [98] have 

been developed for high-dimensional data such as time-frequency images and fMRI 
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voxel maps, use of these methods require assumptions such as joint Gaussianity or 

smoothness. Thus, further investigation is needed to determine the applicability of 

these methods to MPA. 

 Measure convergence. An alternative method for obtaining significance 

values is to identify brain areas or neighborhoods that exhibit statistically significant 

similarities in one or more measures between IC equivalent dipoles within the 

neighborhood. To do so, we define the quantity  (measure convergence) at each 

brain location  

  (A.2) 

 In this equation,  is the probability of dipole  being at location  

and  is the degree of similarity between measure vectors associated with dipoles  

and . Convergence  is the expected value of measure similarity at location

assuming that the joint probability of each dipole pair and  being located at 

can be factorized as (based on the independence assumption). 

Problems caused by unknown scaling and offsets may be avoided by choosing a 

similarity matrix impervious to these distortions, such as normalized mutual 

information or linear correlation. 
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 Calculated convergence  is a scalar and is larger for areas in which the 

measures associated with local ICs are homogeneous (similar).  The probability of 

making an error of Type I may be obtained for each brain location by comparing 

 to a distribution of surrogate convergence values  constructed 

from k randomized surrogates. Each surrogate convergence value is obtained by 

destroying the association between dipoles and their measure vectors by randomly 

selecting, with substitution, n surrogate measure vectors  and associating 

them with dipoles . The surrogate similarity matrix  is obtained by 

calculating similarities between these surrogate measure vectors.  

  By repeating the process above k times, a distribution of surrogate convergence 

values  at each brain location  is obtained and the significance of 

convergence  is obtained by comparing it to the right tail of this null distribution. 

This p-value is equal to the proportion of surrogate  values higher than the 

actual convergence value  

                                          (A.3) 

 After p-values are calculated for each brain voxel, they may be corrected for 

multiple comparisons across MNI brain grid locations and only those voxels with 

significant measure convergence (e.g., p < 0.05 after correction for multiple 

comparisons) selected for further analysis. Since is a scalar value and often has a 
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much lower dimension than measure value , the multiple comparison problem is 

more manageable when dealing with convergence values. 

 Spatial domain clustering. Projected measure vectors associated with these 

locations may then be clustered to identify spatial domains exhibiting similar measure 

vectors in the data. Note that spatial domain clustering in MPA is different from IC 

clustering: in MPA, clustering is performed on the projected measure vectors 

at each brain space voxel, so changes in domain clustering parameters do 

not change the voxel measures themselves. MPA operations such as subject or 

condition comparisons can act directly on these voxel measures and do not solely 

depend on domain exemplars. Mean measures of IC clusters, on the other hand, may 

take different values depending on the IC clustering parameters used, and only these 

mean measures are used in subject or group comparisons. 

 MPA toolbox. We have implemented the MPA method under MATLAB (The 

Mathworks, Inc.) as a plug-in for EEGLAB [21]. The Measure Projection Toolbox 

(MPT), freely available for download at http://sccn.ucsd.edu/wiki/MPT, includes high-

level MATLAB software objects and methods that simplify the application of MPA to 

EEG studies. The toolbox also utilizes the probabilistic atlas of human cortical 

structures LPBA40, provided by the LONI project [52], to define anatomical regions 

of interest (ROIs) and find ratios of domain dipole masses for cortical structures of 

interest.  
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6.10   Appendix B - Threshold-based Clustering and Outlier 

Rejection using Affinity Propagation 

 Estimating the optimum number of clusters is an outstanding problem in the 

field of data clustering (Milligan & Cooper 1985, Gordon 1996).  There have been 

several solutions proposed for this problem, each based on certain assumptions 

regarding noise and underlying cluster structure (Hardy 1996, Kryszczuk & Hurley 

2010).  On the other hand, in practice often the goodness of a clustering solution is 

evaluated by comparing a subset of its properties (e.g., the dissimilarity between 

cluster centers) with common domain or expert knowledge. For example, suppose that 

linear correlation is used as a similarity measure to obtain clusters using agglomerative 

hierarchical clustering (Hastie et al. 2009) and the clustering solution contains twenty 

clusters, two of which have exemplars (data points comprising cluster centers) more 

similar to each other than 0.95.  Then additional domain knowledge such as assumed 

or expected noise level may allow us to infer that a better solution could be obtained 

with fewer clusters. 

 Another issue that arises in many practical clustering applications is the 

existence of outliers and their effect on the clustering solution. Outliers are defined as 

data points that are far from all cluster exemplars (centers) and should therefore not be 

assigned to any of them (in which case they can be grouped into a special ‘outlier 

cluster’).  A common way to deal with this issue is to obtain a clustering solution 



136 

 

 

while treating outliers as any other data point, and then removing them post hoc in 

some principled manner. For example, a simple way to do this would be to remove all 

points that are further than a given distance threshold to any cluster center (such a 

method would be especially applicable if a distance or similarity threshold could be 

established based on domain or expert knowledge).  A problem with this approach is 

that the clustering solution is affected by all data points, in particular the outliers 

which are removed in the second step. In cases in which the outliers in the total data 

set are significant in number, or are much more distant than regular points from cluster 

centers, the clustering solution may be visibly deteriorated by their presence.  

 Here we propose the use of Affinity Propagation clustering (Frey & Dueck, 

2007) to address the abovementioned difficulties by incorporating two threshold 

values based on domain knowledge. Affinity propagation method finds exemplars by 

passing real-values messages between pairs of data points. The magnitude of these 

messages is based on the affinity of each point for choosing the other as its exemplar. 

 This algorithm is shown to be equal or better than K-means in minimizing 

clustering error on large datasets. It also only requires a pair-wise similarity matrix as 

input, a property exploited by our proposed method to find an appropriate number of 

clusters while ignoring outliers during the clustering process. Although our method is 

based on the use of Affinity Propagation clustering, it may, in principle, be combined 

with any clustering method that accepts a pairwise similarity matrix. 
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 Let be a pairwise similarity matrix for input points to be 

clustered. Our objective is to find a clustering solution in which:  

(a) Outliers, defined by points that are less similar than  to any cluster 

exemplar (centroid) , are assigned to a special outlier cluster. 

(b) The data are clustered into the maximum number of clusters such that no 

cluster exemplar  is more similar to another than a given similarity 

threshold . 

 To achieve objective (a), we augment the original pairwise similarity matrix 

 to include a new virtual point that has a constant similarity to all original 

data points : 

                                                              (B.1) 

The augmented similarity matrix is then used for clustering.  

 During the clustering process, points compete for becoming exemplars of 

others. These dynamically formed exemplars compete for assignment to data points 

and since the virtual point  has a constant similarity to all other points, any 
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point which is less similar than to all exemplars will be assigned to the cluster 

which contains the virtual point as its exemplar. This point hence becomes an 

exemplar for all outlier points in the data. 

 After the clustering process is finished, one of the following conditions will be 

met: 

(1) There are one or more outliers in the data, in which case they will be assigned 

to a cluster that includes the virtual point (see Figure  6.10C). 

(2) There are no outliers in the data and the virtual point is assigned as the 

exemplar of a cluster with only one member (itself).  

(3) There are no outliers in the data, but the virtual point is assigned to a cluster 

that is not an outlier cluster. 

 To distinguish between conditions 1 and 3 above, we can calculate the 

similarity between all exemplars and members of the cluster that includes the virtual 

point. If any similarity value is greater than then condition 3 must be the case. Our 

use of an augmented similarity matrix thus achieves the first goal of separating outlier 

points during the clustering process. 

 To achieve objective (b) we begin by clustering  into a minimum 

number of clusters (1 or 2) and iteratively increase the number of clusters (if using 

Affinity Propagation, this is achieved by increasing the similarity value assigned 

oT

oT

1, 1n nS + +′
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between each data point and itself in the similarity matrix, which indirectly controls 

the number of clusters). In each iteration we calculate the minimum similarity  

between cluster exemplars and compare it with . If   then the procedure 

terminates and returns the clustering solution obtained in the previous iteration, 

satisfying objective (b). 

 Figure  6.10A shows a simulated 2-D point cloud generated by adding to a low 

uniform point distribution two rectangular areas of increased probability density. 

Figure  6.10B shows Affinity Propagation clustering results using maximum exemplar 

similarity  and no outlier detection. Of the four clusters produced by this 

solution, two consist mostly of outlier points.  Figure  6.10C shows the clustering 

solution obtained using outlier detection with  and . Here, the two 

high-density areas are separated into distinct clusters and other points are assigned to a 

third ‘background’ cluster. 

  

eT

0.2eT =

0.2oT = 0.2eT =
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Table  6.1. Anatomical locations, Brodmann areas, and nearby clusters associated with 
each ERSP domain. 

ERSP 

Domain 

Nearby 

Clusters 

Anatomical Area(s) Brodmann Area(s) 

1 11, 14 (Dominated by eye-artifact ICs) N/A 

2 12, 15 R Middle Occipital Gyrus (0.36) 

L Middle Occipital Gyrus (0.26) 

R Inferior Occipital Gyrus (0.09) 

L Inferior Occipital Gyrus (0.08) 

R Superior Occipital Gyrus (0.05) 

R Lingual Gyrus (0.04) 

R Inferior Temporal Gyrus (0.03) 

R Angular Gyrus (0.02) 

R Middle Temporal Gyrus (0.02) 

 

 

 

BA 18 (0.34) Secondary 

visual (V2) 

BA 19 (0.34) Associative 

visual (V3) 

BA 37 (0.11) 

BA 39 (0.06) 

BA 17 (0.06), Primary 

visual (V1) 
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Table  6.1., continued. 

ERSP 

Domain 

Nearby 

Clusters 

Anatomical Area(s) Brodmann Area(s) 

3 1 L Superior Occipital Gyrus (0.19) 

L Cuneus (0.16) 

L Middle Occipital Gyrus (0.15) 

R Cuneus (0.12) 

R Superior Occipital Gyrus (0.10) 

L Superior Parietal Gyrus (0.06) 

L Lingual Gyrus (0.04) 

L Precuneus (0.03) 

L Superior Temporal Gyrus (0.02) 

R Middle Occipital Gyrus (0.02) 

R Superior Temporal Gyrus (0.02) 

R Lingual Gyrus (0.02) 

BA 18 (0.33) Secondary 

visual (V2) 

BA 19 (0.15) Associative 

visual (V3) 

BA 31 (0.13) 

BA 17 (0.12) Primary 

visual (V1) 

BA 7 (0.06) 

Somatosensory 

Association 
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Table  6.1., continued. 
ERSP 

Domain 

Nearby 

Clusters 

Anatomical Area(s) Brodmann Area(s) 

4 4 L Superior Parietal Gyrus (0.27) 

L Postcentral Gyrus (0.27) 

L Supramarginal Gyrus (0.22) 

L Angular Gyrus (0.12) 

L Precentral Gyrus (0.10) 

BA 40 (0.37) Spatial / 

Semantic                     

Processing 

BA 7 (0.12) 

Somatosensory 

Association 

BA 3 (0.11) Primary 

Somatosensory 

BA 2 (0.10) Primary 

Somatosensory 

BA 4 (0.09) Primary 

Motor 

BA 39 (0.06) 
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Table  6.2. MPA performance scores for simulation results with a voxel significance p-
value threshold of 0.05 and varying noise levels. 

Mean MPA 

Performance 

Score (std) 

Cohen’s kappa 

Ratio (kappa, 

max possible) 

Domain 

Dipole 

Noise 

Amplitude 

Mean 

Domain 

Dipole SNR 

(std) 

Extra 

Dipole 

Noise 

Amplitude 

Projected 

Gaussian 

std. 

deviation 

(mm) 

0.82 (0.21) 0.82 (0.63, .78) 0 1 0.2 12 

0.85 (0.20) 0.84 (0.62,0.73) 0 1 0.2 14 

0.81 (0.19) 0.78 (0.63, 0.8) 0 1 0.2 10 

0.93  (0.11) 0.9 (0.5, 0.56) 0.2 0.88 (0.09) 0.2 12 

0.93  (0.10) 0.93 (0.47,0.51) 0.2 0.88 (0.09) 0.2 14 

0.89 (0.16) 0.84 (0.51,0.61) 0.2 0.88 (0.09) 0.2 10 
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Chapter 7  

Subject Space Analysis 

 

7.1 Introduction 

 A primary question of interest in multi-subject data analysis is the distribution 

of the inferred population-level EEG dynamics across individual subjects, i.e. which 

subjects display patterns that are (or are not) similar to the calculated subject average 

for a certain IC cluster or IC measure domain, and what subject sub-groups and 

outliers may be so identified from the data. Mathematically, this may be described as 

the study of geometrical or topological features of a subject space of relationships 

between brain-localized IC measures that cannot be well fit as a collection of identical 

subject data plus added multivariate Gaussian noise.  

7.2 Methods 

In the measure projection framework, comparing subject EEG dynamics is 

possible by calculating the projected measure (e.g., the ERSP or vector of ERSPs over 

conditions) associated with each subject (and/or recording session) within one or more 

brain regions of interest (ROIs). To obtain a similarity estimate over a given ROI for 
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each subject pair, first the two projected measures at each ROI location are compared 

(e.g., by correlation or mutual information) to obtain a similarity value at that location. 

These values are then combined (e.g. averaged) across the ROI and defined as the ROI 

measure similarity for that subject pair. A subject space is then built by comparing all 

possible subject pairs and representing the results as a similarity matrix: 

                 (5) 

:  Similarity of the measure vector for subjects i and j across the ROI 

:  Brain location 

:  Number of brain locations 

:  ROI membership probability of voxel  

:   Similarity function (e.g., correlation or mutual information) 

: Projected measure vector of subject  

It is possible to investigate relationships between subjects or session variables 

(e.g. group identities, age…) and this similarity matrix using statistical methods. For 

example, to look for group effects, the average similarity across subject pairs both 

belonging to a certain subject sub-group may be calculated and compared to the 

average similarities of subject pairs whose members are known to belong to different 

subject sub-groups. Bootstrap permutations across the associations between subjects 

{ }ij
1
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n
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and groups can then establish the statistical significance of any difference between the 

two mean similarity values (or any other similarity value statistic). 

7.3 Results and Discussion 

Here we investigate the effect of subject identity on the EEG dynamics 

captured in different recording sessions in the RSVP study described in  Chapter 6.  

For most subjects training and test sessions were collected several days or weeks 

apart. Each session was analyzed using a separate ICA decomposition, producing 

different IC equivalent dipole locations and associated EEG measures.  

Figure  7.1 shows the relationship between the measure projected ERSP and 

dipole density for all recording sessions in different ROIs. Figure  7.1A shows the 

subject-space constructed by comparing dipole densities and visualized by two-

dimensional multidimensional scaling (MDS, implemented in Matlab Statistics 

Toolbox). The similarity function in this plot was defined as the inner product of 

normalized (summing to unity) session dipole densities. Lines connect sessions for the 

same subject.  

Visual inspection of Figure  7.1A suggests that the average dipole density 

distribution similarity between sessions belonging to the same subject is higher than 

average similarity between sessions from different subjects. We verified this by 

calculating the ratio between average similarity values for same-subject and different-

subject session pairs (1.37) and performing a one-tailed statistical significance test by 



147 

 

 

performing 200,000 random permutations (without substitution) of subject identities in 

the similarity matrix, which gave a probability of the null hypothesis (no relation of 

dipole density to subject identity) of p <0.0012. This shows that the locations of the 

retrieved IC equivalent dipole locations were more similar across sessions within 

subjects than across subjects. 

Figure  7.1B shows the subject space for measure projected ERSPs over all 

brain locations. Here we may also observe similarity between sessions for the same 

subject. Using the same statistical procedure as above, the ratio of average similarity 

between session pairs from the same subject to other pairs was 1.94 with p < 0.004. 

Two sessions belonging to Subject 25 stand out in this figure as potential outliers (as 

they are far from the mean measure projected ERSP). In fact, the (reasons unknown) 

dissimilarity of the data from the two sessions of this subject was sufficient that, 

unlike for the other subjects, a Target detection brain-computer interface (BCI) model 

trained on one session could not accurately detect Target responses in the other 

session: the cross-session classification area under the ROC curve for this subject, as 

described in [48], was 0.56 (at chance level), while the median area under the ROC 

curve for all subjects was 0.88. 

In Figure  7.1C we focused subject-space analysis on ERSP Domain 2 ROI (see 

Figure  6.7). The measure projected ERSP to this region was compared across sessions. 

In addition to two sessions from Subject 25, a session from Subject 24 appears to have 

different ERSP patterns in regards to Target and Nontarget conditions. Further 
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investigation indicated that Subject 24 was not associated with any dipoles near 

(occipital) ERSP Domain 2. Both mean ratios and their significance were similar to 

Figure  7.1B (ratio = 1.94 with p < 0.004) 

We then built a probabilistic frontal ROI using the LPBA40 probabilistic atlas 

[52] and compared measure projected session ERSPs in frontal areas (Figure  7.1D). 

This plot looks markedly different from Figure  7.1C, indicating that the subject 

similarity space may vary for different brain regions. This ROI as also associated with 

significantly higher similarity between same-subject sessions (ratio = 2.46, p < 

0.0093). 

7.4 Figures 
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Figure  7.1. (A and B, C and D right) Subject space visualizations using 2-D multi-
dimensional scaling  (S12 = Subject 12; solid lines connect sessions from the same 
subject) applied to (A) differences in session dipole density, (B) differences in 
measure projected ERSPs (all brain locations), (C) measure projected ERSPs 
associated with ERSP Domain 2 (light blue), (D) measure projected ERSPs in frontal 
brain (red). 
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Chapter 8  

Classification feature analysis of 

oscillatory EEG dynamics 

accompanying auditory/visual 

attention switching 

 

8.1 Introduction  

Here we investigate a novel application of machine learning to 

electroencephalographic (EEG) data with two purposes: First, we present a decoding 

model [73, 99] for non-stationary event-related oscillatory EEG brain dynamics – used 

here to classify, for a given single trial of data, whether the participant switched 

attention from an auditory stimulus stream to a concurrent visual stream or vice versa. 

Second, we image the brain EEG processes captured by this model in 3d cortical space 

and illustrate in a cross-subject group analysis a range of connections to the fMRI 

attention reorientation literature. These two goals are complementary: In the first case 
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we train a decoding model from recorded data and study its predictive performance, 

while in the second we elucidate the structure of the learned model itself. 

We first introduce a mathematical formulation, Regularized Spatio-Spectral 

Dynamics (RSSD), which yields to a novel general-purpose machine learning and 

brain imaging method producing models that explain or predict an abstract cognitive 

state variable (or condition) in terms of distributed non-stationary EEG 

space/time/frequency dynamics. The main strength of the RSSD method is that it 

captures the relevant details of highly complex joint oscillatory dynamics in an 

interpretable source-space representation, which is the unique solution of a single 

convex optimization problem. For brain imaging meaningful subject group-level 

analysis is also desirable – therefore we employ a recently proposed EEG model 

aggregation method, Measure Projection Analysis (MPA), for spatial co-registration 

and cross-subject statistical estimation of cortical source dynamic patterns described in 

 Chapter 6 (also see [45]). 

We applied these methods to EEG data from a multimodal attention-switching 

task [61] for which we expected to have invoked well-defined event-related changes in 

oscillatory dynamics, a task in which subjects were repeatedly cued to reorient their 

attention from a stream of visual stimuli to a concurrent stream of auditory stimuli and 

then back again, with similar stimulus density and motor responses in both directions. 

Our dual objective here was 1) to correctly classify the direction of the cued 

audiovisual attention switch without knowing the type of the cue, and 2) to generate 
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and interpret 3-D maps at both the single-subject and population levels of the source-

level spectral power shift clues most strongly contributing to successful classification.  

We chose to use power spectral dynamics occurring relative to the attention 

shift cues because alpha band spectral power in both visual and auditory cortical 

regions is sensitive to degree of modal attention, with withdrawal of attention 

associated with ‘alpha flooding’ and focusing of attention, with ‘alpha blocking’ 

[100]. Thus, we expected informative switch-related spectral shifts to include alpha 

band power changes in these expected directions. Previous functional imaging results 

suggested a set of cortical regions in which we might also expect to see EEG spectral 

shifts during attention shifting [101-108]. Using EEG rather than fMRI BOLD data 

also allowed us to examine the detailed time course of these shifts in the affected 

cortical areas.  Finally, we wanted to determine whether informative features also 

occurred in other spectral bands, and if so in which frequency bands and cortical 

areas? 

8.2 Methods  

8.2.1 Experimental Task 

The study comprised data from 31 healthy adult subjects (pooled from two age 

groups of 20-40 years and 60-90 years, respectively) of both genders. Thirty-two 

channels of EEG data sampled at 250 Hz at 16-bit resolution were recorded from each 

participant using an SA Instrumentation amplifier via custom software. Stimuli 



153 

 

 

were presented in blocks of 264 stimuli, each 160-sec block including 12 bimodal 

“Hear” and 12 “Look” attention-switch cues inserted among 120 randomly interleaved 

task stimuli in each modality (see Figure  8.1). This design was originally created to 

allow evaluation of attention effects on Nontarget stimulus event-related potentials 

(ERPs) (Townsend et al., 2003). In the “Attention Shift condition” studied here, the 

Switch cues would cue the participant to shift their attention to either the auditory or 

visual modality stimuli so as to prepare to produce a manual button response to target 

stimuli only in the newly attended modality. On average, Switch cues occurred once 

every 6.6 sec and were followed on average by 10 +/- 3 stimuli in each modality 

before the next Switch cue. 

Target and Nontarget stimuli in each of two modalities (auditory and visual) 

were presented one at a time in random order with stimulus onset asynchronies 

(SOAs, onset-to-onset) between 200 ms and 800 ms in each modality (i.e., with a 100-

400 ms multimodal SOA). The auditory stimuli were 100-ms, 550-Hz (Target) and 

500-Hz (Nontarget) sine-wave tones, amplitude-modulated at 5 Hz. In all task 

conditions, Targets occurred with a within-modality probability of 20%. The tones 

were played over two loudspeakers placed beside a 21-inch computer monitor situated 

at eye level 1.5 m in front of the subject At the subject’s head, tone loudness was 63 

dB SPL (sound pressure level). The visual stimuli displayed on the computer monitor 

were single light-blue (Target) and dark-blue (Nontarget) 8.4-cm2 filled squares 

subtending 3.3 deg of visual angle. 
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Temporally interspersed among the Target and Nontarget stimuli were Switch 

cues, bimodal (auditory and visual) stimuli 200-ms in duration conveying the 

instructions to “Look” for or “Hear” the next Target respectively. Visual Switch cues 

consisted of a bright-orange capitalized word presented at central fixation; the 

simultaneous binaural presentation of the same word was spoken in the voice of a 

naïve male English-speaker at the same volume as the auditory stimuli.  

8.2.2 Data Analysis 

In the first stage, we trained an RSSD predictive model for each participant 

from the continuous data of the participant’s recording session with its two groups of 

(HEAR/LOOK) Switch cue event markers. The resulting models { }sM  were 

parametric representations of the relationship between EEG and marker class for each 

subject. Next, we estimated the predictive performance of the models (estimated 

percent correct classifications) using five-fold block-wise cross-validation. 

In a second-stage analysis, the resulting models were subjected to group-level 

comparison using measure projection analysis (MPA). In MPA, source-level model 

features are spatially co-registered/aligned in a common brain space and group-levels 

statistics are calculated for a 3-D voxel grid in this space. The resulting per-voxel 

measures (here time-frequency weight maps) were segregated into brain-space 

domains associated with similar sets of features across subjects. Domain-centroid 
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(‘informative feature’) weight maps were then computed and plotted for visual 

inspection and comparison with the brain-imaging attention literature. 

8.2.3 Regularized Spatial-Spectral Dynamics (RSSD)  

The RSSD method is an alternative to methods such as, for example, Common 

Spatial Patterns (CSP) or the discriminative framework for neuroimaging recently 

proposed by Tomioka and Mueller [109], an early inspiration for this method. The 

core of RSSD is a convex optimization that jointly optimizes the weights of a 

generalized linear model parameterized in space, time, and frequency. Thanks to the 

convex formulation, the resulting model is the globally optimal solution for the given 

assumptions. The weights are optimized based on a collection of observed data trials 

(𝑋𝑡), each parameterized in the same manner, plus an associated “class label” or target 

value 𝑦𝑡. Here ywas binary, from the set { 1, 1}− +  corresponding to the two Switch 

cues {LOOK,  HEAR}. Note, however, that binary classification is not an inherent 

restriction of the method since its underlying generalized linear model (GLM) can be 

set up to perform various types of regression, including logistic, multinomial, Poisson, 

or linear by choice of an appropriate link function.  

8.2.4 Data Preprocessing for RSSD  

After the raw continuous EEG recording was segmented into a collection of 

multi-channel epochs identically time-locked to the two classes of markers, the 
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epoched data were transformed into a space x time x frequency representation. This 

could in principle be accomplished using a multitude of techniques, the most 

straightforward being to use the individual scalp channel signals as the spatial basis 

and a short-time Fourier transform (STFT) approach for deriving a latency-by-

frequency matrix for each channel and epoch. Unfortunately, EEG channels measure 

highly correlated signals, each of which is a linear mixture of all the electrical activity 

of the brain, conveyed to each scalp electrode channel by volume conduction and 

linearly summed. Since the point-spread function of any electrical source in the brain 

(for EEG, predominantly in cortex) includes nearly the whole scalp, dramatically 

better RSSD results may be achieved by first spatially filtering the data, i.e., 

remapping the scalp channel signals to a linearly transformed representation that more 

closely resembles the set of resolvable, functionally distinct cortical source activities.  

A technique often used to perform such spatial transformation is blind source 

separation, in particular Independent Component Analysis (ICA). These methods 

make use only of statistical properties of the data. Beamforming is often used for 

finding functionally distinct signals as well, but it ideally requires accurately co-

registered electrical forward models of each participant’s head based on an MRI scan; 

these were not available here. Methods such as sparse signal recovery may also be 

applicable but also require accurate forward electrical head models.  Useful spatial 

filters might also be learned using supervised nonlinear methods that make use of the 

classifying label information. However, with most existing nonlinear methods it is 
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rather difficult to separately identify and compare the spatiotemporal data features that 

most highly contribute to the classification. Thus, we chose to use an ICA approach to 

spatially separate the channel data into spatially and functionally distinct signals. 

8.2.5 Adaptive Mixture ICA 

Here, we used an advanced ICA decomposition approach, Adaptive Mixture 

ICA (AMICA; [58, 59]), to compute a type of overcomplete spatial decomposition of 

the data. AMICA is a generalization of the traditional ICA model into a mixture of 

multiple “sub-models” such that each data point is associated with one sub-model and 

each sub-model explains a part of the data. Similarly to the well-known Gaussian 

mixture model for clustering, both the “cluster” (i.e., sub-model) membership for each 

data point and the parameters of each of the models, including its unmixing matrix and 

adaptive probability density functions (pdfs) of the sources are all learned 

simultaneously in an expectation-maximization fashion. After training, the component 

data points are maximally temporally independent within their respective model. Here 

we decomposed the data using 3 AMICA models and for the sake of simplicity take 

the resulting 3x32 = 96 components as an overcomplete dictionary of spatial filters. 

AMICA is purely data driven and requires no auxiliary information. However, 

pre-processing to remove low-frequency drifts and non-stereotypical artifacts is 

necessary for the decomposition to find spatially localizable component processes. 

Here we used automated artifact rejection tools to thus ‘clean’ the data before 
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submitting it to AMICA, using a pipeline and parameters similar to the ‘seated’ setting 

in the BCILAB toolbox 1.0 [110, 111]. Full details will be deferred to a subsequent 

paper. In summary, the data were first high-pass filtered by a FIR filter with a 

transition band between 0.5 and 1 Hz, then a set of 1-second time windows was 

chosen for removal using a quantile threshold on the windowed signal power 

(calculated per channel and pooled so as to decouple the measure from channel 

artifacts). Finally, a set of channels were chosen for removal using a quantile threshold 

on mutual correlation between channels (calculated on a window-by-window basis 

and pooled in order to be robust in the presence of temporally localized artifacts).  

Once the spatial decomposition 𝐶 ∈ 𝑅𝑥 × 𝑌 was derived, it was applied to 

each multi-channel epoch to yield new multi-channel epochs in the overcomplete, 

spatially-transformed component space. The time/frequency decomposition of each 

resulting component signal was performed using a form of continuous Morlet wavelet 

transform to obtain estimates of amplitude at 48 latencies between –2000 ms to 3000 

ms following Switch cue presentations across 50 log-spaced frequencies between 2.5 

Hz and 50 Hz. The number of wavelet cycles depended on frequency and linearly 

increased from 0.5 cycles at 2.5 Hz to 3 cycles at 50 Hz.  

8.2.6 Regularization  

A generalized linear model (GLM) with the logistic link function was used in 

RSSD, 
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With each sample observation t  now represented as a [space × time × frequency] 

multi-array of (96 × 48 × 50 dimensions), RSSD optimization was performed by 
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This can be viewed as a logistic regression that predicts the class label from the 

observed data using a generalized linear mapping. Notably, the number of parameters 

to be estimated in this model is larger than 300k, while the number of data trials 

available here was on the order of 100. Thus, some strong prior assumptions shaping 

the character of the RSSD solution are necessary to obtain a high-quality solution. 

Here, we assumed: 1) Only a sparse set of independent component activities 

were relevant for classification (groupwise sparsity), an assumption justified by the 
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fact that these components are (model-wise) statistically independent. 2) The 

time/frequency measures useful for classification concern a relatively small number of 

latent oscillatory processes, each characterized by a characteristic frequency profile 𝐹 

and an associated modulation time course 𝑇.  

These two assumptions can be collapsed into a single regularization term, the 

sum of the trace norms for each component weight map. The trace norm penalty is a 

convex surrogate for the rank of a matrix and implements the assumption that a weight 

map should be the sum of relatively few rank-one matrices (here latent time/frequency 

process weights) [112]. The sum over components acts as a groupwise L1 norm over 

component weights, minimizing the total number of component processes contributing 

to the classifier. 

A potential flaw of the convex relaxation is that the norm treats regions in 

which relevant oscillatory processes overlap in time and frequency slightly differently 

from regions in which they do not overlap (since the sum of their spectrograms is not 

generally equal to the spectrogram of their sum). Fortunately, each independent 

component tends to contain only a small set of such independent time/frequency 

processes, leaving little opportunity for such sub-optimal behavior.  

8.2.7 Spatial source restriction 
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It is also possible to factor into RSSD additional ‘Region Of Interest’ (ROI) 

anatomical, spectral, or temporal priors into the RSSD solution. By Green’s theorem, 

concurrent activity across a cortical patch, producing a coherent far-field signal on the 

scalp that is a maximally independent of the far-field signals of other sources, must 

have a scalp projection pattern that matches that of an equivalent current dipole, a 

vanishingly small battery-like source element located near the ‘center of gravity’ of 

the originating cortical source patch [113].  Applied to sufficient multi-channel data, 

AMICA finds a relatively large number of components whose scalp projections can be 

fit well by an equivalent current dipole [28].  

To obtain the results we present here, we employed a soft probabilistic 

restriction to components whose best-fit equivalent dipole was located within of the 

cerebrum according to the Talairach atlas [70], assuming an average location error of 

7mm, and where the residual variance of the fit was below 15%. This approach is 

implemented in an automated processing pipeline that we have made available as open 

source software [114]. Here, a fraction of components accounting for scalp channel 

activity produced by eye movements were not eliminated by this prior and were 

removed manually before performing the group measure projection analysis 

(described below).  

8.2.8 Optimization and performance estimation  
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The optimization problem has a regularization parameter, 𝜆 in (1), found by 

cross-validation. We performed a 5x5-fold nested cross-validation to optimize its 

value over the range 28 to 2-5 in decrements of x2-0.25. The outer cross-validation 

served to obtain an estimate of the overall predictive performance of the models. Since 

no statistic that informs the model may include the testing data, to obtain realistic 

performance estimates both the artifact rejection and the AMICA decomposition had 

to be computed separately in each fold of the outer validation loop. This nested 

evaluation procedure is implemented in the BCILAB package [110]. 

8.2.9 Measure Projection Analysis  

The RSSD method produces predictive models that consist of a collection of 𝑆 

spatial filters 𝑊𝑐 – one per independent component – and corresponding filter inverses 

𝑃𝑐 which can be viewed as forward projections of the filtered signal back onto the 

sensors. We then tried to find spatial regions in which RSSD time-frequency weight 

maps for component processes with nearby equivalent dipoles were more similar to 

each other across participants than could be expected by chance. To achieve this,  we 

performed statistical significance testing on the pair-wise similarity of these RSSP 

maps in each spatial neighborhood. To model the spatial uncertainty from dipole 

localization as well as expected functional and anatomical differences across subjects, 

we first represented each of these dipoles by a truncated Gaussian density probability 

cloud with 12-mm standard deviation. We then calculated a similarity matrix between 
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RSSD time-frequency weight maps by applying this equation to their pairwise Pearson 

correlations: 

   (2) 

We then defined a measure of similarity in local neighborhood of each 

point in the MNI brain space using (3): 

           (3)

 

Here,  is the probability of RSSD equivalent dipole  being at location  

and  is the degree of similarity between importance maps associated with dipoles 

 and . Convergence  is the expected value of similarity at location

assuming that the joint probability of each dipole pair and  being located at 

can be written (factorized based on the component independence assumption) as

. 

Calculated convergence  is a scalar and is larger for areas in which the 

IC dipole importance maps are homogeneous (similar).  The probability of making an 

error of Type I may be obtained for each brain location by comparing  to a 
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distribution of surrogate convergence values  constructed from k 

randomized surrogates. Each surrogate convergence value is obtained by destroying 

the association between dipoles and their measure vectors by randomly selecting, with 

substitution, n surrogate measure vectors  and associating them with 

dipoles  . The surrogate similarity matrix  is obtained by calculating 

similarities between these surrogate measure vectors.  

By repeating the process above k times, a distribution of surrogate convergence 

values  at each brain location  is obtained and the significance of 

convergence  is obtained by comparing it to the right tail of this null distribution. 

This p-value is equal to the proportion of surrogate  values higher than the 

actual convergence value  

.               (4) 

We then selected brain locations with p < 0.002 and calculated the expected, or 

Projected, value of the importance map at these  locations using the formula 

below:  

                                          (5) 
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Where  is the vector of importance map projected to location .  

To simplify the analysis we then segmented these projected values into domains, each 

exhibiting similar importance maps, in a way that the centroid of each domain 

becomes less similar than Pearson correlation < 0.9 to any other domain (this was 

achieved by performing a modified version of Affinity Propagation clustering 

[reference] on pairwise correlation similarity of importance maps associated with 

significant brain locations). 

8.3 Results 

8.3.1 RSSD results  

Figure  8.2 depicts the most highly-weighted RSSD data features for a 

participant for whom estimated classification performance was 86.4% correct. Scalp 

maps show forward projections the 12 most highly-weighted components. For each 

component, the method produces an ‘importance map’ of weights over latencies and 

frequencies time locked to the switch cue. Because the RSSD is a generalized linear 

model and trained to predict +1 for data corresponding to HEARLOOK trials and -1 

for data LOOKHEAR trials, the resulting importance maps can be viewed as 

analogous to the contrast formed by the subtraction of HEARLOOK trials (switch 

to visual) minus LOOKHEAR trials (switch to auditory). The difference is that 

here, a multivariate rescaling (similar in effect to z-scoring) is performed, and a low-

rank and group-wise sparse prior is employed. 

( )M y y V∈
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The highest-weighted features in the model depicted in Figure  8.2 (A, B) 

weight a marked decrease in the amplitude of narrow alpha-band oscillations centered 

about 900 ms after Switch cue onsets. In about 90% of subjects a similar feature was 

associated with one or more posterior components. This decrease implies that in 

HEARLOOK trials, following the switch to visual attention power of the alpha band 

oscillation was decreased, as expected (whereas inversely, following LOOKHEAR 

Switch cues, alpha band activity increased).  

The timing of this transition is quite clearly defined by the alpha band features 

and differs between the occipital and the parietal components (C, F, H). Some other 

occipital components are weighted less strongly, possibly as a result of the 

component-wise sparsity assumption rather than because of their smaller extent, but 

show the same directional effect (I, J).  

One of the bilateral parietal components (G), however, shows the opposite 

pattern, with a clear, brief suppression of alpha power following the Switch cue, 

followed by an alpha rebound. The top right component (D) is a right temporal source 

that exhibits post-switch alpha flooding at two closely spaced alpha band frequencies 

following HEARLOOK cues (implying corresponding alpha blocking following 

LOOKHEAR cues), consistent with a source in auditory cortex [115]. Similar 

features were highly weighted in a fraction of subjects (20-30%). 
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Component E weights a decrease in low-frequency activity following 

HEADLOOK cues, likely reflecting a suppression of blinks or vertical eye 

movements following switches to visual attention. This effect was highly weighted in 

several subjects. 

Another phenomenon, expressed in nearly every subject, was an amplification 

of low-frequency occipital component activities (here, B and G) following 

HEARLOOK Switch cues; this might in some part reflect attention-related increase 

in the amplitude of visual stimulus-evoked potentials following the switch to visual 

attention. 

While the largest average attention-shift effects in the participant model of 

Figure  8.2 are clearly in occipital and parietal cortices, some temporal lobe features 

were also highly weighted for a subset of subjects, whereas lateral frontal and frontal-

midline component features were less consistently selected. However, about half of 

the participant models included some form of frontal theta band effect time-locked to 

subsets of the underlying audio/visual/cue stimuli (for example, Figure  8.3A and E), 

some of which (here, A) were harmonic to a prominent alpha band feature. A smaller 

fraction included frontal beta band features (Figure  8.3E). Highly-weighted switch-

related changes in frontal alpha power did not appear in these participant models. 

8.3.2 Measure Projection Analysis  
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Figure  8.4 shows seven Measure Projection Analysis ( Chapter 6) domains 

created from component equivalent dipole locations and RSSD maps across the 31 

participants. We used 12 mm Gaussian std. for dipole densities and the projected 

measure from significant voxels with 𝑝 < 0.01 were clustered using Affinity 

Propagation algorithm with maximum exemplar similarity of 0.8 correlation. Table  8.1 

contains different anatomical locations associated with domains. 

8.4 Discussion  

The single-participant results show some rather consistent and expected 

patterns, namely the alpha suppression in switch-to-visual conditions and 

corresponding alpha flooding in the periods before the switch. One of the less 

expected effects that was however replicated in at least 25% of subjects is an occipital 

alpha suppression around the time of the cue perception followed by a subsequent 

rebound. We believe that this depends on an inter-individually different strategy, 

namely whether subjects are watching for the cue to appear and subsequently 

withdraw attentional resources for a period of time, or whether they are listening for 

the cue (note that cues are bimodally presented), or whether they rely mostly on 

anticipation to predict and respond to the cue (since the cue timing is roughly 

predictable). The relatively rare occurrence of auditory cortex components could be 

explained by the relatively weak signal emitted from this area, combined with the 

relatively low difficulty of the task, which conceivably does not achieve maximum 
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alpha modulation. Systematic differences in frontal theta are among the least expected 

effects, yet expressed quite frequently upon closer inspection (although not very 

consistently). The near-complete absence of frontal alpha modulation could be 

attributed to the relative functional invariance of these areas under the changes in 

sensory modality investigated here. 

8.5 Conclusion 

The work presented here is the fusion of two new brain imaging methods that 

are both general by themselves yet synergize with each other as shown. The RSSD 

method was created to help bridge the gap between traditional techniques from the 

EEG-based Brain-Computer Interfacing (BCI) or Cognitive State Assessment (CSA) 

fields and modern machine learning aided brain imaging. BCI/CSA are still dominated 

by algorithms that frequently require heuristics for time window and/or frequency 

band selection – limitations that can now be overcome by use of large-scale 

optimization and sufficiently good prior assumptions. Machine learning aided brain 

imaging on the other hand is still in its very infancy, especially when applied to EEG 

data, which is still plagued by the reputation of being a low-resolution measure – in 

part due to the relatively low-end analysis approaches that have been applied in the 

past; again, this is a limitation that can be overcome as has been demonstrated here as 

well as in other recent work. 
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8.7 Figures 

 

Figure  8.1. Time line of the task. The dotted line indicates the currently attended 
modality, and its changes in response to audiovisual ‘HEAR’ and ‘LOOK’ cues.  
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Figure  8.2. Best-classifying component scalp maps and their time/frequency weights, 
learned using RSSD for one participant, exhibit a variety of attention switch-related 
time/frequency effects across at least 12 maximally independent EEG components. 
The model from which each component originated is indicated in brackets. Scalp maps 
show the normalized scalp distribution of the forward projection of the component 
signal (non-contributing time/frequency points are shown in green). Time/frequency 
plots here show the relative weighting of time/frequency regions across latencies time-
locked to the HEAR or LOOK cues which were presented at 0 ms (solid vertical line). 
Components are sorted by decreasing maximum absolute weight (in English reading 
order). The positively weighted direction is HEARLOOK; thus, switching attention 
to the visual stream was predominantly associated, as expected, with blocking of 
narrow-band alpha (circa 10-Hz) oscillations in posterior cortical processes (dashed 
vertical lines), as well as with spectral changes in other frequency bands. 
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Figure  8.3. Frontal source features were highly weighted in many though not in all 
subjects. For example, in this participant the highly-weighted features included frontal 
midline theta bursts (G), as well as beta bursts (E) aside from expected occipital and 
parietal alpha effects (A,B,D). 
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Figure  8.4. Spatial distributions and exemplar voxel time-frequency weight maps for 
seven domains learned by affinity propagation from MPA of the component 
equivalent dipole locations and RSSD maps across the 31 participants. 
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Table  8.1. Anatomical locations associated with domains in Figure  8.4. 

Domain Anatomical Area(s) Brodmann Area(s) 
1 R Superior Parietal Gyrus (0.26) 

L Precuneus (0.10) 

L Superior Parietal Gyrus (0.10) 

R Precuneus (0.09) 

L Superior Occipital Gyrus (0.09) 

R Angular Gyrus (0.08) 

L Cuneus (0.07) 

BA 31 (0.39) 

BA 18 (0.13), Secondary visual (V2) 

BA 23 (0.13) 

BA 30 (0.11) 

BA 7 (0.09), Somatosensory Association 

2 R Middle Occipital Gyrus (0.45) 

R Superior Occipital Gyrus (0.24) 

R Lingual Gyrus (0.19) 

BA 18 (0.36), Secondary visual (V2) 

BA 19 (0.20), Associative visual (V3) 

BA 30 (0.17) 

BA 31 (0.13) 

BA 17 (0.09), Primary visual (V1) 

3 R Inferior Occipital Gyrus (0.23) 

L Lingual Gyrus (0.18) 

Cerebellum (0.14), R Lingual Gyrus 

(0.12), R Middle Occipital Gyrus (0.10) 

BA 18 (0.47), Secondary visual (V2) 

BA 17 (0.22), Primary visual (V1) 

BA 19 (0.13), Associative visual (V3) 

BA 30 (0.08) 
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Table  8.1., continued. 

Domain Anatomical Area(s) Brodmann Area(s) 

5 R Middle Occipital Gyrus (0.51) 

R Angular Gyrus (0.31) 

R Middle Temporal Gyrus (0.11) 

BA 39 (0.43) 

BA 19 (0.22), Associative visual (V3) 

BA 37 (0.19) 

BA 22 (0.14), Auditory processing 
6 R Middle Frontal Gyrus (0.92) 

R Inferior Frontal Gyrus (0.06) 

 

BA 9 (0.59) 

BA 8 (0.24), Includes Frontal eye fields and 

Lateral and medial supplementary motor 

area (SMA) 

BA 10 (0.12) 

7 R Postcentral Gyrus (0.65) 

R Supramarginal Gyrus (0.32) 

BA 3 (0.30), Primary Somatosensory 

BA 43 (0.21), Subcentralis 

BA 4 (0.15), Primary Motor 

BA 40 (0.15), Spatial and Semantic 

Processing 

BA 13 (0.08), Inferior Insula 

BA 2 (0.07), Primary Somatosensory 
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Chapter 9  

Network Projection 

 

9.1 Introduction 

 Analysis of functional brain network dynamics has become an important topic 

in Cognitive Science and EEG analysis [116]. Functional connectivity is related to the 

correlations in activity (e.g. EEG, fMRI) between brain regions and is inherently 

symmetrical. In contrast, Effective connectivity relates to causal dependencies 

between brain regions during information processing and is inherently asymmetrical.  

 Various measures such as correlation, coherence, Granger Causality [117, 

118], Partial directed coherence [119] and Generalized partial directed coherence 

[120], have been proposed to investigate functional and effective connectivity.  These 

measure may be applied either to EEG channel data or EEG source derived from a 

source separation method such as ICA [121]. Using EEG source activities for 

functional or effective connectivity is more meaningful and is shown to results in less 

false positives [122]. 

 Group-level analysis of EEG source connectivity is a relatively recent topic. In 

contrast to EEG source measures such as ERP and ERSP that are associated with a 
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single cortical source, connectivity measures are associated with a pair of cortical 

sources. This complicates their analysis with methods such as simple clustering. Each 

EEG group-level connectivity analysis algorithm is devised to work with a subset of 

source estimation and connectivity estimation approaches, taking into account the 

limitations and underlying assumptions of each approach. For example, group-level 

analysis of “lagged phase synchronization“ index [123, 124] works in conjunction 

with  eLoreta [123] and several method exists in DCM framework  [125, 126] to 

perform group-level connectivity analysis [127, 128]. 

In [129], Thompson el al. introduced a method based Bayesian clustering for 

analyzing effective connectivity for a group of subjects based on EEG equivalent 

dipole sources obtained from ICA scalp maps. The method was applicable to 1-D 

features such as time-varying dDTF [11, 12] measure in a single frequency band. Here 

we propose Network Projection Analysis (NPA), a generalization of Measure 

Projection Analysis (MPA) to pairs of brain dipolar sources for group-level analysis of 

EEG connectivity. NPA is applicable to connectivity measures with arbitrary 

dimensions (e.g. 2-D time-frequency dDTF). 

9.2 Methods 

Network Projection Analysis (NPA) is based on the same concepts, 

assumptions and mathematical framework as MPA (see chapter [chapter number 

needed], also see [130, 131] for a precursor to NPA). The two main differences 
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between NPA and MPA are (a) projected entities in NPA are network connectivity 

measures that are assigned to ordered pairs of brain sources, where in MPA projected 

entities are measures associated with single brain sources, (b) NPA projects into 

ordered pairs of anatomically selected brain regions (ROIs, e.g. anterior cingulated to 

left orbitofrontal) while MPA projects into individual brain areas or voxels. Because 

of this NPA does not require the domain creation step employed in MPA. 

For a number of measure vectors 𝑀𝑖 , 𝑖 = 1. .𝑁, e.g. dDTF, each associated 

with a ordered pair of ICs from the same subject, 𝐷𝑗: 𝐼𝐶𝑎 → 𝐼𝐶𝑏 , 𝑗 = 1. .𝑁, , the 

projected measure < 𝑀(𝑦𝑘) > for a directed  pair of ROIs, 𝑦𝑘:𝑅𝑂𝐼𝑔 → 𝑅𝑂𝐼ℎ, 𝑘 =

1. .𝑄 is defined as 
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where 𝑃𝑖,, 1 = 1. .𝑁 is the probability that 𝐼𝐶𝑎 of 𝐷𝑗: 𝐼𝐶𝑎 → 𝐼𝐶𝑏 is located inside 𝑅𝑂𝐼𝑔 

of 𝑦𝑘:𝑅𝑂𝐼𝑔 → 𝑅𝑂𝐼ℎ and 𝐼𝐶𝑏 is located inside 𝑅𝑂𝐼ℎ. Assuming these two probabilities 

to be independent, 𝑃𝑖can be calculated as 

 (     ) (     ) i a g b hP p IC is located in ROI p IC is located in ROI= . (2) 

Figure  9.1 shows a sample ordered ROI pair (from left superior frontal region 

to right precentral area) and the highest contributing ordered dipole pairs to it (dipole 
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pairs with the largest 𝑃𝑖). Dark arrows show the direction of the contributing dipole 

pairs. 

 If we follow the truncated Gaussian dipole probability density assumption used 

in MPA (see  Chapter 6), each of these probabilities can be numerically calculated by 

summing up Gaussian probability densities for each IC at locations associated with 

each ROI. 

  The measure convergence quantity,𝐶(𝑦), indicates the expected value of  

similarity 𝑆 between measures 𝑀𝑖 projected into directed ROI pair 𝑦𝑘: 
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In this equation 𝑆𝑖,𝑗 is the similarity (e.g. correlation, mutual information) 

between measures 𝑀𝑖 and 𝑀𝑗. We seek directed ROI pairs were the value of 

convergence, 𝐶(𝑦𝑘), is larger than what could be obtained by chance. The significance 

of his value may be calculated, in a manner similar to MPA (equation A.3 in  Chapter 

6), by comparing  𝐶(𝑦𝑘) to a distribution of 𝐿 surrogate converge values 𝐶�́�(𝑦𝑘),𝑣 =

1. . 𝐿: 
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 After p-values are calculated for each directed ROI pair, they may be corrected 

for multiple comparisons across Q pairs and only ROI pairs with a significant measure 

convergence (e.g. p<0.05 after FDR correction) selected for further analysis. Since 

is a scalar value and often has a much lower dimension than measure value

, the multiple comparison problem is more manageable when dealing with 

convergence values. 

9.3 Results 

 Graph-normalized Direct Directed Transfer Function (dDTF) [11, 12], a 

frequency-domain measure of multivariate Granger-causal relationships, time-locked 

to correct and incorrect responses from 128-channel (256 Hz) EEG data collected 

from 24 subjects (29 sessions) performing a visual letter two-back task with auditory 

feedback [132, 133] (see Figure  9.2 for more information about the experimental 

paradigm), was kindly provided us by Tim Mullen (same data used in [129]). Using 

SIFT toolbox [111, 131], time-varying dDTF was estimated on independent 

components (ICs) using a sliding-window vector autoregressive (VAR) model with a 

500 ms window length and 30 ms step size producing 80 time points. The dDTF was 

integrated over the theta band (3-7 Hz) and modeled as a smooth function of time via a 

penalized B-spline [129].  

Before ICA calculation data had gone through zero-phase FIR high-pass 

filtering at 1 Hz and ICA was calculated using Infomax algorithm [20] and response-

( )C y

( )M y
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locked data (-2 to 2 seconds) were subjected to Infomax Independent Component 

Analysis (ICA). A single (or dual symmetric) equivalent dipole model was then fit to 

each independent component (IC) using EEGLABʼs DIPFIT2 function. ICs 

corresponding to artifacts such as eye blinks and muscle activity, and those with a 

poor dipole fit (> 15% residual scalpmap variance after dipole model fitting, or lying 

outside brain volume) were excluded from the analysis. 

The data consisted of 3055 ordered IC-pairs, corresponding to 257 total 

equivalent dipoles, and each associated with 80 dDTF values from -750 to  1700 ms. 

We first calculated the  probability that each of these dipoles s located in an ROI from 

AAL atlas [134] assuming a truncated Gaussian probability density model with 12 mm  

std. with truncation at 3 std. The probability that each ordered pair of dipoles is located 

in each ordered pair of ROIs was then calculated by equation (2). 

Figure  9.3 shows total ordered dipole pair density in each ordered ROI pair. 

Relatively few ROI pairs contain the majority of this density. In fact 51% of total 

dipole pair density is concentrated in the top 10% ROI pairs.  

For NPA results for an ROI pair to be meaningful, a large enough number of 

subjects should have dipole pairs that contribute to the pair. Hence for subsequent 

analysis we selected a subset of ROIs to which the majority of subjects have each 

contributed at least 0.02 ordered dipole pairs. We then calculated the NPA 

convergence significance for the 199 selected ROIs using equation (4).  
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Figure  9.4 shows the ROI-pairs with significant (𝑝 < 0.05, FDR corrected) 

effective time-varying theta band (5-7 Hz) connectivity calculated with dDTF. Gray 

background indicates connectivity between sources inside the same ROI. Red traces 

highlights time period where dDTF value is significantly higher than -750 to -500 ms , 

relative to subject response, baseline (z-score > 3). 

9.4 Discussion 

The dDTF values in our analysis were time-locked to subject incorrect 

responses. For this class of paradigms, it is often assumed that in the majority of trials 

subjects become aware of their error during or shortly after the response.  In this 

experiment there is also an auditory feedback provided about 240 ms after the 

response.  Our results in Figure  9.4 point to the causal involvement of Medial 

Cingulate Cortex (MCC) in error processing. This is in agreement with functional 

imaging studies results that find negative affect, pain and cognitive control activate 

anterior midcingulate cortex (aMCC) and anatomical evidence that suggests aMCC is 

a hub that connects reinforcement-related information (e.g. errors) to motor areas 

associated with expressing affects and executing goal-directed behavior [135]. Figure 

 9.4 in fact shows a significant causal influence from MCC (labeled as Cingulum Mid. 

L & R) to supplementary motor areas. The same connectivity pattern for MCC was 

also found in [129] by applying Bayesian spatiotemporal model to the exact same data 

(see Figure  9.5).  
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Here we showed a method for group-level analysis of effective connectivity 

networks associated with EEG sources obtained by ICA and dipole localization. To 

our knowledge the only other method that works on networks of dipolar sources is the 

Bayesian spatiotemporal method [129]. In this method a dimensionality reduction step 

has to be applied to the connectivity measure in order to facilitate Bayesian estimation 

of model parameters. In comparison, NPA does not require any dimensionality 

reduction and is able to handle connectivity measures with arbitrary dimensions. This 

is because in NPA, as in MPA, significance calculation is performed in the similarity 

(‘kernel’) space. 

A future direction for NPA is to be used in the EEG Search Engine proposed in 

chapter [chapter number needed] to allow discovery of connectivity patterns and 

networks similar to a given query pattern. This can be achieved by using NPA and 

extend the MPA-based similarity estimation method proposed in that chapter to 

networks of brain ROIs.  

9.5 Figures 
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Figure  9.1. Sample ordered ROI pair (from left superior frontal region to right 
precentral area) and the highest contributing ordered dipole pairs to it. Dark arrows 
show the direction of the contributing dipole pairs. 
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Figure  9.2. A schematic and description of two-back experiment paradigm, reproduced 
from [133]. 
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Figure  9.3.  Total ordered dipole pair density in each ordered ROI pair. Relatively few 
ROI pairs contain the majority of the density. 
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Figure  9.4. ROI-pairs with significant (𝑝 < 0.05, FDR corrected) effective time-
varying theta band (5-7 Hz) connectivity calculated with dDTF. Gray background 
indicates connectivity between sources inside the same ROI. 
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Figure  9.5. Reproduced from [129]: “Time-varying theta-band (3-7 Hz) dDTF group-
level inferences with 99% confidence intervals. Mean source locations with Talairach 
coordinates and anatomical designations (Talairach Daemon) are shown on the 
marginals. Translucent regions indicate time intervals that deviate significantly from 
the [-750 to -500] ms baseline (p<0.01, uncorrected).” 
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Chapter 10  

Optimal Low pass Filtering 

 

10.1  Introduction 

Event-Related Potentials, or ERPs, are calculated by averaging time-locked 

channel or independent component (IC) activations for a number of trials. Since the 

number of trials being averaged is limited, the average still contains some noise. A 

number of methods have been proposed to ‘de-noise’ ERP data. These include 

weighted averaging [136], multi-channel noise subspace removal [137], sorted 

averaging [138], point-wise median [139] and wavelet-based de-noising [140].  

A simple way to reduce ERP noise is to apply a low-pass filter. It is common 

practice to low-pass ERPs at around 20 Hz [141-143]. Here we introduce a method to 

find the optimal low-pass filter frequency, evaluate its performance and see how it can 

improve Measure Projection Analysis of multi-subject ERP data. 

10.2  Methods  
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Based on the Scientific Method [144], scientific models should be compared 

based on their predictive power. An 'EEG model' hence should predict the EEG 

patterns that will be observed at each brain area associated with an experimental event 

or state. A function that has a number of trial EEG activations (from channels or ICs) 

as its input and outputs a pattern that predicts (estimates) an unseen EEG trial is an 

example of an EEG predicative mode. One choice for this function, 𝐹1, for trial data  

𝐷1..𝑁 is the average: 

 1 1.. 1 1.. 1..( ,[...]) ( )N N NF D F D D= =  (1) 

But there may be functions (models) that offer a better predictive power and 

hence favored by the Scientific Method. A simple example of such a function is 

‘optimal low-pass’: 

 2 1.. 2 1.. 1..( ,[...]) ( ) Low-pass filter( , )N N NF D F D D f= =  (2)  
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 This equation refers to leave-one-out cross-validation in order to find the low-

pass frequency threshold that maximizes the sum of reduction of variance ratios 

(ROVs) across trials. Here the ratio is used since the absolute reduction of variance 

value (the numerator in equation 3) is more sensitive to outlier trials with unusually 

high amplitudes. 

10.3  Results 

 We used the single trial data from one session of the RSVP experiment 

described in [48] (the same study analyzed in  Chapter 6), time locked to the onset of 

visual target detection. Figure  10.1 shows leave-one-out cross-validation ROV values 

at different frequencies for three ICs. For each IC there is a clear pick at a certain 

frequency. Notice how the two mirror-image ICs have their peak ROV at the same 7 

Hz frequency. Figure  10.2 shows the original (unfiltered) ERP (thin black) and 

optimal low-passed filtered ERP (thicker magenta) for one of these ICs. 

 We performed 500 Monte-Carlo 20-Fold cross-validations (using 'Mcreps', 

500,  'Kfold', 20 in Matlab crossval() function) on 30 ICs with highest signal variance 

in the whole experiment. On each fold the optimal low-pass frequency was calculated 

by performing a leave-one-out nested cross-validation on the training data and the 

ROV was calculated on the unseen (test) data. Figure  10.3 shows the ROV results in 

comparison often-used 20 Hz low-pass filtering of ERP. It shows that 29 of these 30 

ICs have a significantly better test ROV than 20 Hz low-pass (error bars depicting one 
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std. of test ROV were plotted but due to their small size they cannot be  seen in the 

figure). 

 Figure  10.4 shows the optimal low-pass frequencies for the first 30 ICs of the 

session (x axis) and the final percent reduction of variance (ROV) after optimal 

filtering. Negative ROV for an IC indicates that its ERP does not have predictive value 

for unseen trials. Interestingly, for most ICs in this experiment the optimal low-pass 

frequency was under 8 Hz, significantly lower than the often-used 20 Hz low-pass. 

Also, eye-related and noise ICs were assigned an optimal frequency lower than 3 Hz, 

in effect eliminating their (noise) ERP. 

Since noisy ERPs look more dissimilar to each other, the presence of ERP 

noise has an impact on convergence values and their significance calculated with 

measure projection analysis (MPA). We investigated this effect by performing MPA 

separately on 20-Hz low-passed and optimal low-passed ERPs from the RSVP study. 

Figure  10.5 shows brain locations for these two conditions with ERP convergence 

significance 𝑝 < 0.05 (FDR corrected). MPA using optimal low-pass ERPs, shown in 

Figure  10.5 bottom leads to 345% more significant locations compared to MPA results 

with 20-Hz low-passed ERPs.  

Figure  10.6 shows areas with significant (𝑝 < 0.05, FDR corrected) ERSP 

convergence in green and areas with significant ERP convergence in red for 20-Hz 

low-passed (top) and optimal low-passed (bottom). You can see that there is a 

considerable overlap between brain areas that are associated with significant ERP and 
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ERSP patterns across subjects. Also, ERP results with optimal low-pass had three 

times more overlap with ERSP areas (236 significant voxels overlapped compared to 

78 voxels for 20-Hz low-passed ERP results), suggesting that using optimal low-pass 

filtering produces less false negatives. 

10.4  Discussion 

Our results emphasize the importance of eliminating noise from ERPs before 

performing MPA. Optimal low-pass filtering is simple way to achieve this goal by 

eliminating high-frequency noise.  
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Figure  10.1. Sum of leave-one-out cross-validation ROVs at different low-pass 
frequencies for three ICs. 
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Figure  10.2. Original ERP (thin black) and optimal low-passed filtered ERP (at 7 Hz, 
thicker magenta) for an IC from the RSVP experiment. 
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Figure  10.3. ROV comparison between optimal and 20 Hz low-pass filtering of ERPs 
from the top 30 ICs with highest total signal variance in the whole experiment using 
500 Monte-Carlo 20-Fold cross-validations. Error bars depicting one std. of test ROV 
were plotted but due to their small size they cannot be seen in the figure. 
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Figure  10.4. Optimal low-pass frequencies for the top 30 high variance 30 ICs (x axis) 
and the final percent reduction of variance (ROV) after optimal filtering. Negative 
ROV for an IC indicates that its ERP does not have predictive value for unseen trials. 
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Figure  10.5. (top) Areas with significant (𝑝 < 0.05, FDR corrected) MPA 
convergence values using ERPs low-passed at 20-Hz. (bottom) Areas with significant 
(𝑝 < 0.05, FDR corrected) MPA convergence values using optimally low-passed 
ERPs. 
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Figure  10.6. Areas with significant (𝑝 < 0.05, FDR corrected) ERSP convergence in 
green and areas with significant ERP convergence in red for 20-Hz low-passed  (top) 
and optimal low-passed (bottom). 
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Chapter 11  

Collaborative Averaging 

 

11.1  Introduction 

In the previous chapter we saw that a function 𝐹(𝐷) of data samples 𝐷1..𝑁 can 

predictor an unseen sample 𝐷𝑁+1 better than the average of available samples 𝐷1..𝑁������. In 

this chapter we extend this notion and demonstrate how data from other subjects 

performing the same cognitive task may be used to better predict new single trial data 

from a new subject. 

11.2  Methods 

Most results in EEG analysis are based on the assumption that subjects have 

similar (although not identical) EEG dynamics, hence we may use the data from other 

subjects to construct a predictive function: 

1 2
1.. 1.. 1.. 1..( ,[...]) ( ,[ , ,...])self other other

N N M QF D F D D D= . (1) 

We can use the average pattern of all other subjects in the same brain area and 

combine it linearly with the pattern from the subject: 
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1 2 1 2
1.. 1.. 1.. 1.. 1.. 1..( ,[ , ,...]) ( , , ,...)self other other self other other

N M Q N M QF D D D F D D D= .  (2)   

The average pattern from all other subjects at a particular brain location can be 

obtained from Measure Projection: 

 1 2 1

1

, ,...,
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i i
other other otherZ i
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p d
D D D

p

=

=

=
∑

∑
 (3) 

where 𝑑𝑖  is an equivalent dipole associated with an IC  from  𝐷𝑜𝑡ℎ𝑒𝑟1..𝑜𝑡ℎ𝑒𝑟𝑍  and 𝑝𝑖 is 

the dipole density of this source at the location of the IC associated with data 𝐷𝑠𝑒𝑙𝑓. 

We can use the average pattern of all other subjects in the same brain area and 

combine it linearly with the pattern from the subject:  

1 2 1 2
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Alternatively, instead of using the average of all other subjects, we can use a 

weighted linear combination of patterns from other subjects and the new subject at the 

same brain area:  

1 2 1
2 1.. 1.. 1.. 1 1.. 2 1.. 1..( , , ,...]) ...self other other self other otherZ

N M Q N M Z MF D D D D D Dα α α= + + +    (6) 

where 

 
1 1

arg max( ( , )),  0 1
N Z

i
i i

ROV iα α α
= =
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. (7) 

 

One way to solve this problem is by performing a grid search over iα  values. 

The other way to solve it is to use convex solver, such as CVX Matlab toolbox [145]. 

This is because equation (7) is the sum of quadratic functions of �⃗� and hence convex 

in this variable. Compared to grid search, this approach offers faster and more accurate 

results. It also enables scaling the individually-weighted collaborative approach to 

large number of subjects since grid search quickly becomes infeasible as the volume 

of search space grows exponentially with the number of weights to be calculated.  
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11.3  Results 

We selected a sample IC from a session of the RSVP experiment described in 

[48] (the same study analyzed in the previous chapter), time locked to the onset of 

visual target detection. Figure  10.1 shows the scalp map and the equivalent dipole 

location associated with this IC. We then optimally low-passed all the ERPs in the 

study with the method described in  Chapter 10 and used measure projection to 

calculate the expected (projected) ERP at the location of the selected IC from other 

sessions of the study.  

Figure  11.2 shows the optimally low-passed ERP of the sample IC (at 7 Hz) in 

red and the projected ERP from all other study sessions, scaled to have the same 

polarity and L-2 norm, in green. You can see that they are quite similar to one another.  

To find out if using collaborative averaging formula (2) can lead to a better 

results we selected subsets of trials with varying length from the total of 118 single 

trials of the selected IC and found the optimal (maximum ROV) weight for combining 

the average of ERPs of other sessions with the average of trials from each subset. The 

optimal weight was calculated by grid search on 11 uniformly distributed 𝛼 values 

between 0 and 1 (see equation 4). The average of ERPs of other sessions used here 

was normalized to have the same polarity (positive inner product) and L-2 norm as the 

average of trial subset.   
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Figure  11.3 shows correlations between the average ERP from all (118) trials 

and ERPs calculated by averaging (red) and collaborative averaging (green) subsets of 

varying sizes of single trials. We randomly selected trial subsets for 200 iterations 

(permutations without substitution). Error bars showing one std. are plotted but are too 

small to observe. For subsets with 30 trials or less there is a marked improvement in 

terms of correlation with the ERP using all the trials. Figure  11.4 shows percent ROV 

improvement using collaborative averaging compared to regular averaging for 

different number of trials. Not only this value is over 100% for subsets with less than 

30 trials, but also collaborative averaging resulted in about 2% ROV improvement is 

ROV when using all the 118 trials, suggesting that collaborative averaging could be 

useful even when a large number of trials are available. 

Figure  11.5 shows how many more trials, compared to using collaborative 

averaging, are needed to achieve the same level of correlation with the ERP calculated 

from all 118 trials. As you can see in this figure, using collaborative averaging in some 

cases may result in an ERP improvement equivalent to having 6 times more single 

trials.  

Figure  11.6 shows the optimal weight for the average of other subjects, 1 − 𝛼 

in equation (4), obtained by collaborative averaging for different number of trials. It 

shows that when the number of trials is low, e.g.  less than 25, collaborative averaging 

weights the pattern from other subjects more than the pattern from the subject herself 

as the pattern from others is more reliable than subject ERP. Another interesting 
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observation is that even for large number of trials (e.g. 118) collaborative filtering is 

still using 20% of average pattern from other subejcts. 

We then tried the individually-weighted collaborative filtering method on the 

same sample IC data. In order to reduce the number of weight values to be estimated ( 

(and prevent overfitting) we calculated a single ERP for combined sessions of each of 

other subjects (6 other subjects , 14 sessions) with measure projection. We then 

weighted the six resulting ERP patterns separately and found the weight vector that 

maximized leave-one-out cross-validation ROV. For each of the subjects, six weight 

values uniformly distributed between 0 and 1 were searched, resulting in 66=46656 

total possible weight combination for all subjects.  

Figure  11.7 shows target ERP of the select IC from all trials (gray), the first 30 

trials (blue) and collaborative averaging using the first 30 trials of the subject and 

individually weighted patterns from other subjects. The green rectangle highlights a 

period where the ERP from 30 trials contains extraneuous peaks that are corrected 

when using collaborative averaging. 

Figure  11.8 shows correlations between the average ERP from all (118) trials 

and ERPs calculated by averaging (black), collaborative averaging using the average 

ERPs of other sessions (red) and collaborative averaging with each subject weighted 

separately (green). Statistics are for 7800 random permutations (without substitution) 

and error bars show 1 std. For this sample IC, when the number of trials was 30 or 

less, weighting subjects individually resulted in a better correlation with the average 
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ERP from all trials (𝑝 < 4.3 ∗ 10−21 from paired t-test) compared to  either 

collaborative averaging using the mean of other subjects or regular ERP averaging. 

Figure  11.9 shows cross-validation reduction of variance (ROV) values for 

different numbers of trials and different pattern estimation methods. CVX convex 

optimization toolbox [145] was used for performing collaborative averaging method in 

this figure . For number of trials less than 118, the individully weighted collaborative 

ERP resulsted in a better ROV than the Average collaborative ERP method, and both 

did better than regular ERP method (paired t-test p<0.01). For 11 trials, Average 

collaborative ERP method performs similarly to the regular ERP (p=0.11), while 

Individually Collaborative method performs btter thanboth (p<0.01).  

Figure  11.10 shows cross-validation reduction of variance (ROV) values for 

another IC and different numbers of trials and three pattern estimation methods. For 

number of trials equal or less than 80, both collaborative ERP resulsted in a better 

ROV than the regular ERP method (paired t-test 𝑝 < 0.05). 

11.4  Discussion 

We showed how a more predictive ERP pattern for a source may be learned by 

using Measure Projection Analysis to combine ERP patterns from other subjects 

estimated at the location of the source. Since the underlying assumptions are the same, 

our results are likely to generalize to other EEG measures such as ERSP and ITC and 

also to BCI classifier patterns.  
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When the number of trials is low, using this collaborative approach can 

provide significant improvements in estimation of EEG dynamics. In the case of BCIs 

this could result in better classification accuracy and shorter training/calibration time, 

as shown with other collaborative BCI learning methods [2, 146, 147].   In EEG 

analysis this could enable investigating events with lower number of occurrences. 

However, statistical methods need to be adjusted in order to enable the calculation of 

significance values for data learned through collaborative filtering. We also showed 

that in some cases (Figure  11.9), the collaborative approach can result in statistically 

significant improvements even when a relatively large number of trials (here 118) are 

available.   

Here we only considered using data from other subjects in the same 

experiment, but the same principles still apply to using data from subjects in other 

experiments during similar cognitive events and states. This offers an exciting 

prospect of combining data across a large number of partially overlapping 

experimental paradigms. In [HED chapter number here] we propose a tagging scheme, 

based on popular cognitive ontologies, that enables the discovery of similar events 

from other experiments.  

The use of convex optimization for collaborative pattern estimation also 

enables employing various regularization methods, such as L-1, L-2, and trace norm 

penalties to prevent over-fitting. An alternative method to prevent over-fitting is to 
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apply subject weights indirectly and through functions that relate differences in subject 

variables, such as age, gender… to weights: 

1..
( )self i

i j j j j
j P

w G q qα
=

= −∑  (8) 

here iα is the collaborative weight for subject 𝑖, 𝑃 the number of different subject 

variables  of interest (e.g. age, gender, years of experience) 𝑞𝑗 and 𝐺𝑗is a ‘transfer’ 

function of the difference between the subject at hand and subject 𝑖 in quantity 𝑞𝑗 .  

 𝐺𝑗 may be chosen to be a simple linear function of the difference in the 

quantity of interest, possibly with some additional weighting: 

( ) ( )self i self i
j j j j j jG q q q qβ− = − .   (9) 

Another appropriate form of 𝐺𝑗, for dealing with quantities where some 

saturation is expected (e.g. age), is the logistic transfer function: 

( )

1( )
1

self i
j j j

self i
j j j q q

G q q
e β− −

− =
+

. (10) 

In both cases the new set of weight parameters 𝛽𝑖 may be learned by cross-validation.  
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Figure  11.1. sample IC and its equivalent dipole in the right occipital region. 
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Figure  11.2. Optimally low-passed ERP of the sample IC in red and the projected ERP 
from all other study sessions, scaled to equal L-2 norm, in green.  
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Figure  11.3. Correlations between the average ERP from all (118) trials and ERPs 
calculated by averaging  (red) and collaborative averaging (green) using the average 
ERPs of other sessions. Error bars showing 1 std. are plotted but are too small to see. 
Dark traces show results for sample iterations. 
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Figure  11.4. Percent ROV improvement using collaborative averaging compared to 
regular averaging for different number of trials. 
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Figure  11.5. Shows how many more trials, compared to using collaborative averaging, 
are needed to achieve the same level of correlation with the ERP calculated from all 
118 trials. 
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Figure  11.6. Optimal weight for the average of other subjects, obtained by 
collaborative averaging for different number of trials. 
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Figure  11.7. Target ERP of the select IC from all trials (gray), the first 30 trials (blue) 
and collaborative averaging using the first 30 trials of the subject and individually 
weighted patterns from other subjects. The green rectangle highlights a period where 
the ERP from 30 trials contains extraneuous peaks that are corrected when using 
collaborative averaging. 
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Figure  11.8. Correlations between the average ERP from all (118) trials and ERPs 
from a subset of trials calculated by regular averaging (black), collaborative averaging 
using the average ERPs of other sessions (red) and collaborative averaging with each 
subject weighted separately (green). Statistics are for 7800 random permutations 
(without substitution).  Dotted lines show 1 standard deviation after.  
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Figure  11.9. Cross-validation reduction of variance (ROV) values for different 
numbers of trials and different pattern estimation methods. For number of trials less 
than 118, the individully weighted collaborative ERP resulsted in a better ROV than 
the Average collaborative ERP method, and both did better than regular ERP method 
(paired t-test 𝑝 < 0.01). For 11 trials, Average collaborative ERP method performs 
similarly to the regular ERP (𝑝 = 0.11), while Individually Collaborative method 
performs btter thanboth (𝑝 < 0.01). 
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Figure  11.10. Cross-validation reduction of variance (ROV) values for different 
numbers of trials and different pattern estimation methods. For number of trials equal 
or less than 80, both collaborative ERP resulsted in a better ROV than the regular ERP 
method (paired t-test 𝑝 < 0.05). 
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Chapter 12  

Comparison of Averaging and 

Regression Techniques for Estimating 

Event Related Potentials 

 

12.1  Abstract 

The traditional method of estimating an Event Related Potential (ERP) is to 

take the average of signal epochs time locked to a set of similar experimental events. 

This averaging method is useful as long as the experimental procedure can sufficiently 

isolate the brain or non-brain process of interest. However, if responses from multiple 

cognitive processes, time locked to multiple classes of closely spaced events, overlap 

in time with varying inter-event intervals, averaging will most likely fail to identify 

the individual response time courses. For this situation, we study estimation of 

responses to all recorded events in an experiment by a single model using standard 

linear regression (the rERP technique). Applied to data collected during a Rapid Serial 

Visual Presentation (RSVP) task, our analysis shows: (1) The rERP technique 

accounts for more variance in the data than averaging when individual event responses 
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are highly overlapping; (2) the variance accounted for by the estimates is concentrated 

into a fewer ICA components than raw EEG channel signals. 

12.2  Introduction 

The Event Related Potential (ERP) averaging method for 

electroencephalographic (EEG) data [148] is one way to gain insight into how specific 

cognitive processes are related to brain electrical activity. Traditionally, the way of 

increasing the signal to noise ratio (SNR) of an ERP estimate is to average epochs 

time-locked to a stimulus class of interest. This technique places severe restrictions on 

the experimental protocol: only a small number of stimulus categories can be used, 

stimulus events must be well separated in time and all other cognitive processes must 

be held constant. Violating the latter conditions will cause the ERP to be estimated 

sub-optimally. Here we study using multiple regression as a way to overcome this 

limitation, extending the work of N. J. Smith [149]. In [150], Hinrichs et al. have 

suggested a highly similar approach for deconvolving fMRI responses. [151, 152] 

have suggested using separate regression models for each individual latency, such as 

massive univariate general linear analyses. [153] has proposed using Generalized 

Additive Models (GAMs). In [149], Smith offers a unified conceptual framework for 

ERP regression and shows how these different techniques relate to averaging for the 

purposes of ERP estimation. 
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We continue this discussion by applying linear regression and averaging to a 

real EEG dataset and exhaustively comparing the results of the two approaches. The 

goal is to make clear that in practice, regression can offer a significant performance 

increase compared to averaging. Indeed, as EEG experiments become more 

sophisticated, with many (intermittent or continuous) processes being monitored 

simultaneously, averaging ceases to be an effective option. Independent Component 

Analysis (ICA) [154] has become a popular and often effective method for separating 

EEG sources [21, 155]. Thus, we also compared how regression and averaging 

compare with one another in both ICA component activations (ICs) and EEG 

channels.     

12.3  Background 

12.3.1 A Problem With Averaging 

If events in an experiment occur sufficiently close in time to one another, the 

EEG brain responses to these events will overlap. Taking an average of these event 

time-locked epochs will produce a summed and/or blurred ERP estimate.  

12.3.2 Data 

The experiment is fully described in [156]. 127-channel EEG data were 

collected during a Rapid Serial Visual Presentation (RSVP) task involving satellite 

picture presentation. The subject was shown bursts of 49 satellite images in 4.1 

seconds (12/s.). In 60% of the bursts, a (flying airplane) target feature was randomly 



223 

 

 

added to one image. At each burst end, the participant indicated by button press 

whether or not that burst contained the target feature. During training, they were told 

whether they were correct or not.  

There were nine recorded event types in the experiment, listed by (event-code) 

event-description: (1) non-target stimulus, (2) target stimulus, (4) “no targets” button 

press, (5) “one target” button press, (6) trial block start, (16) trial start, (32) “correct” 

feedback given, (64) “incorrect” feedback shown, and (129) image burst start.  

12.4  Methods 

We calculated ERP estimates for a seven subject/12 session study across nine 

different events using averaging and linear regression with Ordinary Least Squares 

(OLS). This analysis was repeated for all 127 channels of EEG data and again for all 

127 ICs, derived by extended Infomax ICA [157]. We used five-fold cross-validation 

to obtain our performance figures: the ERPs were calculated with training data and 

validated on test data [158].    

12.4.1  Preprocessing 

First, we addressed the issue of outliers and artifacts.  We identified outlier 

data portions by two methods: Low Probability and Mutual Information Reduction 

(MIR). For the probability method we first whitened the data and performed a rank 

transform to obtain a two-tailed significance value for each sample. We then found 
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200 ms windows where the average log significance over all the sphered dimensions 

and time-frames was higher than 2.1 and marked them as outliers. For the MIR 

method, we first calculated the mutual information reduction index [28] in 2s windows 

with 80% overlap using the sphering matrix. Then we found regions with MIR Z score 

of lower than −1.5 and marked them as outliers. We discarded events occurring during 

or near outlier periods. Out of 23,477 events, 1,654 were identified as contaminated 

and discarded. The data were highpass filtered (−3 dB at 1 Hz) to reduce DC bias.     

All ERPs were estimated using the same maximum length, heuristically set for 

this analysis at 1 second (256 samples), from −125 ms to 875 ms around each event. 

This defined 256 variables per event. For nine event types, each regression or 

averaging model thus contained 2304 ERP parameters for each EEG channel or IC.  

12.4.2  Regression Framework 

First we looked at the case of only one event type, E1, producing an ERP 

response β1. The observed signal (IC or channel) y is then a linear transformation of 

β1 plus a Gaussian noise term, ε ∼ Ν(0, σΙ). 

 

β1 = [ β11  β12 ... β1N ]T      (1) 

y = A1β1 + ε        (2) 
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We position y and β1 as a column vectors of length M (the length of the data) 

and N (= 256) respectively. A1 is the M x N matrix of predictors, xmn, constructed from 

latency recordings. xmn has a value of 1 when the nth sample of ERP β1 is predicted to 

occur at latency m.  

If we want to estimate the response to more than one event type, we stack the 

βn in a column vector, and concatenate their corresponding An along the second 

dimension  

A = [ A1 A2 … An ]    (3) 

β = [ (β1)Τ  (β2)Τ ... (βn)Τ  ]T   (4) 

and subsequently  

y = Aβ + ε      (5) 

with least squares solution 

  βreg
  = (ATA)-1ATy ≅ β           (6) 

12.4.3  Performance Metrics   

We subtract the ERP estimates from the original signal to obtain a residual 

noise signal. The difference between the variance (power) of the original signal and 

the variance of the noise signal represents the variance accounted for by that ERP. We 
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use this Reduction of Variance (ROV), as our metric, with higher ROV corresponding 

to better performance.  

ROV ≡ (PData −  PNoise)    (7) 

The reason for using ROV instead of Signal to Noise Ratio (SNR)  

SNR ≡ PSignal /PNoise                     (8) 

is that we aren’t especially interested in maximizing the size of the ERP estimate (the 

“signal” in this case). ROV measures to what extent the estimate accounts for overall 

variance in the data. 

 For each event type in the experiment, we computed the ROV for averaging by 

extracting each epoch (yi) and subtracting the averaged ERP estimate βav from it. 

ε 
av

i = yi − βav     (9) 

ROVav = < var[yi] −  var[ε 
av

i] >       (10) 

where the mean is taken across all the events of that type. For regression, we 

computed a signal estimate  

yreg
 = Aβreg

     (11) 

then, extracted each epoch from the estimated signal (yreg
i) and the original signal (yi).  
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ε 
reg

i  = yi − yreg
i     (12) 

ROVreg = < var[yi] −  var[ε 
reg

i] >     (13) 

We use normalized estimates from (14) to identify which channels/ICs have 

the highest ROV percentage.  

ROV′ = ROV/var[yi]    (14) 

ROV′ of the top 20 channels/ICs from each dataset are averaged to obtain the final 

estimates for each event type.   For significance testing we applied a two-sample t-test 

(p < 0.01) to the cross-validation folds of all twelve datasets. 

12.5  Results 

12.5.1   ERP Estimates (Figure 2) 

Due to the 83-ms stimulus onset asynchrony, simple average responses to non-

target type 1 events had significant confound from overlapping responses. As shown 

in Figure 2, the averaged estimate does not reflect the ERP associated with a single 

non-target frame (Figure 1 shows graphically how this occurs). In this case, regression 

recovered a plausible visual response to each non-target stimulus event. Event type 6 

did not usually occur near any other experiment events. Here, as expected, regression 

and averaging gave similar results.  

12.5.2 Performance as Measured by ROV (Figure 3) 
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Event type 1 (Figure 3, top panel) shows the most significant difference 

between the two methods for both ICs and channels. For the most frequent event type 

1, regression has the advantage for both channel and IC measures. Compare the 

difference in the regression versus the average ERP (SSR) estimates in Figure 2 (top 

panel). The averaging method clearly did not estimate ERP for this event type. For the 

other event types, which are less affected by overlap, the two methods performed 

similarly. 

(1) Comparing IC and channel results, we notice a peak of ROV in the first 2-3 ICs for 

each stimulus type. Since ICs are thought to typically represent the synchronous field 

activity across a single cortical patch [159], broadly projected to the scalp electrodes 

by volume conduction, we may expect the regression result to show higher ROV for a 

smaller number of ICs than scalp channels. The ROV for channels is indeed 

distributed across a larger number of channels. This is expected, since EEG signals at 

scalp electrodes that are physically close are highly correlated [155]. 

(2) Normalized ROV is quite low across the board: no more than 12% of the variance 

in any channel or component signal is accounted for by either method, and usually 

much less. This is consistent with the frequent observation that most EEG signal 

variance is not produced by time and phase locked responses to external events. 

12.6  Discussion 
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As demonstrated in [149], OLS regression can be thought of as a natural 

extension of ERP averaging that can be applied in a larger range of experimental 

conditions. Algebraically, OLS reduces to averaging when there is no overlap between 

experimental responses (e.g. Figure 2, bottom panel).  

Our ROV analysis showed that regression is capable of explaining more 

variance in experimental data than  averaging. This overall comparison is limited in 

the sense that it cannot tell us whether a certain portion of an ERP waveform is best 

represented by either method. In other words, whether or not a specific peak in a 

response is better estimated by averaging or regression cannot be decided from this 

analysis alone. The potential benefit of regression is only clear when considering an 

ERP as a whole and should depend on its degree of overlap with responses to other 

experimental events.    

Possible extensions: Since OLS is the simplest estimator beyond averaging, the 

predictive performance of our model might be expected to increase by utilizing more 

modern techniques. A problem with estimating EEG parameters by OLS is that 

artifacts can drastically affect its L2-norm error function. The Least Absolute 

Deviations (LAD) [160] technique instead relies on an L1-norm error function and 

thereby may provide a more robust estimator. The performance of the model is also 

highly sensitive to its number of parameters. Introducing regularization on the ERP 

parameters would be a reasonable way to control for this effect and discourage over-

fitting.     
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12.7  Conclusion 

When overlapping evoked responses are produced by experimental events that 

are closely spaced in time, multiple stimulus events may contribute to any given 

average event-related potential (ERP) feature. Some additional assumption is 

necessary to properly segregate this variance. The regression (rERP) technique 

assumes that ERPs to distinct events sum linearly. In all other ways, the rERP and 

ERP measures are identical. Yet, as we show here, the rERP approach can account for 

more total data variance. This shows that the rERP assumption is a viable one for 

analyzing data from rich and complex EEG data-sets. 

 Chapter 12, in full, is a reprint of the material as it appears in M. D. Burns, N. 

Bigdely-Shamlo, N. J. Smith, K. Kreutz-Delgado, S. Makeig, "Comparison of 

averaging and regression techniques for estimating Event Related Potentials," 

Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual 

International Conference of the IEEE , vol., no., pp.1680,1683, 3-7 July 2013 

doi: 10.1109/EMBC.2013.6609841. The dissertation author was the secondary 

investigator and author of this paper. 

12.8  Figures 
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Figure  12.1. Illustrating how averaging can produce an incorrect ERP estimate in the 
presence of overlapping activity due to closely spaced cognitive events. The latency 
window is a typical EEG epoch in a 12/s rapid serial visual presentation (RSVP) 
experiment. An ERP of interest (blue), is produced following each visual stimulus  
every 83 ms (black). These ERPs combine additively, giving a misleading (red) 
averaged Steady State Response (SSR) ERP estimate. Regression considers all the 
experimental events in a single additive model, taking into account this overlap.   
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Figure  12.2. Comparison of ERP estimates by averaging (red) and regression (blue) 
for five event types. ROV was statistically higher for regression in event type 1. 
Estimates are for a lateral occipital IC. 
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Figure  12.3. Comparison between averaging and regression ROV for EEG channels 
and ICA components. The components and channels are sorted and plotted in 
normalized ROV form. 
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Chapter 13 Hierarchical Event 

Descriptor (HED) Tags for Analysis of 

Event-Related EEG Studies 

13.1  Abstract 

Data from well-designed EEG experiments should find uses beyond initial 

reports, even when study authors cannot anticipate how it may contribute to future 

analyses. Several ontologies have been proposed for describing events in cognitive 

experiments to make data available for re-use and meta-analysis, but none are widely 

used. One reason for this is that the tools needed to make use of these ontologies are 

complex, placing a significant burden on experimenters while not providing any 

immediate reward for their efforts. Here we propose an extensible, user-friendly 

experiment event tagging method built on the BrainMap and CogPO ontologies and 

similar to the object tagging style used extensively on the Web. Hierarchical Event 

Descriptor (HED) tags, a hierarchy of standard and extended descriptors for EEG 

experimental events, provide a uniform human- and machine-readable interface 

facilitating use of an underlying event-description ontology during EEG data 

acquisition, analysis, and sharing. HED tags may be used to mark and annotate all 

known events in an experimental session. We describe an available real-time EEG 
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experiment control and recording system that uses HED tags for annotation, 

transmission and storage of detailed information about events in EEG experiments.  

13.2  Introduction 

The current period in the history of science has been called the era of Big Data 

collection and analysis. Annotated data can be highly useful to meta-analysis. Hence 

there have been several efforts to standardize terminologies used to describe 

cognitive paradigms by developing formal database ontologies (e.g., Nemo [161], 

BrainMap [13], CogPO [162], and NeroLex [163]), but currently none of these is often 

used to describe EEG events in publications. We believe key hindrances are: 

• Complexity of appearance and difficulty of use: Although formal ontologies 

developed in the OWL format [164] are elegant and can be readily processed by 

computers, their apparent complexity discourages human casual use. Tools to interact 

with and make use of such ontologies are complicated, and using them may require 

learning a large number of detailed concepts, standards, and file formats. 

• Lack of immediate reward for use: Most neurophysiological database tools do 

not provide clear and immediate benefits to researchers who perform the work 

required to donate their data to the resource – i.e., they give little or no tangible reward 

to make researchers feel it worthwhile to undertake the work of annotating and 

uploading data for (their own and/or others’) further use. 
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13.3  Hierarchical Event Descriptors  

To address problem (1) above, we have adopted a popular object tagging style 

used extensively on the Web (for example, for image tags on Flicker.com and video 

tags on YouTube.com). Hierarchical Event Descriptor (HED) tags are a hierarchy of 

standard and extended descriptors for EEG experiment events. The HED system 

includes a base set of hierarchically organized descriptor tags, in part adapted from the 

BrainMap and CogPO ontologies [13, 162], that can be used to describe many types of 

EEG experiment events in a uniform (though easily extensible) human- and machine-

readable manner. The main contribution of the HED tagging system is to offer a user-

friendly interface for use of the underlying event description ontology in EEG 

acquisition and analysis workflows.  

Another goal of HED tagging is to support EEG data analysis and meta-

analysis by enabling automated discovery of appropriate statistical designs in complex 

EEG studies including many types of known events. Using HED tags could provide an 

immediate reward to researchers by simplifying and automating their analysis 

workflow, thus addressing (2) above.  

 The hierarchical structure of the HED tags makes it easy to search through 

variations of the same type of event across studies (enabling EEG data meta-analyses), 

while preserving the unique details of each event type. For example, an event marking 

the presentation of a visual feedback stimulus in EEG Study A may present a red 
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circle to the participant on a black screen background, while in Study B the visual 

feedback stimulus is a blue rectangle on a white screen background. In HED syntax, 

these event types can be described by two HED strings (collections of comma-

separated HED tags) as follows: 

In Study A:       

Stimulus/Feedback,  
Stimulus/Visual/Uniform Color/Red, 
Stimulus/Visual/Shape/Ellipse/Circle/Height/2-deg, 
Stimulus/Visual/Shape/Ellipse/Circle/Width/2-deg, 
Stimulus/Visual/Background/Uniform Color/Black 

In Study B:    

Stimulus/Feedback,  
Stimulus/Visual/ Uniform Color/Blue, 
Stimulus/Visual/Shape/Rectangle/Height/2-deg, 
Stimulus/Visual/Shape/Rectangle/Width/3-deg, 
Stimulus/Visual/Background/Uniform Color/White 

These descriptors explicitly capture both salient commonalities across and 

differences between the two event types. If the feedback events were accompanied by 

an auditory beep (500 Hz, 25-dB), the following tags might be added:  

Stimulus/Auditory/Loudness/25-dB,  
Stimulus/Auditory/Tone/500-Hz,  
Stimulus/Auditory/Tone/Ramp Up/10-ms,  
Stimulus/Auditory/Tone/Ramp Down/10-ms 

While higher levels of the HED hierarchy are intended to be fixed (i.e., revised 

infrequently with discrete versioning based on community feedback), lower levels 

may be extended without restriction to describe any event type to any desired level of 
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detail. For example, the tag Stimulus/Visual/Shape/Ellipse/Circle may be extended by 

adding /Filled at the end to provide more information about the circle.  

 In addition to describing delivered stimuli, HED tags can also describe subject 

actions (e.g., button presses, swipes, saccades, etc.), subject and task states (e.g., 

drowsy, attend visual, etc.), and combinations of these (e.g., feedback tones produced 

in immediate response to button presses by a drowsy subject). Since HED tags can be 

easily interpreted by computer applications, HED tagging can facilitate search and 

inference of event-related EEG dynamics across multiple studies, when and where 

available. Also, HED tags organize events from a study into a logical hierarchy so 

they can be more easily analyzed. For example, several event subtypes may be 

aggregated into a more general event type that can then be compared to other event 

types. 

13.3.1 Example Tagging for RSVP 

Here we  explain the use of HED tags to describe events in a sample Rapid 

Serial Visual Presentation (RSVP) study of target recognition in satellite imagery [48] 

using HED 1.31 specification available in Appendix I (in section  13.8, for the latest 

HED specification see [165]). Each recording session of this experiment comprised of 

504 4.9-s image bursts of 49 oval image clips from a large satellite image of London 

presented at a rate of 12/s. Some (60%) of these bursts contained one image in which a 

target white airplane shape was introduced at a random position and orientation. 

Following each burst, subjects were asked to press one of two buttons to indicate 
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whether or not they had detected a target airplane in any burst image clip. Figure  13.1 

shows a time line of each RSVP burst. For further details see [48].  

 Now we use HED tags to form HED strings describing events (from left to 

right) in Figure  13.1. Display of a silver fixation cross on a gray background:  

Stimulus/Visual/Shape/Cross,  
Stimulus/Visual/Uniform Color/Silver, 
Stimulus/Visual/Achromatic, 
Stimulus/Visual/Screen Location/Center, 
Stimulus/Visual/Background/Uniform Color/Gray, 
Stimulus/Visual/Fixation Point, 
Stimulus/Instruction/Fixate 

Non-Target image presentation event:  

Stimulus/Visual/Achromatic, 
Stimulus/Expected/Non-Target 

Target image presentation event:  

Stimulus/Visual/Achromatic, 
Stimulus/Target 

Presentation of visual cue asking the participant whether (s)he has detected a target 

airplane image (‘0 or 1?’): 

Stimulus/Visual/Language, 
Stimulus/Instruction/Count, 
Stimulus/Visual/Uniform Color/White,  
Stimulus/Visual/Achromatic, 
Stimulus/Visual/Background/Uniform Color/Black 

Participant answers the question by pressing one of two buttons (here, to indicate a 

response of ‘1’) with his/her right hand: 

Response/Button Press, 
Response/Hand/Right Hand/Index Finger, 
Response/Count/1 
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Presentation of visual feedback (‘Correct’ or ‘Incorrect’) cue in training trials: 

Stimulus/Visual/Language/Word/Noun, 
Stimulus/Visual/Language/Latin/English, 
Stimulus/Feedback/Correct, (or /Incorrect) 
Stimulus/Visual/Uniform Color/White,  
Stimulus/Visual/Achromatic, 
Stimulus/Visual/Background/Uniform Color/Black  

Finally, we specify the paradigm as:  

Paradigm/Rapid Serial Visual Presentation/Visual Target Detection Paradigm, 
Paradigm/Oddball discrimination paradigm/Visual oddball paradigm 

13.3.2 HED Grammar 

HED tags consist of a series of identifiers separated by the forward slash '/' 

character. A HED identifier may contain any characters except the characters ‘/’ 

(forward slash), ’,’ (comma), ‘;’ (semicolon), and ‘”’ (quotes). To use these reserved 

characters in a HED identifier, the HED identifier may be wrapped in a pair of double-

quote (“) characters. To use the quote character inside a quoted HED, use ‘\”’ 

(backslash double-quote).  

 Sometimes an event may be associated with more than one stimulus or 

response – for example when a red circle is presented on screen left and, at the same 

moment a blue rectangle is displayed on screen right. In such cases, parentheses can 

be used to group together HED tags associated with each stimulus. In this example: 

(Stimulus/Visual/Shape/Ellipse/Circle, Stimulus/Visual/Uniform Color/Red, 
Stimulus/Visual/Screen Location/Left),  

(Stimulus/Visual/Shape/Ellipse/Rectangle, Stimulus/Visual/Uniform 
Color/Blue, Stimulus/Visual/Screen Location/Right) 
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13.4  HED Tools and Resources  

 MATLAB (The Mathworks, Inc.) tools for basic HED tag operations, such as 

validation, auto-completion and comparisons between pairs of HED tags and strings 

have been developed and are available at [165].  

13.4.1 Community HED Tagging 

 Community tagging tools (described in a parallel submission [166]) have been 

developed that allow users to tag events based on their types and other attributes. 

These tools allow users to create HED tag overlays that can be easily edited to allow 

retagging. The tools include a HED database with usage counts, so that a group of 

users can collaborate to develop new tags. These tools can be called from the 

MATLAB command line or from the EEGLAB [21] menu. 

13.4.2 Real-time HED Tagging of Experimental Conditions 

 Most EEG acquisition hardware only provides a single time series channel for 

recording the (integer-coded) type of experimental event, associated with the 

concurrent EEG data frame. This limits the number of distinct events that can be 

recorded and makes it necessary to associate the data with a table that maps these 

‘event type’ indices to their human-readable descriptions. 

 However, a current trend in cognitive neuroscience is towards performing 

more naturalistic and less constrained experiments, for example experiments in which 



242 

 

 

participants play games in ambulatory settings. Because of the multiplicative 

interactions of behavioral and contextual dimensions of interest in these experiments, 

the number of potential event types can be quite large and can hardly be captured by a 

one-dimensional (often 1- or 2-byte) event number channel. Even when it is possible 

to sacrifice encoding experiment details and only use a single channel for recording 

this information, the resulting mapping table could become quite large and difficult to 

maintain and use for statistical analyses.  

 An alternative approach is for the experiment control and data recording 

software to use HED tags to fully encode all aspects of interest for each instance of an 

experimental event, directly sending the resulting HED strings, in real time, to the data 

acquisition system. These strings will then be recorded synchronous to the recorded 

EEG data.  

 We (C. Kothe et al.) have developed, tested, and now use in practice a real-

time interactive experiment control and data recording system that implements this 

approach using HED strings for event description. The system consists of the 

Simulation and Neuroscience Application Platform (SNAP) for real-time experimental 

control [167], the lab streaming layer (LSL) framework for synchronous multimodal 

data transfer [168], and the Extensible Data Format (XDF) file format for data storage 

[169].  

 SNAP is a python-based experiment control framework that can send HED 

strings to LSL, a (C++-coded) real-time data collection and distribution system, to be 
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recorded with acquired EEG data (in our laboratory from standard Biosemi EEG 

hardware) in an XDF file format capable of synchronously recording multi-channel, 

multi-stream data that is heterogeneous in both type and sampling rate. Figure  13.2 

Figure 2 shows the links between components of this system. 

13.4.3 Extended Use of HED Tags for Study Meta-Data 

 We have also developed a companion XML-based specification, called the 

EEG Study Schema (ESS) to hold all the information necessary to analyze an EEG 

study, e.g. subject gender, handedness, age and group associations, task and paradigm 

description, etc. in a format that is both machine and human readable. To achieve this 

goal, ESS relies on HED descriptions of experimental events and tasks that are 

embedded in an ESS XML document. When ESS XML files are viewed in current 

web browsers (e.g., FireFox) they  are automatically formatted as readable reports 

using a provided XSLT style sheet. For more information about ESS see [170]. 

 Using the ESS/HED system we have documented 18 laboratory studies 

comprising 388 data recording sessions. Five of these studies are publicly available at 

our online EEG study repository HeadIT [171]. Figure  13.3 shows a hierarchical 

representation of HED-tagged event types from all 18 studies (most event types 

typically being in common to all study sessions). Values in parentheses show the 

number of unique event types from all studies that match the HED tag associated with 

each level of the hierarchy. 
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13.5  Discussion 

A future direction is to make formal connections between HED tags and 

ontological terms defined in Neurolex [163]. Another extension is to classify the type 

of relationship between HED child nodes and their parents (‘is-a’ for event subtypes 

such as Ellipse/Circle, versus ‘has-a’ for properties like Shape/Color). This should 

enable more complete automated statistical analysis of brain dynamics associated with 

HED-specified cognitive events and states. Finally, tools that immediately reward 

researchers for annotating and uploading their data, by returning useful information to 

them about it, may generate the researcher interest needed to amass a sufficient 

quantity of data to allow large scale EEG data mining for a range of purposes. 
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 Chapter 13, in full, is a reprint of the material as has been submitted for 

publication and will appear in N. Bigdely-Shamlo, K. Kreutz-Delgado, K. Robbins, 

M. Miyakoshi, M. Westerfield, T. Bel-Bahar, C. Kothe, J. Hsi, and S. Makeig, 

"Hierarchical Event Descriptor (HED) Tags for Analysis of Event-Related EEG 

Studies,"  IEEE GlobalSIP, Austin, TX, 2013. The dissertation author was the primary 

investigator and author of this paper. 

13.7  Figures 

 

Figure  13.1. Trial schematic for an RSVP experiment [6]. 
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Figure  13.2. A system for real-time HED tagging and synchronous recording of EEG 
data and events. LSL tools including drivers for many types of input devices are 
available at [168]. 
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Figure  13.3. Hierarchical representation of HED-tagged event types from 18 archived 
studies. Values in parentheses show the number of unique event types, across all 
studies, that match the HED tag associated with each level of the hierarchy.  
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13.8 Appendix I, HED Node Hierarchy (1.31) 

13.8.1 Time-Locked Event [default] 

• Stimulus [input from outside world, exogenous] 
o Visual 

 Fixation Point 
 Shape 

• Ellipse 
o Circle 

• Rectangle 
o Square 

• Frame 
• Star 
• Triangle 
• Gabor Patch 
• Cross [by default a vertical-horizontal cross, for rotated 

add /rotated/ tag] 
• Rotated 

o # [in degress] 
 Luminance  

• # [in candela, e.g 25 cd] 
 Size  

• # [in degrees, e.g 5 deg]  
 Checkerboard 
 Uniform Color 

• Aqua [these are CSS 3 basic color names, available in 
Color Names table at the end of this appendix] 

• Black 
• Blue 
• Fuchsia  
• Gray 
• Green  
• Lime  
• Maroon 
• Navy 
• Olive  
• Purple  
• Red  
• Silver  
• Teal  
• White  
• Yellow 
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• Red 
o # [R value of RGB, between 0 and 1] 

• Blue 
o # [B value of RGB, between 0 and 1] 

• Green 
o # [G value of RGB, between 0 and 1] 

• Hue 
o # [H value of HSV, between 0 and 1] 

• Saturation 
o # [S value of HSV, between 0 and 1] 

• Value 
o # [V value of HSV, between 0 and 1] 

 Achromatic [gray, is only in black, white or between] 
• # [white intensity between 0 and 1] 

 Screen Location [if centered at a screen location, not all over the screen] 
• Center 
• Top 
• Bottom 
• Left 
• Right 
• Upper Left 
• Lower Left 
• Upper Right 
• Lower Right 
• Angle [clockwise angle] 
• Center Displacement 

o #  [displacement from screen center, in any 
direction, in degrees] 

 Up-down Separated [stimuli presented both at the top and the bottom of fovea] 
• #  [separation in degrees] 

 Bilateral [for bilateral visual field stimulus presentations] 
• # [separation in degrees] 

 Foveal  [presented exactly where the subject is now looking] 
 Peripheral   [presented where the subject is not directly looking] 
 Clock Face 

• #  [hour:min] 
 3D Object 
 Abstract Pattern 
 Non-Linguistic Symbol 

• Meaningful 
• Not Meaningful 
• Newly Learned Meaning 

 Braille Character 
 Face 

• Whole face with hair 
• Whole face without hair 
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• Cut-out 
• Parts only 

o Nose 
o Lips 
o Chin 
o Eyes 
o Eye 

 Movie 
• Motion 

o In 3D Space 
 Body 

• Point Light 
• Motion Capture 
• Video 
• Animation   

o Outline 
 Social [e.g., mother-child interaction, videotaped or animated by a triangle and a 
square] 

o On Screen 
 Down   [e.g. /2 deg] 
 Up 
 Horizontal 

• Right  [e.g. /3 deg] 
 Oblique 

• Clock Face 
o #  (e.g.,  4:30) 

 Flickering 
• Checkerboard 
• Dots 
• Steady State  [fixed stimulus 

onset asynchrony] 
• #  (flicker rate in Hz) 

[Note: above, also need/could use starting position on screen, end position, velocity in 
deg/s, etc.] 
 
 

• Film Clip [any clip from a commercial film, TV,...] 
 False Font 
 Food 
 Fractal 
 LED 
 Random Dot 
 Language 

• Asian 
o Chinese 
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o Japanese 
• Latin 

o English 
o German 
o French 

• [allow extension here for other language families] 
• Character  

o Digit 
o Pseudo-character [alphabet-like but not really] 
o Letter [Authograph, valid letters including 

numbers, e.g. A, B, 5...,] 
• Word 

o Noun 
 Proper [a proper noun,  refers to a unique 

entity, such as London, Jupiter, ...] 
 Common [refers to a class of entities 

(cities, planets, persons, corporations), or 
non-unique instances of a certain class (a 
city, another planet, these persons, our 
corporation)]. 

o Verb 
o Adjective 
o Pseudoword 
o # [number of words] 

• Sentence 
o Full 
o Partial 
o # [number of sentences] 
o Paragraph 

 # [number of paragraphs] 
 Story 

 Natural Scene 
 Drawing [e.g. cartoons] 

• Line Drawing 
 Picture 
 IAPS [International Affective Picture System] 
 Bistable  [this could be either abstract line drawings or object illustrations] 
 Background 

• Uniform Color 
o Aqua [these are CSS 3 basic color names, 

available in Appendix 1] 
o Black 
o Blue 
o Fuchsia  
o Gray 
o Green  
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o Lime  
o Maroon,  
o Navy  
o Olive  
o Purple  
o Red  
o Silver  
o Teal  
o White  
o Yellow 
o Red 

 # [R value of RGB, between 0 and 1] 
o Blue 

 # [B value of RGB, between 0 and 1] 
o Green 

 # [G value of RGB, between 0 and 1] 
o Hue 

 # [H value of HSV, between 0 and 1] 
o Saturation 

 # [S value of HSV, between 0 and 1] 
o Value 

 # [V value of HSV, between 0 and 1] 
 Auditory 
 Reward [e.g., trumpets!] 

• Cash Register  
• Ding 
• [extend here] 

 Warning 
• Fire Alarm 
• [extend here] 

 Nameable [could be described by a word] 
 Loudness  

• # [in dB] 
 Music 
 Chord Sequence 
 Click 

• ABR [Auditory Brainstem Response] 
 Noise 

• White 
• Colored [not white, 1/f, spectrum] 

 Syllable 
 Tone 

• # [in Hz] 
• Ramp Up 
• Ramp Down 
• [extend here] 
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 Nonverbal Vocal Sound 
 Nonvocal Sound 
 Language 

• Word 
o Name 
o Noun 
o Verb 
o Adjective 
o Pseudoword 
o # [number of words] 

• Sentence 
o Full 
o Partial 
o # [number of sentences] 
o Paragraph 

 # [number of paragraphs] 
 Story 

• [extend with language names here] 
 Animal Voice 
 Real world sounds [people, machines, etc..] 
 Emotional sounds 
 File 

• [file name or quoted path name] 
 Direction 

• Azimuth 
o # [relative azimuth of the sound, preferably in 

degrees, clockwise] 
• Elevation 

o # [relative elevation of the sound, preferably in 
degrees] 

• Left 
• Front 
• Right 
• Back 

 TMS 
 With SPGS  [SPGS = spatial position guiding system] 
 Without SPGS [SPGS = spatial position guiding system] 
 Tactile 
 Vibration 
 Acupuncture 
 Eye Puff 
 Pain 
 Heat 
 Cold 
 Pressure 
 Electric Shock 
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 Laser-evoked 
 Taste 
 Smell 
 Target [something the subject is looking for is detected] 
 Oddball [unexpected, infrequent] 
 One Stimulus [see http://dx.doi.org/10.1016/0167-8760(96)00030-X] 
 Two Stimuli [see http://dx.doi.org/10.1016/0167-8760(96)00030-X] 
 Three Stimuli [see http://dx.doi.org/10.1016/0167-8760(96)00030-X] 
 Silent counting 
 Button pressing for target 
 Button pressing for all 
 # [Probability, between 0 and 1] 
 Novel [Genuine once or so per experiment event] 
 Expected  [of low information value] 
 Standard 
 Distractor 
 Non-Target 
 Feedback 
 Correct [confirm, something went well, last action was correct] 
 Incorrect  
 Expected [feedback was expected, for example they were often correct and they 
are again correct] 
 Unexpected [feedback was expected, for example they were often correct and 
they are again correct] 
 On Accuracy [feedback was provided by evaluating their accuracy] 
 On Reaction Time [feedback was provided by evaluating their reaction time] 
 To Self [default] 
 To Other [observed feedback to another person, typically in a social paradigm] 
 Deterministic [should have a fixed relationship to what happened before] 
 Stochastic [non-deterministic, it does not have fixed relationship with what has 
happened before in the experiment] 
 Reward 

• Low 
• Medium 
• High 
• # [monetary values in some currency, for example $1, or 

the ratio of the reward to the maximum possible (3 of 
max 10 becomes 0.3), or x Points] 

 Penalty 
• Low 
• Medium 
• High 
• # [absolute monetary values in some currency, for 

example $1, or the ratio of the reward to the maximum 
possible (3 of max 10 becomes 0.3), or x Points] 

 Error 

http://dx.doi.org/10.1016/0167-8760(96)00030-X
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 Self Originated 
 Other Originated 

• Human 
• Non-human 

 Expected 
 Unexpected   
 Planned [the error feedback was given regardless of the validity of subject 
response, e.g. in a yoked design]  
 Threat 
 To Self 
 To others 

• Close 
 Task Rest Start [stop doing the task and rest, or just rest if the task has not yet 
begun] 
 Task Rest End [stop resting and prepare for or start performing the task] 
 Presented action of another person [e.g., saw someone pick up something] 
 Priming 
 Semantic 
 Motoric 
 Emotional 
 Perceptual 
 Instruction 
 Attend  
 Fixate  
 Recall 
 Generate  
 Repeat 
 Breath-Hold  
 Imagine 
 Rest 
 Count 
 Move 

• Natural/Constrained 
• Walk 
• Breathe  
• Move upper torso 
• Move lower torso 
• Move whole body 

 Speak 
 Sing 
 Detect 
 Name 
 Smile 
 Discriminate 
 Read 
 Track 
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 Encode 
 Eye-Blink Inhibition 
 Subliminal 
 unmasked 
 Masked 

• Forward 
• Backward 

 Supraliminal [by default this is what assumed about each stimulus] 
 Liminal [at the 75%/25% perception threshold]  
 Onset [it is assumed by default that a stimulus event  

marks the onset of the stimulus] 
o Offset [vs. Onset] 
o Congruence 

 Congruent 
 Incongruent 
 Semantic [semantic similarity] 
 Temporal Synchrony 

• Synchronous 
• Asynchronous 

 
 

• Response [self-initiated action, can be extended] 
o Button Press 

 Touch Screen 
 Keyboard 
 Mouse 

o Button Hold [press and keep pressed] 
o Hand 

 Right  
 Left 
 Finger 

• Tap [when there is nothing to be pressed, like tapping on 
a chair surface to follow a rhythm] 

• Lift 
 Leg 
 Right 
 Left 
 Walk 

• Start Stride 
• Peak stride 
• End Stride 

 Speech 
 Head 
 Turn  
 Torso 
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 Turn  
 Movement 
 Onset Velocity 
 Peak Velocity 
 Offset Velocity 
 Onset Acceleration 
 Peak Acceleration 
 Offset Acceleration 
 Onset Jerk 
 Peak Jerk 
 Offset Jerk 
 Turn [change in direction of movement] 
 Follow 
 Lead 
 Point  
 Object [to an object] 
 Direction [to a direction] 
 Eye 
 Saccade  

• Start 
• Middle 
• End 

 Fixation 
 Blink 
 Close [and keep closed for > ~0.1 s] 
 Open [and keep open for > ~0.1 s] 
 
 

13.8.2 State  

• Emotion 
o Awe 
o Frustration 
o Joy 
o Anger 
o Happiness 
o Sadness 
o Love 
o Fear 
o Compassion 
o Jealousy 
o Contentment 
o Grief 
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o Relief 
o Excitement 
o Disgust 
o Negative Valence 

 # (a number between 0 and 1) 
o Positive Valence 

 # (a number between 0 and 1) 
• Awake 

o Task-relevant 
o Task-irrelevant 
o Induced 

 Sense of Community 
 Sense of Social Justice 
 Stress Level 

• # (a number between 0 and 1) 
 Task Load 

• # (a number between 0 and 1) 
 Emotion 

• Awe 
• Frustration 
• Joy 
• Anger 
• Happiness 
• Sadness 
• Love 
• Fear 
• Compassion 
• Jealousy 
• Contentment 
• Grief 
• Relief 
• Excitement 
• Disgust 
• Negative Valence 

o # (a number between 0 and 1) 
• Positive Valence 

o # (a number between 0 and 1) 
 Under time pressure 
 Response Window 
 Competitive [subject is competing against an opponent, for example when the 
faster respondent wins] 
 Social Interaction [social] 
 pseudo [instructed so but actually not, the other person may not exist in real 
world, e.g. be a computer program agent] 
 Passive [not engaged in any particular task] 
 Attention 
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 Top-down 
 Bottom-up 
 Covert 
 Overt 
 Implicit 
 Explicit 
 automatic 
 Orienting 
 Alerting 
 Control 
 Divided 
 Focused 
 Sustained [being alert] 
 Auditory 
 Visual 
 Tactile 
 To a Location [Spatial] 

• Right 
• Left 
• Top 
• Bottom 
• Center 

 Low Conscious 
 Sleep 
 Drunk 
 Anesthesia 
 Locked-in 
 Coma 
 Vegetative 
 Brain-Death 

13.8.3 Participant  

[for identifying different participants in social, multi-person experiments] 

• Role [The role of the participant associated with the event, e.g. viewer, follower, 
leader, is placed at a lower level, e.g. Participant/Role/Leader) 

• ID [subject may swap their roles during the experiment but still need to be each 
identified by a unique ID, which may or may not be numeric. For example all 
stimuli presented to a particular participant is tagged as: Participant/ID/Player 
1]. 

13.8.4 Context  
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[describes the context of the whole experiment, also includes tags that are common 

across all events] 

• [add common tags across all stimuli/ and/or responses here, e.g if all experiment 
events share /State/Drowsy, you can place it here instead of tagging each event 
individually ] 

• With Chin Rest  
• Sitting 
• Standing 
• Prone  [e.g. on a bed] 
• Running 

o Treadmill 
 # Speed (meters per second) 

• Walking 
o Treadmill 

 # Speed (meters per second) 
•  
• Indoors [default] 

o Clinic [recording in a clinical setting, e.g. in a hospital or doctor’s 
office] 

• Outdoors 
• Motion platform [subject is on a motion platform, e.g. simulated car 

movements] 
• Screen Distance 

o # [distance in meters from subject eyes to the presentation screen , e.g. 
0.3 for 30 cm from subject eyes to the monitor] 

• [extend here] 

13.8.5 Experiment Control 

[information about states and events of the software program that controls the 
experiment] 

• Sequence 
o Permutation ID 

 # [permutation number/code used for permuted experiment 
parts] 

o Experiment Begins 
o Experiment Ends 
o Block Begins 

 # [block number] 
o Block Ends 

 # [block number] 
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o Trial Begins 
 # [trial number] 

o Trial Ends 
 # [trial number] 

o Pause Begins 
o Pause Ends 

• Task [task-specific events, such as moving a piece in a chess game] 
o Action 

 Correct 
 Incorrect [e.g., due to timeout] 
 Missed 
 Inappropriate 

• Synchronization 
o Display Refresh 
o Trigger 
o Tag 

 [actual tag: string or integer] 
• Status 

o Waiting For Input 
o Loading 
o Error 

• Setup 
o Parameters 

 (experiment parameters in some (quoted) string) 
 
 

13.8.6 Custom 

 
This node can be used to organize events in an alternative (parallel) hierarchy: you can 
define your custom tags and hierarchies without any restriction under this node. These 
tags will still be matched to each other, for example /Custom/Dance/Waltz is considered a 
subtype of /Custom/Dance.  
 
 
Example: /Initial Score/# [monetary values in some currency, for example $1, or the 
ratio of the reward to the maximum possible (3 of max 10 becomes 0.3), or x Points] 
 
 

13.8.7 Paradigm 
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• Action imitation task 
• Action observation paradigm  
• Action observation task  
• Acupuncture task  
• Adult attachment interview  
• Alternating runs paradigm  
• Animal naming task  
• Antisaccade-prosaccade task  
• Attention networks test  
• Attentional blink task  
• Audio-visual target-detection task  
• Autism diagnostic observation schedule  
• Ax-cpt task   
• Backward digit span task  
• Backward masking  
• Balloon analogue risk task (BART)  
• Behavioral investment allocation strategy (BIAS)  
• Behavioral rating inventory of executive function  
• Benton facial recognition test  
• Birmingham object recognition battery  
• Block design test  
• Block tapping test  
• Boston naming test  
• Braille reading task  
• Breath-holding  
• Breathhold paradigm  
• Brixton spatial anticipation test  
• California verbal learning test  
• California verbal learning test-ii  
• Cambridge face memory test  
• Cambridge gambling task  
• Cambridge neuropsychological test automated battery  
• Catbat task  
• Category fluency test  
• Cattell culture fair intelligence test  
• Chewing-swallowing  
• Chimeric animal stroop task  
• Choice reaction time task  
• Choice task between risky and non-risky options  
• Classical conditioning  
• Clinical evaluation of language fundamentals-3  
• Color trails test  
• Color-discrimination task  
• Color-word stroop task  
• Complex span test  
• Conditional stop signal task  
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• Conditioning paradigm  
o Behavioral conditioning paradigm 
o Classical conditioning paradigm 

• Continuous performance task  
• Continuous recognition paradigm  
• Counting stroop task  
• Counting-calculation  
• Cued explicit recognition  
• Cups task  
• Deception task  
• Deductive reasoning paradigm  
• Deductive reasoning task  
• Delayed discounting task  
• Delayed match to sample task  
• Delayed nonmatch to sample task  
• Delayed recall test  
• Delayed response task 

o Delayed matching to sample paradigm  
 Sternberg paradigm  

• Devils task  
• Dichotic listening task  
• Digit cancellation task  
• Digit span task  
• Digit-symbol coding test  
• Directed forgetting task  
• Divided auditory attention  
• Divided auditory attention paradigm  
• Doors and people test  
• Dot pattern expectancy task  
• Drawing (Cognitive Atlas Term)  
• Drawing paradigm  
• Dual-task paradigm  
• Early social communications scales  
• Eating paradigm  
• Eating-drinking  
• Embedded figures test  
• Emotional regulation task  
• Encoding paradigm  
• Encoding task  
• Episodic recall  
• Episodic recall paradigm  
• Eriksen flanker task  
• Extradimensional shift task  
• Eye Saccade paradigm  

o Anti saccade paradigm  
o Simple saccade paradigm  
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• Face monitor-discrimination  
• Face n-back task  
• Fagerstrom test for nicotine dependence (Cognitive Atlas Term)  
• Film viewing  
• Finger tapping task  
• Fixation task  
• Flashing checkerboard  
• Flexion-extension  
• Forward digit span task  
• Free word list recall  
• Glasgow coma scale  
• Go-no-go task  
• Grasping task  
• Gray oral reading test - 4  
• Haptic illusion task  
• Hayling sentence completion test  
• Heat sensitization-adaptation  
• Heat stimulation  
• Hooper visual organization test  
• Imagined movement  
• Imagined objects-scenes  
• Immediate recall test  
• Inductive reasoning aptitude  
• International affective picture system  
• Intradimensional shift task  
• Ishihara plates for color blindness  
• Isometric force  
• Item recognition paradigm 

o Serial item recognition paradigm  
• Item recognition task  
• Kanizsa figures  
• Keep-track task  
• Letter comparison  
• Letter fluency test  
• Letter n-back task  
• Letter naming task  
• Letter number sequencing  
• Lexical decision task  
• Listening span task  
• Macauthur communicative development inventory  
• Matching familiar figures test  
• Matching pennies game  
• Maudsley obsessive compulsive inventory  
• Mechanical stimulation  
• Memory span test  
• Mental rotation task  
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• Micturition task  
• Mini mental state examination (Cognitive Atlas Term)  
• Mirror tracing test  
• Mismatch negativity paradigm  
• Mixed gambles task  
• Modified erikson scale of communication attitudes  
• Morris water maze  
• Motor sequencing task  
• Music comprehension-production  
• N-back task  
• Naming (Covert)  
• Naming (Overt)  
• Nine-hole peg test  
• Non-choice task to study expected value and uncertainty  
• Non-painful electrical stimulation  
• Non-painful thermal stimulation  
• Nonword repetition task  
• Object alternation task  
• Object-discrimination task  
• Oculomotor delayed response  
• Oddball discrimination paradigm  

o Auditory oddball paradigm  
o Visual oddball paradigm  

• Oddball task  
• Olfactory monitor-discrimination  
• Operation span task  
• Orthographic discrimination  
• Paced auditory serial addition test  
• Pain monitor-discrimination task  
• Paired associate learning  
• Paired associate recall  
• Pantomime task  
• Parrott scale  
• Passive listening  
• Passive viewing  
• Pattern comparison  
• Phonological discrimination  
• Picture naming task  
• Picture set test  
• Picture-word stroop task  
• Pitch monitor-discrimination  
• Pointing  
• Porteus maze test  
• Positive and negative affect scale  
• Posner cueing task  
• Probabilistic classification task  
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• Probabilistic gambling task  
• Probabilistic reversal learning  
• Pseudoword naming task  
• Pursuit rotor task  
• Pyramids and palm trees task  
• Rapid automatized naming test  
• Rapid serial object transformation  
• Reading (Covert)  
• Reading (Overt)  
• Reading paradigm  

o Covert braille reading paradigm  
o Covert visual reading paradigm  

• Reading span task  
• Recitation-repetition (Covert)  
• Recitation-repetition (Overt)  
• Remember-know task  
• Response mapping task  
• Rest  
• Retrieval-induced forgetting task  
• Reversal learning task  
• Reward task  
• Rey auditory verbal learning task  
• Rey-ostereith complex figure test  
• Reynell developmental language scales  
• Rhyme verification task  
• Risky gains task  
• Rivermead behavioural memory test 
• [extend here] 

 
 

13.8.8 Label 

• [a short label for the event. For example /Label/Accept Button. Please note that 
the information under this tag will not be used in the analysis and is provided 
solely for the convenience in referring to events in the context of a single study.] 

 
 

13.8.9 Description 

• [A detailed description of the event as text, can be used to complement 
information encoded in other HED tags. Please note that information under this 
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tag would be unusable by computers and analysis software and should not be 
used as the main method for describing events (use HED tags other than 
Description and Label to explain events in a machine-understandable manner)] 

 
 

13.8.10 Group ID 

• [ a string that uniquely identifies a group of related of events, e.g. events that 
describe visual and auditory stimulus onsets and offsets of a particular bird may 
all be tagged with /Group ID/Bird #54] 

13.8.11 HED 

• # [HED specification version number: normally there is no need to specify the 
version number in the HED string since it will be matched by default to the most 
recent compliant version, but this tag can be used to specify the exact HED 
version the HED string was based on.] 

 
 

13.8.12 Restrictions on HED Identifier Names 

A HED identifier may contain any characters except for the characters ‘/’ 

(forward slash), ’,’ (comma), ‘;’ (semicolon), and ‘”’ (quotes). In order to use these 

characters in a HED identifier the HED identifier may be wrapped by a pair of double-

quote (“) characters. In order to use the quote character inside a quoted HED identifier 

the two-character escape sequence ‘\”’ (backslash double-quote) shall be used. This is 

the only escape sequence recognized by the HED grammar. The following is a list of 

valid example HED identifiers: 

MyIdentifier 

My-Id<en>ti:fier 
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“My/Iden;ti,fier” 

“My\”Identifier” 

 

13.8.13 Color Names 

 

 
 

Color 
name 

Hex rgb Decimal 

 

black #000000 0,0,0 
 

silver #C0C0C0 192,192,192 
 

gray #808080 128,128,128 
 

white #FFFFFF 255,255,255 
 

maroon #800000 128,0,0 
 

red #FF0000 255,0,0 
 

purple #800080 128,0,128 
 

fuchsia #FF00FF 255,0,255 
 

green #008000 0,128,0 
 

lime #00FF00 0,255,0 
 

olive #808000 128,128,0 
 

yellow #FFFF00 255,255,0 
 

navy #000080 0,0,128 
 

blue #0000FF 0,0,255 
 

teal #008080 0,128,128 
 

aqua #00FFFF 0,255,255 
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Chapter 14  

Towards an EEG Search Engine 

 

14.1  Abstract 

The current EEG analysis-publication workflow mostly documents qualitative 

descriptions of event-related EEG dynamics. This makes it difficult to look for 

comparable results in the literature since search options are limited to textual 

descriptions and/or similar-appearing results depicted in the paper figures. We 

demonstrate a method for quantitative comparison of source-resolved results (e.g., 

ERPs, ERSPs) across different EEG studies. Our proposed source-resolved EEG 

measure search engine receives search queries composed of event-related EEG 

measures, each associated with an estimated brain source location to be compared 

using Measure Projection Analysis (MPA) to all records in the search engine database 

accumulated by automated data analysis workflows applied to data of multiple studies. 

A similarity-ranked list of events from other studies that have elicited similar EEG 

dynamics in nearby source-locations is then returned to the user along with their 

experiment and event metadata. We performed a search query using this method 

through 52 event-related ERSP measures from four studies for Left Precentral Gyrus 

source measures similar to an input ERSP pattern associated with RSVP target 
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detection, obtaining results consistent with the EEG literature and giving information 

about the interpretation of the phenomenon of interest not possible to infer from the 

single input study. 

14.2  Introduction 

The current EEG analysispublication workflow is mostly based on qualitative 

descriptions of EEG dynamic events (e.g., “a 3-8 μV positivity at 350 ms or theta 

burst near 800 ms over frontocentral scalp”). Such descriptions make it difficult to 

look for comparable results in the literature. For example, if a researcher finds some 

event-related feature in their data, s/he must perform a tedious text search through an 

ever-increasing number of published papers for comparable text descriptions and/or 

similar-appearing measures depicted in the paper figures. It is not yet possible to 

quantitatively compare source-resolved results from different EEG studies. 

 Also, no single study is ever large enough to account for all the variability 

originating from subject group differences (age, gender, etc.), and each experimental 

event-type explores only a subset of associated circumstances. For example, every 

study of EEG dynamics involving subject ‘error’ awareness includes at most a few 

types of ‘error’ conditions. Quantitative comparison of EEG dynamics associated with 

a much larger collection of ‘error’-recognition conditions across many EEG studies 

could give much useful information for scientific interpretation of new single-study 

results. 
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 Here we propose a method for building a Source-resolved EEG Measure 

Search engine built on an EEG measure database that would receive search queries 

composed of event-related EEG measures each associated with a brain source location 

estimate, and optionally a machine-readable description of the time-locked events (e.g. 

HED tags [172, 173]) and/or, an anatomical brain region of interest (ROI). This query 

information would then be compared to all the same-measure-type records in the 

search engine database accumulated from previous automated data analysis workflows 

applied to other study data and potentially other search queries. A similarity-ranked 

list of the most related-measure and source-location pairs (events that have elicited 

similar EEG dynamics in similar source-locations) from other studies will then be 

returned to the user along with their metadata (including pointers to any relevant 

publications). Figure  14.1 shows a flowchart of the proposed search operation.  

14.3  Methods  

 The first step of the search operation is to transform the query data into the 

(time/space/frequency/…) coordinate systems of the database. For instance, we use 

here the spatial coordinate system of the MNI (Montreal Neurological Institute [68]) 

template brain. Next, a mapping that assigns a similarity index (or equivalently a 

distance measure) to each database entry for some given query data is invoked.  

 In our implementation we achieve this by first applying the Measure Projection 

Analysis (MPA) method [45] to interpolate all source measures associated with each 
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database item (subject, session or study data associated with a single event), originally 

assigned to discrete and sparse spatial locations, over a dense standardized 3-D grid of 

spatial brain-space voxels. The result is a common spatial representation of source-

resolved EEG measures. MPA amounts to first convolving a 3-D spatial Gaussian 

kernel (whose standard deviation represents expected uncertainties in localization 

error and subject head model error) with the entered source locations to produce a 

source density value at each 3-D brain grid location and then calculating source 

density weighted average of nearby source measures at each brain voxel. Finally, the 

similarity of between the query EEG measures and stored measures is calculated by 

aggregating their similarities across all voxels in the region of interest (ROI) specified 

in the query.   

 To calculate the similarity between two search items, each associated with a set 

of n equivalent dipoles ( ), 1,..,iD y i n= located at brain locations 3
iy ROI R∈ ⊂ and 

their associated measure vectors (e.g. vectorized ERSP) , 1,..,iM i n=


, we first 

calculate the expected, or projected, value for the measure vector for each item at 

location iy ROI∈ from  

 1

1

( )
{ ( )} ( ) .

( )

n

i i
i

n

i
i

P y M
E M y M y

P y

=

=

= =
∑

∑



 

 (1)  



273 

 

 

 Here where TN is a normalized, truncated (at tσ, here 

t=3) Gaussian distribution with standard deviationσ and is the estimated location of 

dipole jD . We then compare projected measure vectors 1
iM



 and 2
iM



 of the two items 

at each voxel , 1,..,ky ROI k m∈ =  and average these values over query-specified ROI 

locations ( m  voxels) to obtain a final similarity value between the two search items 

with 

 

1 2

1
( ( , ))

,

m

k k
k

F Correlation M M
Similarity

m
==

∑
 

 (2)  

where 

 
1 1( ) Fisher's Z ( )  ln .
2 1

cF c c
c

+
= =

−
 (3)  

 Figure  14.2 gives a flow chart of the measure comparison process between two 

conditions measures, and potentially from different studies, using Measure Projection. 

14.4  Results  

 We implemented the EEG measure search algorithm described above in 

MATLAB (Mathworks, Inc.) and applied it to grand mean (across-subjects) event-

related time/frequency ERSP (event-related spectral perturbation) measures for 52 

study event types within four EEG studies: 

2ˆ( ) ( ; , · , )j jP y TN y x I tσ=

ˆ jx
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1. Target detection task during rapid serial visual presentation (RSVP) without 

immediate button press feedback [48].  

2. A two-back Continuous Performance task with auditory feedback in which 

subjects have to indicate, by button press, whether the current letter presented 

on the screen is the same as the letter presented two letters earlier [174].  

3.  A visual response task in an EEG study on the domain-generality of visual 

self-representation. Domain-general self-representation was operationally 

defined as the self-relevance common to one's own Face and Cup [175].  

4.  An inter-modal audiovisual task in which subjects either switched attention 

upon receiving audiovisual cues, or ignored the cues and continued to focus on 

the interleaved audio or visual stimulus stream, responding to occasional target 

stimuli with button presses [176]. 

We used the ERSP associated with target presentation in the RSVP study as 

the search event and compared it to event-related source-resolved dynamics for the 

remaining 51 event types within a Left Precentral Gyrus region of interest. A 3-D 

Gaussian with 12-mm standard deviation was used in measure projection of the other 

51 ERSPs. The brain volume was segmented into 3,908 voxels in a cubic grid with 8-

mm voxel spacing. Figure  14.3 (top) shows the ERSP pattern and ROI used as the 

input search query and Figure  14.3  (bottom) three most-similar results based on the 

computed event-related measure similarities. 

14.5  Discussion  
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The first three results, shown in Figure  14.3 (bottom), have a quite similar 

ERSP pattern in Left Precentral Gyrus and are all associated with target detection, 

although derived from another study (Attention Shift [176]). In both the input 

condition and the top three matching results the participant was instructed to press a 

button with their right hand after detecting the target, which associated as expected 

from the literature with the prominent mu rhythm blocking beginning at 400 ms, in or 

near the right hand somatomotor area in the Left Precentral Gyrus. Identifying this 

factor common to the matching condition strengthens the implication that the EEG 

dynamics here represent dynamics relating to purposive hand movements. Given a 

much larger database of source-resolved study measures, further study or more formal 

analysis of commonalities in the matching condition descriptors might give further 

insights into the functional role of this cortical area and of the captured EEG 

dynamics.  

 To our knowledge this is the first demonstration of EEG source pattern search 

across different studies. A future direction is to create an EEG search engine with 

much larger database of source-resolved EEG dynamics, each tagged with a machine 

readable description of associated cognitive events or state, e.g. using Hierarchical 

Event Descriptor (HED) tags [172, 173] and subject information (age, gender…), e.g. 

using EEG Study Schema (ESS) [170]. This information can be added to the search 

query and used to refine the results. Such a large database of source EEG patterns, 

accompanied with task and subject information, could be built over an existing raw 

EEG archive such as HeadIT [171] and have applications beyond EEG search. For 
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example it may enable the creation of more accurate BCI models by providing 

neuroscience-informed priors to be used in BCI machine learning algorithms.  

 Another future direction is to integrate the abovementioned search engine into 

widely-used EEG analysis software, e.g. EEGLAB [21, 177], and to present relevant 

search results to researchers during their analysis so as to facilitate better interpretation 

of patterns present in their data.  
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14.7  Figures 
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Figure  14.1. Flowchart of the proposed HeadIT Measure Search Engine. 
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Figure  14.2.  Flowchart of event-related measure comparison using measure 
projection. 
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Figure  14.3. (top) input query, and (bottom) top-ranked ERSP measure search results
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