
Simultaneous head tissue conductivity and EEG source

location estimation

Zeynep Akalin Acar⇤,a,1, Can E. Acar1,2, Scott Makeiga,3

a
Swartz Center for Computational Neuroscience, Institute for Neural Computation,

University of California, San Diego, La Jolla CA 92093-0559

b
Qualcomm Technologies, Inc. 5775 Morehouse Drive, San Diego, CA 92121

Abstract

Accurate electroencephalographic (EEG) source localization requires an
electrical head model incorporating accurate geometries and conductivity
values for the major head tissues. While consistent conductivity values have
been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-
skull conductivity ratio (BSCR) estimates have varied between 8 and 80,
likely reflecting both inter-subject and measurement method di↵erences. In
simulations, mis-estimation of skull conductivity can produce source local-
ization errors as large as 3 cm. Here, we describe an iterative gradient-based
approach to Simultaneous tissue Conductivity And source Location Estima-
tion (SCALE). The scalp projection maps used by SCALE are obtained from
near-dipolar e↵ective EEG sources found by adequate independent compo-
nent analysis (ICA) decomposition of su�cient high-density EEG data. We
applied SCALE to simulated scalp projections of 15 cm2-scale cortical patch
sources in an MR image-based electrical head model with simulated BSCR
of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR
as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min,
128-channel) EEG data from two young adults we identified sets of 13 in-
dependent components having near-dipolar scalp maps compatible with a
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single cortical source patch. Again initialized with either BSCR 80 or 25,
SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively.
The ability to accurately estimate skull conductivity non-invasively from any
well-recorded EEG data in combination with a stable and non-invasively ac-
quired MR imaging-derived electrical head model could remove a critical
barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical
imaging modality.

Key words: EEG, source localization, skull conductivity estimation, Finite
Element Method, FEM, four-layer realistic head modeling, sensitivity of
EEG to skull conductivity

1. Introduction

Human electroencephalographic (EEG) source localization aims to recon-
struct the current source distribution in the brain from one or more maps
of potential di↵erences measured noninvasively from electrodes on the scalp
surface. An electric forward head model of the head plays a central role
in accurate source localization. The volume conduction model must specify
both the geometry and the conductivity distribution of the modeled tissue
compartments (scalp, skull, cerebrospinal fluid, brain grey and white mat-
ter, etc.). While it is possible to extract head geometry information from
magnetic resonance (MR) images of the subject’s head (Dale et al., 1999;
Akalın-Acar and Gençer, 2004; Ramon et al., 2006), there has been no ef-
fective way to directly and non-invasively measure brain and skull tissue
conductivities (Ferree et al., 2000; Goncalves et al., 2003b). Studies involv-
ing direct skull measurements have reported consistent conductivity values
for scalp, brain, and cerebrospinal fluid (CSF). However, skull and therefore
brain-to-skull conductivity ratio (BSCR) values reported in the literature
(detailed below) have varied between 8 and 80 in adults (Hoekema et al.,
2003; Rush and Driscoll, 1968). This presents a problem for accurate EEG
source localization, as we have shown in a previous study in which we ex-
amined the e↵ects of forward modeling errors on EEG source localization
(Akalin Acar and Makeig, 2013).

There, using four-layer BEM head models based on four young-adult MR
head images, we estimated the volume-conducted scalp projections of a 3-D
grid of equivalent dipole brain sources and then localized the same sources
from their projected scalp maps in head models incorporating di↵erent BSCR
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value assumptions and examined the resulting localization errors. Assuming
the simulated BSCR value of 25 in the forward head model allowed near
perfect dipole source localization; assuming an (incorrect) BSCR value of
15 gave a maximum error of 15 mm for equivalent dipoles near the skull
(grid median, 5 mm), while assuming a BCSR value of 80 gave still larger
localization errors up to 31 mm in magnitude (grid median, 12 mm). These
localization errors were larger for sources near the skull or brain base; the
closer the sources to the center of the brain, the lower the localization error.
However, most cortical EEG sources, including those found by independent
component analysis (ICA), are relatively near the skull. These simulations
demonstrated that the current absence of a method for performing accurate,
non-invasive skull conductivity estimation for each EEG subject is a major
factor limiting the accuracy of EEG source reconstruction.

1.1. Measuring skull conductivity

Rush and Driscoll (1968) first reported an adult BCSR of 80 by measur-
ing impedances through a half-skull immersed in fluid, thereby establishing
a standard still commonly used in inverse source localization software. More
recent conductivity estimates have been obtained from combining EEG data
with magnetoencephalographic (MEG) and/or invasively recorded electro-
corticographic (ECoG) data (Gutierrez et al., 2004; Baysal and Haueisen,
2004; Lai et al., 2005; Lew et al., 2009), or by using current injection or mag-
netic field induction, an approach termed electrical impedance tomography
(EIT) (Ferree et al., 2000; Gao et al., 2005; Ulker Karbeyaz and Gencer,
2003).

A mean BSCR of 72 was reported in a study of six subjects (Goncalves
et al., 2003a) based on analysis of evoked somatosensory EEG potentials and
MEG fields (SEP/SEF). The same group, however, reported a mean value
of 42 using EIT (Goncalves et al., 2003b). Meanwhile, Oostendorp measured
BSCR values as low as 15 for a piece of skull temporarily removed during
a pre-surgical monitoring study (Oostendorp et al., 2000). Other relatively
low BSCR estimates (18.7 ± 2.1) have since been reported for two epilepsy
patients from in vivo experiments using intracranial electrical stimulation by
injecting current using subdural electrodes (Zhang et al., 2006), and BSCR
values between 18 and 32 have been derived from simultaneous intracranial
and scalp EEG recordings for adult epilepsy patients during pre-surgical eval-
uations (Lai et al., 2005). Such variations in reported BSCR values may occur
not only based on measurement method di↵erences but also through natural
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inter-subject variations in skull thickness and density, both also known to
change throughout the life cycle (Oostendorp et al., 2000; Hoekema et al.,
2003; Wendel et al., 2010).

Considering its strong influence on the accuracy of EEG source localiza-
tion, skull conductivity should be a subject-specific parameter in any accu-
rate electrical forward head model (Akalin Acar and Makeig, 2013; Huiskamp
et al., 1999; Dannhauer et al., 2011). However, as surveyed above most direct
skull conductivity measurement methods are invasive. Less invasive methods
based on electrical impedance tomography (EIT) or magnetic resonance EIT
(MREIT) that inject or induce small currents to estimate conductivity re-
quire special equipment and are not in common use. For instance, Ferree et
al injected small electric currents into scalp EEG electrodes and recorded the
resulting potentials at the other electrodes. Skull conductivity was estimated
in a four-layer spherical model using a simplex algorithm that minimized er-
ror between measured and computed scalp potentials. The mean reported
BSCR value was 24 (Ferree et al., 2000). As a large but variable portion of
the current injected flows through the scalp itself, such procedures may also
be subject to error or bias.

Other groups have proposed estimating skull conductivity using somatosen-
sory event-related potential (SEP) and evoked field (SEF) peak scalp maps.
Gutierrez et al. (2004) used SEP and SEF peak scalp maps to estimate
layer conductivities in a four-layer spherical head model, estimating the lo-
cation iteratively so as to minimize di↵erences in equivalent source locations
computed from the MEG and EEG maps. Similarly, Baysal and Haueisen
(2004) reported a mean BSCR value of 23 across nine subjects by combining
SEP/SEF peak scalp maps. Vallaghe et al. (2007) used an average evoked
response in a somatosensory experiment and assumed the source projection
to the scalp montage could be modeled by a single equivalent dipole located
in the cortex. They estimated BSCR as 81 and 89 for right and left hand
SEP. Huang et al. (2007) confirmed that simultaneous EEG and MEG record-
ings could obtain more accurate source localization than either EEG or MEG
recordings alone. They performed a two-step approach, estimating tangential
source projections of event-related fields (ERFs), fitting conductivity values,
then solving for the radial projections absent in MEG using the simultane-
ously recorded event-related potentials (ERPs). However, MEG recording is
much more expensive and much less commonly available than EEG.

Later, Lew et al. (2009) used simulated annealing (SA) to estimate brain
and skull conductivities by pre-computing the forward problem for a set of
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brain and skull conductivities and then using an SA optimizer to simulta-
neously search for the source location and conductivity. They proposed to
apply their method to EEG data in which the underlying sources may be
unitary and for which very good SNR ratios can be achieved, e.g., at early
peaks in auditory and somatosensory evoked response averages. However, es-
timating conductivities from only one source location could bias the results,
whereas using a spatially distributed set of isolated sources might be more
accurate and robust.

In the following sections, we first formalize the forward and inverse prob-
lems and their solutions, explain the e↵ect of skull conductivity on inverse
problem solutions, then illustrate how compactness of the source estimates
for near-dipolar source scalp maps depends on skull conductivity. Next,
we detail the SCALE (‘simultaneous conductivity and location estimation’)
approach for estimating skull (or other head tissue) conductivity and the
location of a number of EEG sources concurrently, describe verification of
the SCALE approach in a simulation study, and finally report results of its
application to 128-channel EEG data sets from two young adult subjects.

2. Methods

2.1. The EEG forward problem

Let � be the conductivity distribution of the head and J̄p be the pri-
mary current density representing the brain source(s). Then, the potential
distribution � within the head generated by J̄p can be represented by the
quasi-static Maxwell Equation:

r.(�r�) = r.J̄p inside V (1a)

�
��

�n
= 0 on S (1b)

where V and S denote the volume and surface of the conductive body, re-
spectively, and n̄ is the unit normal on surface S. Here, the natural boundary
condition is assumed, i.e., the normal component of the current density on
the surface of the conductive body is set to zero. From Equation 1, � can
be solved for when � and J̄p are specified. This is the forward problem of
electrical source imaging.

When realistic head models are employed, the forward problem is solved
using a numerical modeling approach such as the Finite Element Method

5



(FEM), Boundary Element Method (BEM), or Finite Di↵erence Method
(FDM) (Akalın-Acar and Gençer, 2004; Gençer and Acar, 2004; Wolters
et al., 2002; Vanrumste et al., 2000). For the numerical solutions in this
study we used FEM head models built using the transfer matrix approach
(Gençer and Acar, 2004).

2.2. The EEG Inverse Problem

The relationship between scalp EEG signals Y and underlying brain
source activities S can be modeled by a linear system:

Y = LS+B (2)

where S is the source matrix, B is the noise matrix and L is the lead field
matrix relating source strengths to their volume-projected scalp potentials.
When we perform ICA decomposition of the EEG data, here using AMICA
(Palmer et al., 2007), then

Y = QT =
PX

i=1

QiT
0
i (3)

where P is the number of maximally independent component processes (ICs),
Qi is the spatial projection pattern (scalp map) of the ith IC, and Ti is its
activity time course. If P

n

of P ICs can be identified as near-dipolar, the
EEG for these P

n

ICs can be written as:

Yn = QnT =
PnX

i=1

QiT
0
i (4)

Solving an EEG inverse problem from Yn gives an estimate of the spatial dis-
tribution of source activity generating the observed independent component
scalp map:

ˆ

Si = argmin
Si

(LS
i

�Q

i

T

0
i

) (5)

ˆ

S =
PnX

i=1

ˆ

Si (6)

where Ŝ

i

is the source of the ith IC. Here we can use any linear source
localization method to estimate the source distribution Ŝ

i

(Baillet et al.,
1999; Ramirez and Makeig, 2006; Mosher et al., 1999). Using simulations, we
have shown that BSCR can strongly a↵ect the accuracy of source localization
(Akalin Acar and Makeig, 2013).
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2.3. Head model sensitivity to conductance parameters

The numerical electrical forward head model is comprised of matrices rep-
resenting the head geometry, the distribution of conductivity values within
the head, and the locations of the scalp sensors. By parameterizing the for-
ward model (conductivity values, sensor locations, skull thickness, etc.) we
reasoned it should be possible to perform optimal conductivity estimation us-
ing a gradient-based or simplex optimization approach while simultaneously
improving the inverse problem solutions, in a particular sense, for the given
independent IC sources. As described above, any change in conductance
parameters assumed for the several head tissue parameters requires compu-
tationally expensive computation of the head model and transfer matrices.

Here we focus on optimizing the skull conductivity estimate alone (equiv-
alent to optimizing the BSCR). Our approach is to attempt to find a skull
conductivity (or equivalently, BSCR value) that simultaneously maximizes
the compactness of the computed spatial source distribution estimates for
many or all of an identified group of near-dipolar ICs while minimizing the
spatial di↵erence between measured and computed IC distributions using the
relative di↵erence measure (RDM) (Meijs et al., 1989).

Our inclusion of source compactness as an objective is motivated by the
large preponderance of short-range cortical connections for both excitatory
and, especially, for inhibitory neurons. The sparsity of long-range connec-
tions makes it di�cult or impossible for a broadly distributed source domain
to emit a unitary signal across an EEG dataset. Unitary e↵ective sources
of scalp EEG should therefore be small emergent domains or patches of co-
herence cortical field activities. The relative anatomic separation of such
patches gives the tendency for the time courses of their separate activities to
be relatively independent of one another, possibly excepting a sparse subset
of time points at which they may receive common alerts that modulate their
activities. ICA exploits their relative independence to learn spatial filters
that separate their time courses by in e↵ect learning their separate projec-
tion patterns to the scalp electrode montage, as embodied in the IC scalp
maps contained in columns of the matrix inverse of the ICA unmixing matrix.

2.4. Linearizing changes in scalp potentials produced by small changes in
assumed tissue conductivity

One way to optimize the BSCR estimate involves linearizing the potential
change in the neighborhood of the currently estimated set of tissue conduc-
tivities (Gençer and Acar, 2004). To linearize the potentials around a con-
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ductivity distribution �0, we begin by perturbing the conductivity estimates
by �� and writing the resulting conductivity vector as

� = �0 +�� (7)

The corresponding potential becomes:

� = �0 +�� (8)

If we discretize the head model with N mesh nodes and M mesh elements
we can express Equation 1 in matrix notation:

A

�

� = b (9)

where � is an N ⇥ 1 vector of unknown source potentials, � denotes the
M ⇥ 1 vector of element conductivities, A is a sparse, symmetric N ⇥ N
matrix containing element geometry and conductivity information, and b is
an N⇥1 vector of primary current density. Let D be an m⇥N sparse matrix
that selects m electrode locations among the N nodes in the FEM mesh, i.e.
�

s

= D�.
Changes in the scalp potentials:

��
s

= �DA

�0

�A
�

��

����
(�=�0)

�0�� (10)

��
s

= S��� (11)

where S� is the m ⇥ M sensitivity matrix, and �� is M ⇥ 1. See (Gençer
and Acar, 2004) for a detailed derivation of the sensitivity matrix .

2.5. The SCALE approach

We propose an iterative method for noninvasively estimating head tissue
(in particular, skull) conductivity values and brain source distributions simul-
taneously using (1) a realistically shaped finite element method (FEM) head
model constructed from a subject MR head image and (2) the scalp maps
of 10-30 near-dipolar EEG source processes compatible with a single corti-
cal patch source distribution, identified by ICA decomposition of a su�cient
amount and quality of high-density EEG data collected in any experimen-
tal condition. Because of its demonstrated e�cacy (Delorme et al., 2012),
we here use adaptive mixture ICA (AMICA) for this purpose (Palmer et al.,
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2007, 2006). We generate subject-specific four-layer FEM forward head mod-
els using the Neuroelectromagnetic Forward head modeling Toolbox (NFT)
(Akalin Acar and Makeig, 2010), then select 10 or more IC sources whose
scalp maps are “dipolar”, i.e., well accounted by a single equivalent model
dipole, compatible with a source distribution consisting of a compact cortical
patch (Delorme et al., 2012). Typically, the equivalent dipole source loca-
tions of such IC sources found in decompositions of continuously recorded
EEG data are widely distributed across cortex.

More formally, we assume that each IC source represents a far-field pro-
jection to the electrodes of local cortical field potentials that are fully or
partially coherent across a single small cortical domain or patch of unknown
size and shape. In large part because of the extreme preponderance of short-
range corticocortical connections ( 100µm), wholly so for inhibitory neurons
and glia, and the predominance of tight radial thalamocortical loops, both
supporting oscillatory local field dynamics, models of cortical field dynamics
(Deco et al., 2008) demonstrate the emergence of such patches or islands of
cortical local field synchrony likened to “pond ripples” by Freeman (2003)
and to recurring (point spread) avalanches by Beggs and Plenz (2004). Thus,
brain connectivity both favors the emergence of temporal synchrony within
small, connected cortical domains and minimizes temporal synchrony be-
tween such domains other than in exceptional locations and circumstances.
Because of the common alignment of cortical pyramidal cells perpendicular to
the cortical surface, spatially coherent local field activity across such a patch
will have a non-negligible far-field projection to the scalp (Baillet et al., 2001;
Nunez and Srinivasan, 2006), forming an e↵ective EEG source whose time
course may typically be near statistically independent of the time courses of
concurrent far-field potentials generated by other, spatially separated cortical
source patches.

Net far-field currents projecting from such EEG source areas are each
volume-conducted to nearly all of the scalp electrodes. Each electrode chan-
nel sums potentials from multiple e↵ective cortical brain as well as several
types of non-brain (“artifact”) sources. Because the outward (or inward)
“rippling” of the phase waves across the cortical surface is fairly slow (1-2
m/s) (Nunez and Srinivasan, 2006) and their expected e↵ective size is rela-
tively small (circa 1 cm or less) (Beggs and Plenz, 2004; Baillet et al., 2001),
at the frequencies of most oscillatory EEG processes the net source projec-
tions to the scalp should be nearly spatially stationary. For example, at 10
Hz and 1 m/s wave speed, the phase di↵erence between the center and pe-
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riphery of an outspreading circular avalanche 1 cm in diameter is only 18
degrees. Under favorable circumstances therefore, ICA decomposition can
separate such e↵ective source activities by linearly decomposing recorded
multichannel data into maximally temporally distinct (independent) compo-
nent processes (Makeig et al., 1996, 2002, 2004) many of which are associated
with near “dipolar” scalp projection patterns compatible with an origin in
cortical field activity that is spatially coherent across a cm2-scale cortical
patch (Delorme et al., 2012).

Though the ICs used to localize the sources are associated with “near-
dipolar” scalp projection patterns, SCALE uses a distributed source model
rather than an “equivalent dipole” source model. In the presence of measure-
ment and modeling errors, the fitting error represents the sum of multiple
errors from di↵erent causes, and cannot be directly used to estimate the con-
ductivity (Vallaghe et al., 2007). An equivalent dipole may be localized as
deeper or less deep in the head depending on whether the actual skull con-
ductivity is higher or lower than the head model estimate while keeping the
model fitting error low. When the source is constrained to be compact and
oriented orthogonal to the cortical surface, however, incorrect estimation of
skull conductivity cannot be compensated by simply moving the center of
the source estimate deeper or less deep within the head volume. For this
reason, distributed source localization of an imaged 2-D cortical source space
allows successful conductivity estimation.

When the e↵ective source is constrained to be compact and to lie within
and orthogonal to the imaged cortical surface, an error in BSCR estimation
cannot be compensated by a shift in patch depth, as it can in 3-D distributed
source models (Pasqual-Marqui, 1999), or by increase in e↵ective source area
as in minimum-norm approaches (Hämäläinen and Ilmoniemi, 1994; Pasqual-
Marqui, 1999). A possible exception is the cingulate sulcus; a (small) upward-
oriented source estimate there might not win out over a (still smaller) source
estimate on the upper cortical surface. But this geometry (parallel cortical
surfaces, one below the other) may only exist rarely in cortex, and it is
unlikely that one such mis-localized IC would strongly bias the estimated
BSCR.

Using multiple, spatially dispersed IC sources simultaneously for conduc-
tivity estimation makes it possible to di↵erentially weight results for each
source at each iteration based on a “goodness of fit” criterion, e.g. a mea-
sure of the spatial compactness of the IC spatial source distributions that we
estimate using the “sparse, compact and smooth” (SCS) algorithm of Cao
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et al. (2012) (summarized in the Appendix). The objective of the SCALE
approach is then to adapt conductivity values in the subject forward head
model so as to best maximize the compactness of the estimated cortical IC
source distributions while also maximizing the goodness of fit of their mod-
eled scalp channel projections to the selected IC source maps.

SCALE proceeds in successive alternating (minimum error) source lo-
calization and (maximum compactness) conductivity estimation steps, each
iteration requiring (re)computation of the electrical forward head model lead
field matrix. The method is therefore computationally intense, making im-
plementations using parallel processing desirable. However, the FEM head
model formulation we use allows us to linearize the forward problem near
a conductivity distribution by creating a sensitivity matrix that maps con-
ductivity changes to resulting changes in scalp electrode potentials (Gençer
and Acar, 2004). This allows us to use gradient-based optimization, avoiding
the need for more global schemes that may require a larger number of head
model evaluations.

The sensitivity matrix derived above allows us to obtain forward problem
solutions near a given conductivity distribution �0 and source distribution
�0 without having to recompute the forward problem at each step. This,
in turn, allows us to iteratively search for a change in conductivity �� that
improves the solution of the forward problem in the sense of reducing the
RDM error of the forward solution g

f

for the set of ICs:

g
f

= min
��

RDM(�
EEG

,�
�

) = min
��

RDM(�
EEG

, (S�� + �
�0)) (12)

RDM, a robust measure of source distribution accuracy sensitive to changes
in both source magnitude and distribution (Meijs et al., 1989), is defined as:

RDM(�
R

,�) =

vuut
 P

m

i=1 (�R,i

� �
i

)2P
m

i=1 �
2
R,i

!
(13)

where �
R

is the reference potential distribution, � is the calculated poten-
tial distribution, and m is the number of electrodes. We can then iteratively
improve the source estimates using the updated conductivity estimates, re-
peating this process until the solution converges.

The basic SCALE approach is thus:

1. Generate a forward electrical head model and select a starting �0 (a
vector of L conductivity values).

11



2. For each iteration i = 0, 1, 2, ...,

(a) Calculate the forward model using the conductivity distribution,
�
i

.
(b) For each IC

j

, j = 1, 2, ..., P
n

where P
n

is the number of near-
dipolar ICs.

i. Estimate source distribution s
j

(a vector of n source magni-
tudes) from �

ICj (a vector of m electrode potentials for the
jth IC).

ii. Compute the estimated electrode potentials �
j

at �
i

from s
j

.
iii. Calculate the sensitivity matrix, S

j

(the m ⇥ L sensitivity
matrix for source distribution s

j

).
iv. Compute ��

j

= min��

(RDM(�
ICj ,Sj

�� + �
j

)).

(c) Compute ��
i

=
P

Pn

j=1 wj

��
j

. (w
j

s may be used to weight the
evidence from the di↵erent ICs.)

(d) Update the conductivity distribution, �
i+1 = �

i

+��
i

.

3. Stop if ��  ✏.

2.6. Finding the optimum conductance change

The goal of the SCALE approach described above finds a � that allows
optimization of all or most P

n

independent component source distributions.
Since each IC source j has a separate sensitivity matrix, we have chosen to
compute an optimum �̂�

j

for each IC. For this purpose, we search for the
�̂�

j

value that minimizes the RDM. The final �� is then computed as a
weighted sum of these values. Using equations (13) and (11):

RDM(�
ICj ,�j,�+��

) =

vuut
 P

m

i=1 (�ICj � �
j,�+��

)2P
m

i=1 �
2
ICj

!
(14)

=

vuut
 P

m

i=1 (�ICj � �
j

� S

j

��)2P
m

i=1 �
2
ICj

!
(15)

Since the RDM function is non-linear, and the sensitivity matrix is only
accurate near �0, a straightforward approach is to first scan a coarsely-spaced
set of pre-selected BSCR values in a fixed range near �0 for a skull conductiv-
ity value giving the lowest RDM value. The computation of the new potential

12



�
j

(�+��) at each �� only requires a multiplication by the sensitivity ma-
trix (Equation 15), making scanning a single-variable conductivity change
quite fast compared to the rest of the procedure. However, if the SCALE
approach were used to search for more than one tissue conductivity, using a
more global optimization algorithm could be preferable.

Following the above steps results in ��, an L ⇥ P
n

matrix of optimal
conductivity values for each IC. The �̂� for each iteration is computed as a
weighted sum of the columns of this matrix:

�̂� = ��w (16)

We tested three di↵erent approaches to choosing the source weight vector
w in Equation 16:

1. M1: Weight every source equally: w
i

= 1/P
n

, i = 1...P
n

2. M2: Weight the estimate source according to the compactness of its
estimated source distribution.

w
i

=
compactness(i)

P
P

j=1 compactness(j)
, i = 1...P

n

3. M3: Incorporate both the compactness and the RDM in computing the
source weight:

w
i

=
compactness(i)⇥ RDM(�

ICi ,�i

)
P

P

j=1 compactness(j)⇥ RDM(�
ICj ,�j

)
, i = 1...P

n

.

In the equations above, compactness(i) is the compactness of the potential
distribution estimated for the ith source as follows:

compactness =
1

T 2

TX

i=1

TX

j=1

�
i

�
j

ekkr(i)�r(j)k (17)

where T is the number of voxels in the source distribution whose absolute
weight values are above a given threshold, and r(i) � r(j) is the distance
between the source voxels. In our calculations we used 0.1 for k as this value
produced monotonically increasing compactness values when the BSCR value
approached the asymptotic BSCR value in our simulation studies.

13



2.7. Forward head model and EEG data

To test the SCALE approach using actual EEG data we used two data sets
(45 min, 128 scalp channels, 256-Hz sampling rate) collected using a Biosemi
Active Two system during an arrow flanker task (McLoughlin et al., 2014)
from two male subjects, 20 and 23 years of age. Whole-head T1-weighted
MR images with 1-mm3 voxel resolution for the two subjects obtained using
a 3-T GE MRI system were used to generate four-layer realistic head tissue
models via the NFT toolbox (Akalin Acar and Makeig, 2010) that models
scalp, skull, CSF, and brain tissues. We also generated a high-resolution
cortical surface source space containing 80,000 sources for each subject using
Freesurfer (Dale et al., 1999). The median surface area of the face of the
elements on the source space mesh was 0.8 mm2. The tissue surface and
cortical source space meshes for subject S1, as well as the locations of the
128 scalp electrodes are shown in Figure 1.

Head Model Source Space

Figure 1: (Left) Scalp, skull, CSF and brain surfaces for subject S1 including the measured
128 scalp electrode locations. (Right) High-resolution Freesurfer cortical source space for
subject S1.

For each subject, after high-pass filtering the continuous EEG data above
1 Hz we removed artifacts by initial likelihood-based rejection of time points
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(5%-10% of data) (McLoughlin et al., 2014), and applied (single-model) AM-
ICA decomposition (Palmer et al., 2007) and then selected 13 near-dipolar
ICs with brain-based equivalent dipoles for Subjects S1 and S2 (Figure 2).
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Figure 2: Scalp maps of the near-dipolar brain-based independent component (IC) pro-
cesses used for subjects S1 and S2.

Our previous simulations using subject-specific BEM head models demon-
strated that the overall e↵ect of changing the assumed skull conductance (and
thus, BSCR) on recovered dipole source locations is to smoothly and mono-
tonically decrease or increase the depth of the source solutions (Akalin Acar
and Makeig, 2013). In those simulations, the source space employed was
the homogeneous 3-D brain volume. Here, we used a high-resolution cortical
surface source space derived from a subject MR head image using Freesurfer
(freesurfer.net) (Fischl, 2012). Thereby, we assumed that the far-field projec-
tions of an IC source can be modeled as a weighted sum of a patch of adjacent
equivalent dipoles in the cortical mantle whose orientations are orthogonal
to the local orientation of the cortical surface (Baillet and Garnero, 1997).

Since the geometry of the oriented cortical source space conforms to the
highly invaginated cortical surface, the largest part of whose surface area
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is in cortical sulci (fissures) rather than in (outward-facing) gyral surfaces,
the e↵ects of changes in the modeled BSCR on distributed compact source
estimates for a simulated or actual single-patch source are not smooth and
continuous. Rather, as change in the BSCR makes the 3-D equivalent dipole
for the source move deeper or more superficial, the maximally compact corti-
cal source distribution in the cortical surface-normal source space may frac-
tionate into multiple non-adjacent patches (often with opposite signs) and
then coalesce to another more or less compact solution on another gyrus.
This process gives local minima in estimated source compactness as a func-
tion of assumed BSCR, one located at the correct BSCR value (in nearly all
cases the most compact solution) as well as possible relative minima at other
BSCR values.

Because of the presence of these local minima, searching for the optimal
skull conductivity using a local optimization algorithm is sensitive to initial
conditions (Lew et al., 2009). Our approach seems to avoid becoming trapped
in local minima by 1) constraining the inverse problem as much as possible
using actual physiological constraints, 2) by simultaneously testing the ef-
fects of assumed BSCR on multiple ICs with near-dipolar scalp-maps (and
thereby compatible with compact single cortical patch source distributions)
and, crucially, 3) by weighting the solution in favor of BSCR values that
produce more compact source distributions whose scalp projection patterns
are close to the given IC scalp maps. In practice, we observe that source
distributions for near-dipolar ICs, when estimated by SCS using wrong (not
as simulated) or implausible (not plausibly actual) BSCR values, tend to be
more spatially dispersed, while distributions using the correct (simulated)
or SCALE-learned BSCR values are dominated by a single compact cortical
patch.

2.8. Test data

First, we generated multiple head models for the two test subjects to ob-
serve whether and how the compactness of compact source distributions may
vary as a function of assumed BSCR. For each subject, we generated nine
separate FEM electrical forward-problem head models with linear tetrahedral
elements using the NFT toolbox (Akalin Acar and Makeig, 2010), incorpo-
rating nine di↵erent BSCR values (5, 10, 20, 30, 40, 50, 60, 70, and 80).
We then estimated the cortical source distributions for the scalp maps of 13
ICs for each subject using the SCS algorithm applied to each of the nine
forward models, and measured the compactness of the estimated cortical

16



source distributions using Equation 17 above. We also computed the mean
compactness across all the simulated sources for each subject.

Next, we simulated 15 circular Gaussian patch sources with radius 10 mm
and standard deviation 3.33 mm, including both sulcal and gyral sources uni-
formly distributed across the cortex in the head model of subject S1, as shown
in Figure 3, and computed their forward projections to 128 simulated scalp
electrode channels. We used this simulation study to evaluate the relative
values of three (M1-3) weighting schemes (see Section 2.6) for estimating
skull conductivity.

Figure 3: The 15 cortical Gaussian patch sources used in the simulations.

We then computed a reference scalp map projection for each simulated
source using a forward-model BSCR of 25 and added sensor noise su�cient
to give a signal-to-ratio (SNR) of 20 dB using the definition below (Equa-
tion 18). We then estimated skull conductivity with initial BSCR starting
values of 80 and 20, using a SCALE approach incorporating each of the three
weighing choices to test their relative e�cacy.

SNR
dB

= 10 log10

 
�

EEG

�
noise

!2

(18)

Finally, we applied the iterative SCALE approach to actual EEG data
from the two subjects (S1 and S2). For each subject we tested two di↵erent
starting BSCR values (25 and 80) and also compared the results for the three
proposed IC weighing schemes (M1-M3, Section 2.7).

3. Results

Here we report results of three initial tests of the SCALE approach to es-
timating model head conductance values from EEG data (with scalp channel
locations specified) combined with a standard structural MR head image.
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3.1. E↵ects of skull conductivity estimation on source location distributions

The mean source compactness profile for subject S1 (left panel, black
trace in Figure 4) was maximum at BSCR = 30, while for subject S2 (right
panel), maximum mean source compactness was obtained at BSCR = 60.
From this initial test, we concluded that sampling source compactness at
discrete BSCR values using may be used to suggest more and less optimal
individual subject BSCR values to use in MR head image-derived FEM elec-
trical forward problem head models.

We also explored directly how di↵erences in estimated source distribu-
tions for 13 ICs depended on assumed BSCR for the two subjects. Measured
source compactness for each IC in each forward model are shown in Figure 4.
Estimated source distributions for occipital ICs 16 and 18 had peak compact-
ness at BSCR=30, while source distributions for ICs 7 and 13, with maximum
projections to lateral cortex, had highest compactness at BSCR=20. These
values fall within the range of values reported in most modern direct BSCR
measurement studies. The estimate variation with IC source location and/or
orientation could in part reflect regional variations in skull thickness; tempo-
ral skull tends to be thinner than occipital skull (Lynnerup, 2001; Anderson,
1882; Hwang et al., 1999).
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Figure 4: Normalized compactness values for all 13 IC sources (colored traces) using 9
forward head models built from the MR head image for each subject (S1, S2) assuming
BSCR estimates from 5 to 80, plus mean compactness for each model (black trace) averaged
across all 13 (equally weighted) sources.
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3.2. SCALE convergence for simulated EEG patch sources: E↵ects of IC
weighting method

Computing compactness at a set of BSCR values (9 in our initial test
above) requires re-computing the FEM matrix for every BSCR value and
electrode location. This is a computationally expensive approach, particu-
larly if we wish to seek an exact estimate. To attempt to improve on this blind
sampling approach, we tested the application of iterative SCALE estimation
by estimating BSCR using a set of 15 simulated single cortical patch-source
distributions in the head model of subject S1, attempting to more accurately
estimate the simulated BSCR while minimizing the number of the successive
BSCR estimates for which the forward head model needs to be recomputed.

We first illustrate source localization results using simulated data in the
forward head model of subject S1 for three types of sources; a gyral source,
a sulcal source, and a relatively deep interhemispheric source in Figure 5.
The data were simulated using BSCR=25. Sensor noise was added to the
scalp map (signal-to-noise ratio 20 dB). The simulated source area and the
noise-added scalp maps are shown in the upper left corner box in each figure.
Source compactness is plotted for BSCR values 5, 10, 20, 30, 40, 50, 60,
70, and 80. Estimated source distributions are visualized at various BSCR
values using the semi-inflated cortical surface (sulcal areas in dark grey).
In all three cases, the sources are most compact, and compactness values
correspondingly maximum, at BSCR test values of 20 or 30.

We then used the SCALE algorithm to estimate skull conductivity with
starting BSCR values of 80 and 20, again testing each of the three weighing
choices (M1-M3) using simulated IC scalp maps without added noise (Figure
6). We also applied SCALE (using the M3 weighting scheme) to noise-added
simulated EEG source scalp maps with signal-to-noise ratios of 20, 25, and
30 dB, again starting SCALE at BSCR=80 and at BSCR=20. We obtained
more reliable results using the M3 weighing scheme, likely because it uses
both the compactness and model-data goodness-of-fit measures.

In the noise-free case BSCR converged to 32.6, in 17 steps when initialized
to 80, and in 9 steps when initialized to 20. When we added noise, the
convergence rates were almost the same. For noise-added maps simulated
with SNR=30, computed BSCR values converged to 35.2. Thus, given noisy
source scalp map data, the BSCR values converged close to the BSCR value
(32.6) obtained using noise-free scalp map data with only weak noise-level
dependent di↵erences.
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Figure 5: Simulated source localization results using the head model geometry of subject
S1 for three sources with noise added; a gyral source, a sulcal source, and a relatively deep
interhemispheric source. The simulated source area and the scalp maps (with noise-added)
are shown in the upper left corner box in each panel. Source compactness is plotted for
BSCR values 5, 10, 20, 30, 40, 50, 60, 70, and 80. Note the strong (rightmost) scalp
positivity contributed by the added noise. Estimated source distributions are visualized
at some BSCR values on the semi-inflated cortical surface (sulcal areas, dark grey).

20



Figure 6: Step-wise convergence of the BSCR estimates produced by SCALE (with M3
weighting) for a simulated data set of 15 cm2-scale cortical source patches (Figure 3) using
a forward head model with a BSCR value of 30. The left figure shows the estimated BSCR
value at each step using the source weighting schemes explained in Section 2.6 without
adding scalp map noise. The right figure shows the successive BSCR estimates with sensor
noise added. The initial SCALE BSCR estimates were BSCR=80 (circular markers) and
BSCR=20 (square markers).

3.3. SCALE convergence for actual EEG sources using RDM-based mini-
mization

Finally, we applied the SCALE approach to sets of actual ICs separated
by AMICA from the two subjects’ recorded EEG data sets. Figure 7 shows
the convergence of the BSCR estimates. The M1 (equal) source weighting
scheme did not converge, while the M2 and M3 weighting schemes showed
similar performance. Therefore only results using M2 and M3 are shown
here. For the first subject (left), starting from either initial value (BSCR
80 or 25), SCALE converged to a BSCR estimate of 34 (upper left) while
achieving comparable weighted-mean source compactness (near 2.0, lower
left). For the second subject (right), again starting at either of the same
initial BSCR values SCALE converged to the same estimated BSCR (54) and
weighted mean source compactness (near 0.6). The BSCR estimates returned
by SCALE (34, 54) remained near the coarse optima (30, 60) dicovered in
our initial discrete-value testing (Figure 4).

The BSCR estimates for the two subjects (34, 54) were well separated.
Post hoc measurements revealed 7.1% more segmented skull voxels in the
head model of S2. In the S1 head model, the skull constituted 9.5% of the
whole head volume, whereas for S2 the skull constituted 10.2% of the head
model. Also, mean skull thickness in S2 was 3.4 mm, whereas for S1 skull
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thickness was 3.0 mm. These di↵erences in skull volume and thickness could
have contributed to the higher estimated BSCR value for S2 relative to S1.
Another possible cause might be higher-density skull compacta layers and/or
a thinner skull spongioform layer in S2 (not easily estimated from these MR
images).
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Figure 7: SCALE BSCR value convergence (top row) and weighted-mean estimated source
compactness (bottom row) for two sets of 13 brain source-compatible independent sources
(ICs) (see Figure 2) separated from actual EEG data of Subjects S1 and S2 respectively
using Adaptive Mixture ICA (AMICA). For each subject, SCALE was run beginning with
initial BSCR estimates of 80 and 25, respectively, using source weighting schemes M2 and
M3.

Figure 8 plots the IC5 source scalp map (top center) and indicates the
compactness of the estimated cortical source distribution versus estimated
BSCR at each SCALE iteration (red and blue dots), for some iterations
estimated source distributions are shown on the semi-inflated cortex model
using a (color vs. greyscale) visualization threshold determined by plotting
a cumulative histogram (upper left inset) of squared cortical voxel weights
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and finding the point of steepest ascent (elbow) of the resulting curve.
Note the changing estimated source area for BSCR estimates near 80 (red

dots), becoming more focused on a single cortical patch near convergence.
When SCALE iterations begin with a BSCR estimate of 25 (lower left), note
the multiple active regions in the source estimate, with strongest activity
estimated to be on a di↵erent gyrus than in the converged result (upper
right). For both starting points, as SCALE iterations progress the active
source area converges to nearly the same source distribution (upper right).
This example demonstrates how SCALE may be used to stably estimate
skull conductivity and thereby to improve the accuracy and robustness of
distributed inverse source localization.

3.4. Computational complexity

The computational cost of SCALE depends on head mesh size and on the
numbers of sources, electrodes, and modeled conductivity layers. The aim of
this section is to indicate how long di↵erent stages of the SCALE algorithm
require in its present implementation on a single current CPU.

The table below summarizes computation times for a 4-layer realistic head
model with a total of 250,000 nodes using a single 2.4-GHz 64-bit Opteron
processor. The following parameters define the size of the problem. Typi-
cal values for these parameters are also given. N: number of nodes in the
FEM mesh (⇠ 240,000); L: number of conductivity compartments (1-20);
S: number of brain sources (10-30); K: number of source dictionary patches
(⇠ 80,000); and E: the number of scalp electrodes (⇠ 128-256). Based on
these parameters, the memory and computation time requirements at various
stages of computation as computed and tested (on a ⇥86 64-bit 2600 MHz
Linux workstation), respectively:

1. Forward problem setup: Generate FEM matrix (N ⇥ N sparse) =
100-200 MB (20 min)

2. Forward problem solution: Generate lead field matrix (K ⇥ E full)
= 80-160 MB (3.7 hours)

3. Inverse problem: Solve Ax = b (A=lead field matrix, K ⇥ E;
b=scalp potential, E x 1) (1 hour)

4. Sensitivity matrix: Generate N ⇥ L ⇥ S full matrix = 20-1,200 MB
(6 hours)

Thus, about 11 hours were required to complete the single iteration above.
To estimate conductivity while simultaneously refining the source location

23



Figure 8: Estimated BSCR, source compactness, and visualized source distributions for
IC5 of subject S1 using two SCALE-generated sequences of S1 forward head models for
initial estimates BSCR=80 (red trace) and BSCR=25 (blue trace). Semi-inflated cortical
surface plots show the estimated (central medial) source distribution at several SCALE
iterations. The color bar (lower right) shows estimated voxel source signal density relative
to its maximum absolute value. The grey-white to color masking value in these plots
(±30% of the maximum voxel density value) was selected as the elbow in the cumulative
histogram (upper left) of squared voxel values in the ultimate source estimate.
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estimates, the SCALE algorithm iterated the operations above T = 5-10
times. SCALE thus converged after between 55 and 110 hours (2.3 and 4.6
days) of processing (with N=240,000, K=80,000, E=154, S=13, L=1, T=8).

We anticipate that the most computationally demanding steps above
should be straightforward to port to time- and cost-e�cient GPU processors.
The large number of integral evaluations required to fill in the elements of the
sparse FEM matrix can be parallelized. Since the computational intensity
(the ratio of mathematical operations to size of input data) for the integral
calculations is fairly high, a significant speedup should be achievable (Wolters
et al., 2002; Ataseven et al., 2008). In the literature, an 87⇥ speed-up has
been reported using a FEM GPU implementation (Fu et al., 2014). A com-
parable speed-up applied here would reduce the computation time required
for a single iteration to only 7.5 minutes, and could give SCALE convergence
in 1 hour or less. Further, once learned for a subject, the SCALE-derived
forward head model could be used for any data recorded for the same sub-
ject, potentially for years afterwards unless head injury or significant skull
changes with aging made re-computation necessary. In regular use, only a
(highly parallelizable) lead-field matrix computation would be required for
each new electrode montage.

4. Discussion

Here we have presented a novel iterative approach (SCALE) to estimating
skull conductivity non-invasively from nearly any well-recorded, su�ciently
long, high-density EEG data set. SCALE estimates conductivity by simulta-
neously improving the compactness and stability of distributed EEG source
localization for near-dipolar independent component (IC) e↵ective source
processes. These ICs are extracted from the data by ICA decomposition
and compatible with an origin in a single cortical patch (Delorme et al.,
2012). Using the sensitivity matrix in an electrical forward head model
built from a subject MR head image, the relationship between changes in
implied skull conductivity resulting from changes in scalp potential distribu-
tion allow SCALE to iteratively optimize skull conductivity smoothly and
e�ciently given a number of brain-source compatible source scalp projection
maps. SCALE uses overall compactness of the estimated source distributions
as a goodness-of-fit criterion.

In our initial tests using distributed simulated source projections, SCALE
converged near to the simulated BSCR values. Further, using the final es-
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timated (near the simulated) rather than the initially assumed (not as sim-
ulated) BSCR values in the SCALE head model gave more accurate source
distributions as evidenced by more compact source distributions with lower
residual error (Figure 6). Next, we applied SCALE to IC maps derived from
two EEG data sets acquired from two young adult male subjects. For both
subjects, whether we initialized the BSCR estimate to 80 or to 25 the SCALE
result converged to the same BSCR and source distribution estimate, sug-
gesting that the approach successfully avoided falling into local minima.

The final BSCR estimates (34 and 54) were, however, quite di↵erent for
the two subjects. There might be several reasons for this di↵erence beyond
the measured individual di↵erence in skull thickness and volume (Huiskamp,
2008) and other possible skull geometry di↵erences discussed above. Our
FEM model only represented four tissue types FEM models including as
many as 12 tissue types have been attempted (Ramon et al., 2006). Also,
the skull boundaries and cortical surface orientations are not easy to deter-
mine precisely from limited-resolution 3-D MRI images (Dogdas et al., 2005;
Studholme et al., 1996) and these a↵ect EEG source localization (Lanfer
et al., 2012; Ollikainen et al., 1999). These factors may result in geometric
and/or electrical head model inaccuracies. In the head modeling used here for
SCALE, several approximations are made in forward modeling (Akalin Acar
and Makeig, 2010) that may cause skull modeling inaccuracies. For instance,
if the FEM model skull layer is somewhat thinner than the subject’s skull,
then its conductivity should be estimated by SCALE as somewhat higher
than its actual value to compensate for this modeling error.

Conductivity is defined as conductance per length (S/m) or equivalently,
mS per m of skull depth. For uniform materials, conductance is independent
of layer thickness. However, the skull has three layers, two outer compacta
layers (reported conductivity 2.25 mS/m) with an intermediate spongiform
layer (7.73 mS/m) between them (Akhtari et al., 2000). These authors mea-
sured skull layer thicknesses and conductivities in four subjects and found no
strong dependence between the thickness of the individual skull layers and
their respective conductivities. However, whole skull conductivity does show
some dependency. For instance, in a thicker skull in which the thickness of
the (higher conductivity) spongiform layer is large relative to the thicknesses
of the compacta layers, total skull conductivity can be expected to be higher
than that of a thinner skull (Law, 1993). On the other hand, skull conduc-
tivity has been shown to be dependent on electrolyte content and on bone
density (Akhtari et al., 2000; Chakkalakal et al., 1980). Thus, skull conduc-
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tivity may be more strongly dependent on its material properties than on
geometric details.

Unlike the simplifying SCALE assumption we used here, skull conductiv-
ity is not uniform across its surface. According to Law (1993), radial skull
conductivity varies with location and also varies above and near sutures. In
Bashar et al. (2010), skull conductivity was measured in 20 di↵erent regions,
and skull conductivity was reported to vary widely (between 4.7 and 73.5
mS/m). Turovets et al. (2007) segmented a skull into 10-12 anatomically
relevant bone plates and, based on parameterized EIT measurements, re-
ported that regional skull conductivity varied between 4 and 44 mS/m while
Tang et al. (2008) reported variations between 3.4 and 17.4 mS/m based
on in vivo measurements of skull fragments. One future improvement to
SCALE would be to model the non-uniform conductivity distribution of the
skull. Since each source is mainly a↵ected by the conductivity of the skull
areas close to the source, di↵erent sources individually converge to di↵erent
conductivity values. Trying to globally optimize the conductivity values of
every skull voxel, however, would be a computationally prohibitive and mas-
sively ill-posed problem. Estimating a low-dimensional distribution of spatial
conductivity di↵erences may, however, prove possible.

In a further exploration Tang et al. (2008) showed that the proportion
of spongiform tissue within the skull is positively correlated with its radial
conductivity, and confirmed that local skull conductivity may significantly
increase near skull sutures. While some researchers have modeled the skull
as anisotropic (Marin et al., 1998; Chauveau et al., 2004) or have separately
modeled its three layers as isotropic (Sadleir and Argibay, 2007; Dannhauer
et al., 2011; Montes-Restrepo et al., 2014), direct modeling of such details
may require higher-resolution structural images (e.g., CT images with their
imposed radiation risk) and was not attempted here.

While the initial results reported here are promising, SCALE requires
further validation using data from more subjects, e.g., including from in-
fants for which at least a few direct measurement results (quite di↵erent
from those for adults) have been reported. Improving our confidence in the
obtained source localizations could also increase confidence in the accuracy
of the SCALE approach to EEG source imaging. The validity of its source
distribution estimates might be tested using concurrently recorded data from
modalities less sensitive to skull conductivity, e.g., conductivities of simulta-
neously recorded EEG and MEG and/or EEG and ECoG data. One might
also test the accuracy of SCALE source localization by including ICs ac-
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counting for well-studied features of sensory ERPs in modalities whose most
active source locations may possibly be identified in parallel fMRI studies. It
may also be of interest to attempt to extend the SCALE approach to learning
more conductivity parameters including, e.g., scalp and brain, although cor-
rectly estimating skull conductivity should improve source localization more
than correctly estimating conductivity for the other head tissue types, as
their conductivity ratios are much closer to 1:1 than BSCR values.

The simultaneous conductivity and location estimation (SCALE) ap-
proach presented here appears to be a promising non-invasive approach to
simultaneously improving skull (and perhaps other brain tissue) conductivity
estimates, at the same time improving the accuracy of EEG source distribu-
tion estimates based on more optimal single-subject head models. In wider
use, the advantage of using individual head models for EEG source imag-
ing might spur the development of low-cost MR head imaging methods. For
adults, a forward electrical head model, once computed, might be expected to
remain usable for any EEG application until head injury or aging prompted
acquisition of a new model. For infants and children, in particular, accurate
source localization could for the first time allow accurate measurement of
individual consistencies and di↵erences in localized sources of both ongoing
and event-related EEG phenomena. Extension of the method to patients
with skull insults also seems possible (Akalin Acar et al., 2011). If validated
through further study, SCALE might play an important role in advancing
the utility and reliability of functional brain imaging using relatively low-
cost, wireless, wearable, and easily tolerated, highly temporally-resolved and
better spatially-resolved EEG source imaging.
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A. The sparse compact and smooth (SCS) EEG inverse problem

approach (from (Cao et al., 2012)):

Since the EEG source localization problem is highly under-determined,
prior knowledge of the nature of the sources is essential for finding a unique
and useful solution. In a Bayesian framework, such knowledge is embedded
in the prior distribution P (d). Many existing approaches, such as minimum
l2�norm approaches, minimum current estimation (MCE), SLORETA, etc.,
often assume that both the dipole strength vector d and the noise vector n
are normally distributed with zero mean and known covariance matrices ⌃

d

and ⌃
n

. These methods encourage source smoothness (Huang et al., 2006;
Pasqual-Marqui et al., 2002; Wipf and Nagarajan, 2009; Akalin Acar et al.,
2009)). Alternative, sparsity-inducing Bayesian methods such as Sparse
Bayesian Learning (SBL) encourage source sparsity (Friston et al., 2008;
Wipf and Nagarajan, 2010) learn the form of P (d) from the observed data
by updating a set of flexible hyperparameters �. The current sources con-
tributing to EEG signals, however, should be both spatially compact and
locally smooth, typically taking the form of a compact (but non-point like)
cortical source patch comprised of parallel dipolar activations aligned with
cortical pyramidal cells normal to the cortical surface. This observation led
to the development of the Sparse compact smooth (SCS) approach (Cao
et al., 2012). A formulation of this approach may be presented using the
generalized framework given by Wipf and Nagarajan (2009):

P (d|p) / exp(�1

2
(p�GD)T⌃�1

n

(p�GD)) (19)

⌃
d

=

d�X

i=1

�
i

Ci (20)

In (20), � , [�1, ..., �d� ]
T is a vector of d

�

nonnegative hyperparameters.
The appropriate covariance ⌃

d

can be estimated by modifying �, whose com-
ponents control the relative contribution of each covariance basis element Ci.
The proper hyperparameter � can be estimated by hyperparameter MAP
estimation (�-MAP) Wipf and Nagarajan (2009) which maximizes hyperpa-
rameter likelihood P (p|�). This is equivalent to minimizing the cost function

L(�) = pT⌃�1
p

p+ log(|⌃
p

|) (21)
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where
⌃

p

= G⌃
d

G

T + ⌃
n

(22)

After the hyperparameter � is estimated, yielding the estimated covari-
ance matrix b⌃d a MAP point estimate of d can be computed

bd =

b
⌃dG

T
(⌃n + Gb⌃dG

T
)

�1p (23)

with
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b�
i

C
i

(24)

The choice of covariance set C , {C
i

: i = 1, ..., d
�

} is essential to the
solution.

A.1. An alternative model: the SCS algorithm

Instead of modeling the sources as a mixture of multiple Gaussian kernels,
Cao et al. (Cao et al., 2012) proposed a correlation-variance model that
exploits the fact that one can factor any full-rank covariance matrix into the
product of a correlation matrix and the square root of the diagonal variance
matrix, as follows:

⌃
d

= V
1
2RV

1
2 , V (i, i) = �2 (25)

The matrix element R(i, j) holds the correlation coe�cients between the
strengths of the ith and jth dipoles; these values are assumed to be given
by a prior estimate. Assuming a local tendency toward synchronization of
neural activities at nearby dipoles in the source space, this correlation may
be assumed to be exponentially decreasing as the squared distance between
dipole locations. A direct definition of the correlation matrix could be

R
ij

= exp(�akr(i)� r(j)k), 8i, j = 1, ..., n (26)

where r(i) denotes the location of the ith dipole and kr(i)� r(j)k is the
the Euclidean distance between dipole i and dipole j. However, to guarantee
the positive definiteness of the correlation matrix R, instead of using the
definition in (26) we introduce another matrix H with the same dimension
of R such that

R = HHT

Here, we assume the that the components of H are given by
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H(i, j) =
c
i

1 + exp(akr(i)� r(j)k � b)
, 8i, j = 1, ..., n (27)

with

c
i

=
1pP

n

i=1(1 + exp(akr(i)� r(j)k � b))2
, 8i, j = 1, ..., n (28)

The parameter b is related to the distance within which the correlation
coe�cient remains at a relatively high level; a is related to the decay rate
of the correlation coe�cient beyond that distance; c

i

is a scaling factor that
makes R(i, i) = 1. The values of a and b can either be pre-defined or learned
from the data. After setting proper values for a and b, most entries of H
will be close to zero, i.e. H will be a sparse matrix. Therefore, the heavy
computational load from the high dimension of H is greatly reduced. In fact,
the iteration speed of SCS can be faster than SBL.

The major thrust of the Sparse, Compact, and Smooth (SCS) algorithm
is to learn from the data the variance of the dipole sources � , [�

i

, ..., �
n

]T

and " , ["
i

, ..., "
m

]T , the noise variance under the �-MAP framework:

(b�,b") = argmin
�,"

L(�, ") (29)

with

L(�, ") = pT

⌃p
�1p+ log(|⌃p|) (30)

where ⌃p is defined as in (22).
We implement the sparse, compact, and smooth (SCS) algorithm by using

an adaptive gradient approach to updating the a posteriori estimate of �
i

and "
i

. This is distinctly di↵erent from the way the EM algorithm is used in
SBL-based approaches. Here, it avoids computational di�culty due to the
non-diagonal structure of ⌃

d

. Further details of the optimization as well as
first sample results can be found in (Cao et al., 2012).
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