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Abstract

Objectives: Electrical potentials produced by blinks and eye movements present serious problems for electroencephalographic (EEG) and

event-related potential (ERP) data interpretation and analysis, particularly for analysis of data from some clinical populations. Often, all

epochs contaminated by large eye artifacts are rejected as unusable, though this may prove unacceptable when blinks and eye movements

occur frequently.

Methods: Frontal channels are often used as reference signals to regress out eye artifacts, but inevitably portions of relevant EEG signals

also appearing in EOG channels are thereby eliminated or mixed into other scalp channels. A generally applicable adaptive method for

removing artifacts from EEG records based on blind source separation by independent component analysis (ICA) (Neural Computation 7

(1995) 1129; Neural Computation 10(8) (1998) 2103; Neural Computation 11(2) (1999) 606) overcomes these limitations.

Results: Results on EEG data collected from 28 normal controls and 22 clinical subjects performing a visual selective attention task show

that ICA can be used to effectively detect, separate and remove ocular artifacts from even strongly contaminated EEG recordings. The results

compare favorably to those obtained using rejection or regression methods.

Conclusions: The ICA method can preserve ERP contributions from all of the recorded trials and all the recorded data channels, even

when none of the single trials are artifact-free. q 2000 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Single-trial event-related potentials (ERPs) consist of

brief epochs of electroencephalographic (EEG) activity

time-locked to experimental events of interest. These

recordings are usually averaged prior to analysis to increase

their signal/noise ratio. Here, `noise' includes non-phase-

locked EEG signals and non-neural artifacts such as eye

blinks and eye movements. However, ERP averaging may

not cancel some artifacts induced by eye movements or

blinks if they are time-locked to experimental events.

These artifacts may seriously interfere with correct ERP

analysis and interpretation. In addition, data from frontal

and temporal electrodes located near the eyes or scalp

muscles are often discarded since these are more heavily

contaminated by artifacts than central scalp channels.

Another common strategy is to reject all EEG epochs

containing artifacts larger than some arbitrarily selected

EEG voltage value. However, when limited data are avail-

able, or when blinks and muscle movements occur too

frequently as in children and some patient groups, the

amount of data lost to artifact rejection may be unaccepta-

ble. For example, Small (1971) reported a visual ERP

experiment conducted on autistic children who produced

electrooculographic (EOG) artifacts in nearly 100% of the

trials. In this case, the presence of large background EEG

signals not time- and phase-locked to experimental events

may make ERP averages of the few artifact-free trials too

unstable to permit useful analysis.

One approach to reducing contamination from eye move-

ment artifacts is to regress out reference signals collected

near the eyes. Regression methods have been proposed
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using both time domain (Hillyard and Galambos, 1970;

Verleger et al., 1982) and frequency domain techniques

(Whitton et al., 1978; Woestenburg et al., 1983). All regres-

sion methods, whether in time or frequency domains,

depend on having one or more clean reference channels

(e.g. one or more `EOG' channels) which cannot be further

analyzed after regression. However, these methods share an

inherent weakness, in that both eye movements and EEG

signals propagate to periocular (`EOG') sites. Therefore,

regression-based artifact removal procedures also eliminate

neural activity common to the reference electrodes and to

other frontal electrodes. Because the regression coef®cients

are determined largely by the typically large EOG signals,

regression methods may also introduce neural activity

projecting to the reference channel into other sites (Jung

et al., 2000).

Principal component analysis (PCA) has been proposed

as a method to remove eye artifacts from multichannel EEG

(Berg and Scherg, 1991). However, PCA cannot completely

separate eye artifacts from brain signals, especially when

they have comparable amplitudes (Lagerlund et al., 1997;

Jung et al., 1998b, 2000). By combining PCA, multiple

source models for EOG and EEG, and an artifact-aligned

averaging method (Lins et al., 1993), Berg and Scherg

(1994) demonstrated a more effective PCA-based approach

to correct eye artifacts. However, the accuracy of their

method depends on the availability of separate and accurate

inverse source solutions for EEG and EOG. Building an

accurate EEG source model requires a priori knowledge

of event-related brain activity following not only stimuli,

but also blinks and saccades. The method also relies on the

amount and quality of separately recorded calibration data

which are needed to provide estimates of the source vectors

and transmission coef®cients in the EOG model.

Makeig et al. (1996) proposed an approach to the analysis

of EEG and ERP data based on an unsupervised neural

network learning algorithm that takes a logistic infomax

approach to performing independent component analysis

(ICA) (Bell and Sejnowski, 1995). They showed that this

ICA algorithm can be used to separate neural activity from

muscle and blink artifacts in spontaneous EEG data and

reported its use for ®nding independent components of

EEG and ERP data and for tracking changes in alertness

(Makeig et al., 1997; Jung et al., 1998c). Subsequent inde-

pendent work (VigaÂrio, 1997) based on a related approach

veri®ed that different artifacts can also be detected in multi-

channel magnetoencephalographic (MEG) recordings.

However, this study did not attempt to remove the identi®ed

artifacts. Jung et al. (1998a,b, 2000) introduced an ICA-

based method based on an extended infomax ICA algorithm

(Girolami, 1998; Lee et al., 1999). This method can be used

to detect and remove a wide variety of artifacts (including

eye blinks, muscle noise, heart signal, and line noise) from

spontaneous EEG data.

This study demonstrates, through analysis of sample data

sets collected in a visual spatial selective attention task, that

the ICA-based method can also be used to remove stimulus-

induced eye artifacts from single-trial ERP records. The

method uses spatial ®lters derived by the ICA algorithm,

avoiding the need for separate reference channels for each

artifact source, and allowing analysis of neural ERP activity

projecting to periocular (EOG) channels. Here, we analyze

experimental data collected from 28 normal controls and

from 22 clinical subjects (10 autistic and 12 brain lesion

subjects) who had dif®culty in inhibiting unwanted eye

movements toward peripheral target stimuli.

2. Materials and methods

2.1. Subjects

Data were collected from 28 normal controls, 10 high-

functioning autistic and 12 brain lesion subjects. All

subjects had normal or corrected-to-normal vision. The

control subjects had no history of substance abuse, special

education, major medical or psychiatric illness, develop-

mental or neurologic disorder. The autistic subjects met

DSM-III-R (American Psychiatric Association, 1987)

criteria for autistic disorder, as well as criteria from the

Autism Diagnostic Interview, the Autism Diagnostic Obser-

vation Schedule (Lord et al., 1994) and the Childhood

Autism Rating Scale (Schopler et al., 1980). Lesion sites

in the patients were veri®ed by neuroradiological examina-

tion of magnetic resonance images. The stroke and autistic

subjects had no additional neurologic or psychiatric diag-

noses.

2.2. EEG data collection

EEG data were recorded from 31 scalp electrodes, 29

placed at locations based on a modi®ed International 10±

20 system, one placed below the right eye (VEOG) and one

placed at the left outer canthus (HEOG). All 31 channels

were referred to the right mastoid and were digitally

sampled for analysis at 256 Hz. Subjects participated in a

2 h visual spatial selective attention task in which they were

instructed to attend to ®lled circles ¯ashed in random order

in 5 boxes laterally arrayed 0.8 cm above a central ®xation

point. Stimulus locations were outlined by 5 evenly spaced

1.6 cm blue squares displayed on a black background at

visual angles of 08, ^2.78 and ^5.58 from ®xation. One

(attended) location was marked by a green square through-

out each 72 s experimental block. Subjects were instructed

to maintain ®xation on the central cross and to press a

response button as quickly as possible each time they saw

a ®lled circle appear in the attended location. The location

of the attended square was counterbalanced across experi-

mental blocks (for further details see Makeig et al., 1999a;

Townsend and Courchesne, 1994). Prior to analysis, we

rejected those trials in which the subject blinked or moved

their eyes at the moment the visual stimulus was presented
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since the eye movement might have impaired the perception

of, and response to, the stimulus.

2.3. Independent component analysis

Independent component analysis (ICA) (as de®ned by

Comon, 1994) is a method for solving the blind source

separation problem: to recover N independent source

signals, s � {s1�t�; s2�t�;¼; sN�t�} (e.g. different voices,

music, or other sound sources) from N linear mixtures,

x � {x1�t�;¼; xN�t�}, modeled as the result of multiplying

the matrix of source activity waveforms, s, by an unknown

square matrix A (i.e. x � As). Given almost no advance

knowledge of the nature of the sources or of the mixing

process, the task is to recover a version, u, of the original

sources, identical to s, save for scaling and source order. To

do this, it is necessary to ®nd a square matrix, W, specifying

®lters that linearly invert the mixing process, i.e. u �Wx.

The key assumption used to distinguish sources from

mixtures is that sources, si, are statistically independent,

while their mixtures, xi, are not. In contrast with decorrela-

tion techniques such as PCA, which ensure only that output

pairs are uncorrelated (kuiujl � 0, ; ij), ICA imposes a

much stronger criterion, statistical independence, which

occurs when the multivariate probability density function

(p.d.f.) factorizes: e.g.

fu�u� �
YN
i�1

fui
�ui�

Statistical independence requires that all second-order and

higher-order correlations of the ui are zero, while decorrela-

tion only seeks to minimize second-order statistics (covar-

iance or correlation).

Bell and Sejnowski (1995) proposed a simple neural

network `infomax' algorithm that blindly separates

mixtures, x, of independent sources, s, using information

maximization (infomax). They showed that maximizing

the joint entropy, H(y), of the output of a neural processor

minimizes the mutual information among the output compo-

nents, yi � g�ui�, where g(ui) is an invertible bounded non-

linearity and u �Wx. Recently, Lee et al. (1999) extended

the ability of the infomax algorithm to perform blind source

separation on linear mixtures of sources having either sub-

or super-Gaussian distributions based on ideas from Giro-

lami (1998) and Lee et al. (1999). For further details, see

these sources and Jung et al. (2000).

2.4. Applying ICA to single-trial EEG data

Use of ICA for blind source separation of EEG data is

based on two plausible premises: (1) EEG data recorded at

multiple scalp sensors are linear sums of temporally inde-

pendent components arising from spatially ®xed, distinct or

overlapping brain or extra-brain networks; (2) the spatial

spread of electric current from sources by volume conduc-

tion does not involve signi®cant time delays. For further

details regarding ICA assumptions underlying EEG analy-

sis, see Makeig et al. (1997, 1999a) and Jung et al. (1998a).

Fig. 1 presents a schematic illustration of the procedure.

In EEG analysis, the rows of the input matrix, x, are EEG

signals recorded at different electrodes and the columns are

measurements recorded at different time points (Fig. 1A,

left). ICA ®nds an `unmixing' matrix, W, which decom-

poses or linearly unmixes the multichannel scalp data into

a sum of temporally independent and spatially ®xed compo-

nents, u �Wx. The rows of the output data matrix, u, are

time courses of activation of the ICA components. The

columns of the inverse matrix, W21, give the relative

projection strengths of the respective components at each

of the scalp sensors (Fig. 1A, right). These scalp weights

give the scalp topography of each component, and provide

evidence for the components' physiological origins (e.g. eye

activity should project mainly to far frontal sites). The

projection of the ith independent component onto the origi-

nal data channels is given by the outer product of the ith row

of the component activation with the ith column of the

inverse matrix, and is in the original units (e.g. mV). Scaling

information and polarity are distributed between the activa-

tion waveforms and the maps, and the true size of a compo-

nent is given only by the size of its projection. In this paper,

all scalp maps were interpolated from 31 EEG channels and

referred to the original right-mastoid reference. For each

component, the amplitudes of scalp maps (individually

scaled color bars, Fig. 1A, right panels) were the projection

of the component (in mV) at a given time point (vertical blue

line).

Artifact-free event-related brain signals were obtained by

projecting selected non-artifactual ICA components back

onto the scalp, x0 �W21u0, where u0 is the matrix, u, of

activation waveforms with rows representing activations of

artifactual (or irrelevant) sources set to zero (Fig. 1B).

2.5. Numerical methods

Extended-ICA decomposition was performed on 31 chan-

nel, 1 s data epochs from 500 to 700 target stimulus trials for

each of 28 normal controls and the 22 clinical subjects using

routines coded in MATLAB 5 and C (available from http://

www.cnl.salk.edu/~scott/ica.html) running on a Pentium II

400 MHz PC with 512 MB RAM. Only target trials in which

the subject pressed the response button within the allowed

(200±1000 ms) time window were analyzed. Previous

results (Makeig et al., 1997, 1999a,b; Jung et al., 2000)

and those we report here show that ICA decomposition is

relatively insensitive to the exact choice of learning rate or

batch size.

Here, we decomposed all the target epochs at once to

study the ICA decomposition of the small evoked responses

themselves (Makeig et al., 1999a; Jung et al., 1999, 2000).

However, if artifact removal is the ultimate goal, it is not

necessary to decompose all 500±700 1 s epochs recorded

over 2 h in an experiment at once. Earlier (Jung et al.,
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1998a,b, 2000), we showed that eye, muscle and line-noise

artifacts may be separated from brain activity by training

ICA on as little as 10 s of EEG recording, taking less than 1

min to converge.

2.6. Regression analysis

To compare the relative effectiveness of ICA for artifact

removal to previous methods, we implemented the multiple-

lag regression model of Kenemans et al. (1991). In this

model, the effect of the EOG channel signal on the other

EEG channels at each sampling time t is given by

eeg�t� � EEG�t�2
XT
g�0

�bgeog�t 2 g��; where bg � SS21spg

Here EEG denotes the `true' EEG (without eye artifacts),

while eeg and eog are the recorded EEG and EOG signals,

T.-P. Jung et al. / Clinical Neurophysiology 111 (2000) 1745±17581748

Fig. 1. Schematic overview of ICA applied to EEG data. (A) A matrix of single-trial EEG data, x, recorded at multiple scalp sites (only 4 are shown), is used to

train an `unmixing' weight matrix, W, to minimize the statistical dependence of the equal number of outputs, u �Wx (4 shown here). After training, ICA

components consist of time series (the rows of u) giving the time courses of activation of each component, plus ®xed scalp topographies (the columns of W21)

giving the projections of each component onto the scalp sensors. (B) Some ICA components account exclusively or predominantly for artifactual activity, for

example component IC1, generated by blinks, or IC4, generated by temporal muscle activity. Others account for various evoked and/or spontaneous EEG

activity (e.g. IC2, IC3). Artifact-free EEG signals, x0, can be obtained by mixing and projecting back onto the scalp channels selected non-artifactual ICA

components (IC2 1 IC3) by multiplying the selected activation waveforms, u0, by the inverse mixing matrix, W21.



respectively, and T is the maximum time lag. The sequence

of lagged regression coef®cients, b g, describes the instanta-

neous and delayed effects of the EOG on the EEG. The

vector spg of length (T 1 1) contains the inner products of

eeg(t) and eog(t 2 g) (g � 0;¼;T), while SS is the

(T 1 1) £ (T 1 1) matrix of inner products of eog(t 2 g).

This method adjusts for both frequency- and phase-depen-

dent differences in EOG-to-EEG transfer functions (Kene-

mans et al., 1991).

2.7. Identifying artifactual components

Most of the 31 independent components derived by ICA

applied to 31 channel single-trial target response data

accounted for distinct activities arising from different

brain or extra-brain networks. We found blink-related

component(s) among them by the following procedure. (1)

We ®rst viewed the 31 channel ICA activations on a scrol-

ling display and searched for the component(s) with time

courses resembling blink activity (brief, large monopolar

potentials). (2) We veri®ed the nature of the candidate

components by plotting their scalp topographies, which

provided further evidence as to their physiological origin

(using the heuristic that eye activity projects most strongly

to far frontal sites).

Other independent components accounting for eye move-

ments were found using the following procedure. (1) We

separately averaged the single-trial EEG records time-

locked to target stimuli presented at 5 different locations.

(2) We applied the spatial ®lters derived by ICA based on all

the single-trial EEG data to the 5 resulting 31 channel ERPs

and searched for components whose time courses varied

systematically with stimulus locations. Our assumption

here was that involuntary saccadic movements following

stimulus presentations would systematically vary in ampli-

tude and direction as a function of the distance and direction

from the ®xation point to the target location. We found such

a systematic relationship for components whose scalp maps

suggested they accounted for saccadic eye movements, but

not for other components with different scalp maps account-

ing for other brain (or extra-brain) activities. (3) We veri®ed

the nature of the candidate eye movement components by

examining their scalp topographies. Again, we reasoned that

components accounting for lateral eye movements should

project most strongly to far frontal sites, and should show a

polarity difference between the two periocular sites.

3. Results

We present here the analysis of representative data from

two normal (30- and 31-year-old) male control subjects, one

32-year-old autistic subject and one 55-year-old female

stroke patient whose lesion involved the right frontal-

temporal-parietal cerebral cortex. Results for the remaining

46 subjects can be seen at http://www.cnl.salk.edu/~jung/

ERPartifact.html.

For each subject, ICA decomposition was performed on

500±700 (31 channel, 1 s) data epochs time-locked to target

stimulus presentations. We ®rst identi®ed components

accounting for blink and eye movement artifacts according

to the procedures described above. The remaining derived

independent components displayed a variety of distinct rela-

tions to task events. The activations of some components

were clearly time- and phase-locked to stimulus onsets,

while others were time- and phase-locked to button presses

(Jung et al., 1999). Still other components captured various

types of oscillatory or other background EEG phenomena;

these will be detailed elsewhere.

3.1. Removing blink and eye movement artifacts

Example 1. ICA was applied to a target response data set

collected from a 32-year-old male autistic subject perform-

ing the visual selective attention experiment. Despite our

request that he minimize blinks, about 50% of the trials

were contaminated by eye blinks as judged by the common

convention of detecting and rejecting trials of EEG voltages

at periocular sites that exceeded a pre-set threshold.

Extended-ICA successfully isolated blink artifacts to a

single independent component (Fig. 2A) whose contribu-

tions could be removed from the EEG records by subtract-

ing its component projection from the data (Jung et al.,

1998a,b). Though the subject was instructed to ®xate the

central cross during each 72 s block, the technician watch-

ing the video monitor noticed that the subject's eyes also

tended to move slightly towards target stimuli presented at

peripheral locations. A second ICA component accounted

for these small horizontal eye movements (Fig. 2B).

Fig. 2B (5 traces) shows separate ERP averages (at perio-

cular site HEOG) of responses to targets presented at the 5

different visual ®eld locations. The size of the prominent

eye movement-related component is proportional to the

angle between the stimulus location and the ®xation point.

Its scalp pattern is also consistent with the scalp pattern

expected for lateral eye movements. Note the overlap in

scalp topography between the two independent components

accounting for blinks (Fig. 2A) and for lateral eye move-

ments (Fig. 2B). ICA component maps need not be ortho-

gonal and may even be nearly spatially coincident.

The left panel in Fig. 2C shows all 641 single-trial ERP

epochs recorded at HEOG. Here, we use a recently devel-

oped visualization tool, the `ERP image' (Jung et al., 1999,

2000), to show all 641 single-trial ERP epochs time-locked

to onsets of target stimuli (left vertical line). Single-trial

event-related responses are plotted as gray-scaled horizontal

traces (see scale bar) sorted by the subject reaction time

(thick black line). The ERP average of these trials is plotted

below the ERP image. The middle panel in Fig. 2C shows

the summed signals in each trial identi®ed as blink and eye

movement artifacts. The right panel in Fig. 2C shows the

corrected single-trial records obtained by subtracting the

components accounting for artifacts (middle panel) from
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Fig. 2. Removal of eye blink and eye movement artifacts in normal and autistic subjects. (A) Scalp topography and 5 consecutive 1 s target response epochs

showing the time course of activation of an ICA component accounting for blink artifacts. This component was separated by ICA from 641 target response

trials recorded from an adult autistic subject in the visual selective attention experiment. (B) The scalp topography of a second component (an eye movement

component) and its averaged activation time courses in response to target stimuli presented at the 5 different attended locations. (C) (Left) ERP images of

single-trial ERPs at periocular site HEOG (same autistic subject) time-locked to 641 targets presented at all 5 attended locations, sorted by response time (thick

black line). (Middle) Summed projections at HEOG of the two ICA components accounting for artifacts. (Right) Corrected single-trial ERPs obtained by

subtracting the ICA-extracted artifacts (right) from the original data (left). (D) Averaged ERPs at site HEOG to targets presented at each of 5 attended locations,

before (faint traces) and after (solid traces) artifact removal. Removing blink and eye movement artifacts from the single-trial ERPs revealed the relative

independence of the remaining small visual response from stimulus location. Note that the differences in the target ERPs before removal of the two ICA

components accounting primarily for eye movements are progressively larger in response to stimuli presented away from the central ®xation point, consistent

with a tendency for this subject to move his eyes towards the stimulus locations. (E) The same ICA-based artifact removal procedure applied to single-trial data

collected from a normal control subject. Here, the differences between the uncorrected and corrected ERPs were progressively larger in responses to stimuli

presented away from the central ®xation point.



the original records (left panel). A large number of blink and

eye movement artifacts (center panel, horizontal line

segments) were removed from the records by this procedure.

While most ERP reports ignore data collected at perio-

cular locations, ICA allows ERP data at periocular electrode

sites to be separated into components generated by eye

activity and components generated by brain activity. Fig.

2D shows the averaged ERPs from a patient at site HEOG

in response to stimuli presented at the 5 different attended

locations before (faint traces) and after (solid traces) artifact

removal. The artifact-corrected averaged periocular

responses to stimuli presented at the 5 different locations

revealed a small periocular positivity near 250 ms that did

not depend on stimulus location.

Fig. 2E shows the same artifact removal procedure

applied to data collected from a normal control subject.

Conventional threshold-based methods for rejecting

contaminated EEG epochs could not wholly avoid summing

ocular artifacts, since in this example saccade amplitudes

were often smaller than typical (50±75 mV) thresholds for

rejecting blinks and eye movements. After artifact correc-

tion by ICA, the responses at site HEOG to targets presented

at the 5 different locations (solid traces) were again quite

similar and showed strong inferior frontal activity recently

identi®ed with a fronto-parietal early-P300 subcomponent

(P3f) peaking at the moment of motor command in faster-

responding subjects (Makeig et al., 1999a). If, alternatively,

the periocular data channels (including HEOG) had been

used as reference signals to regress out contributions to

signals at adjacent sites (as in many studies, for example

Hillyard and Galambos, 1970; Woestenburg et al., 1983),

cerebral activity expressed in those channels would have

been subtracted from every scalp site, and the reference

sites themselves would have become silent.

3.2. Verifying the artifactual nature of the removed signals

After artifactual signals were removed from the original

EEG data, we needed to verify that (1) the signals removed

by the ICA-based method did not contain cerebral activity,

and (2) the remaining signals contained no or minimal arti-

facts. To this end, we ®rst viewed the histogram of the

maximum potentials (positive or negative) at two periocular

channels (VEOG and HEOG) for each subject, and used

local minima in the histogram as thresholds for splitting

all the single target response trials (from 100 ms before to

900 ms after stimulus onsets) into 3 subsets: least contami-

nated, moderately contaminated, and most heavily contami-

nated, according to their absolute maximum potential values

at the two periocular channels. Using this method, the

threshold voltage separating least from moderate and

moderate from heavily contaminated trials varied between

individual subjects. Across all 50 subjects, the threshold

separating least contaminated from moderately contami-

nated trails ranged from 25 to 40 mV; the threshold separat-

ing moderately from heavily contaminated trials ranged

from 70 to 100 mV.

We then applied the spatial ®lters derived by ICA to the

data for each subject and removed activities accounting for

artifacts as described in the previous section. Our underly-

ing assumptions were as follows. (1) If the signals removed

using ICA did not contain any cerebral activity, the average

of the least contaminated trials should differ little before and

after artifact removal. The average of the heavily contami-

nated trials, on the other hand, should show signi®cant

differences. (2) If all the eye movement artifacts were effec-

tively removed from the EEG records, the corrected ERP

averages should have very similar waveforms and scalp

maps, since they were collected from the same scalp loca-

tions from the same subject performing the same task on the

same day.

Example 2. Fig. 3 shows the ERP averages of the least

(351 trials), moderately (132 trials), and heavily contami-

nated (72 trials) target trials from a normal control subject

before (Fig. 3A) and after (Fig. 3B) artifact removal. Before

artifact removal (Fig. 3A), the averaged ERPs differed

largely because of the contamination from blinks and eye

movements. After artifact removal (Fig. 3B), they differed

little, presumably because they now contained only electri-

cal activity of the brain. Note also that the averaged ERPs

after artifact removal were very similar to the average of

least contaminated trials, and the moderately and heavily

contaminated trial averages showed larger pre-removal

and post-removal differences, respectively.

Fig. 3C shows the scalp topographies at the P300 peak

(505 ms) for the 3 trial averages before (top 3 panels) and

after (lower 3 panels) artifact removal. Note that the scalp

maps for the 3 `corrected' ERPs (lower 3 panels) are

remarkably similar and strongly resemble the artifact-free

scalp map of the least contaminated trials (upper left panel).

This result indicates that ICA may preserve all of the

recorded EEG signals even if the single trials and raw

averages are heavily contaminated by blinks and eye move-

ments. Note that if a simple rejection method were used on

these data (e.g. discarding all trials with maximum EOG

potentials above 75 mV), the averaged ERPs would be the

averages of only the least and moderately contaminated

trials, and that these would still contain some artifacts

even after removal of 13% of the trials.

3.3. ICA-based artifact removal versus artifact rejection

Example 3. We used 545 single trials collected from a

patient with frontal-temporal-parietal lesion to compare the

effectiveness of artifact removal using the ICA-based

method with results of the standard artifact rejection

method. The artifact rejection procedure employed in the

data collection laboratory was to discard blink contaminated

trials containing potentials exceeding 75 mV at either sites

VEOG or HEOG. This procedure rejected all but 49 of 545

trials of the patient's data. Since blinks and muscle move-
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ments occurred so frequently, the amount of data lost to

standard artifact rejection would be unacceptable, and so

use of an effective artifact removal procedure was crucial

to the use of this patient's data for further analysis.

Fig. 4A shows the averaged target responses of the lesion

subject before (blue traces) and after (red traces) ICA-based

artifact removal and standard artifact rejection (green

traces). Our assumption underlying this comparison was

that after an effective artifact removal procedure, the

corrected averages would resemble the average of `arti-

fact-free' trials (if enough of these were recorded).

In the ®gure, the average of the 49 remaining trials after

artifact rejection appears highly contaminated by large

alpha-frequency EEG activity. However, at frontal sites its

(low-frequency) contour resembles the average of all 545

`ICA-corrected' trials more than that of the uncorrected

trials, supporting the inference that the signals removed by

the artifact removal procedure were indeed artifacts. At

posterior sites which were relatively uncontaminated by

eye movements, problems resulting from averaging an

insuf®cient number of `artifact-free' (e.g. 49) trials are

apparent. The average is overlaid with strong remnants of

alpha EEG activity that clearly compromise accurate

measures of ERP peak amplitude and latency. The ICA-
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Fig. 3. Removal of eye blink and eye movement artifacts from single trials. (A) Averages of least (red traces, 351 trials), moderately (blue traces, 132 trials) and

heavily (green traces, 72 trials) contaminated single-trial target response epochs from a 31 year-old normal control subject. (B) Averages of artifact-corrected

ERPs for the 3 trial groups. (C) Scalp topographies at the P300 peak (505 ms) for the least (left), moderately (center) and heavily (right) contaminated trial

groups before (top) and after (bottom) artifact removal.



corrected average is free both of the large eye movement

artifacts present in the uncorrected average of all trials, and

of the non-phase-locked background EEG present in the

average of the few `artifact-free' trials.

Fig. 4B shows the scalp maps at the `P300' peak (near

457 ms) in averages of all 545 uncorrected trials (left), the

49 `artifact-free' trials (center) and of all 545 trials after

artifact removal (right). As expected, the P300 scalp map

for the uncorrected trial average included a strong negativity

at far frontal sites produced by blinks and eye movements.

The artifact-free average showed no recognizable scalp

pattern because of alpha contamination, while the corrected

trial average generally resembled the `P300' scalp topogra-

phy found for normal control subjects (Makeig et al.,

1999a), albeit with smaller than normal amplitude.

Fig. 4C shows the averaged ERPs for this patient at site

HEOG in response to target stimuli presented at the 5 differ-

ent attended locations, before (blue traces) and after (red

traces) ICA-based artifact removal. As has been observed

in patients with similar lesions (HeÂcaen, 1962; LaÂdavas et

al., 1997), the patient clearly found it dif®cult to inhibit

ipsilesional eye movements, as indicated by the progres-
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Fig. 4. ICA correction versus artifact rejection in a patient with right-frontal-temporal-parietal lesion. (A) Averages of responses to target stimuli before (blue

traces) and after (red traces) ICA-based artifact correction. The (red traces) average of all 545 artifact-corrected trials strongly resembles the (green traces)

average of 49 trials resulting from the conventional artifact rejection method, while avoiding the residual EEG `contamination' remaining in the 49 trial

averages because of insuf®cient cancellation of strong non-phase-locked alpha and other EEG processes. (B) Scalp topographies at the P300 peak (457 ms) of

the (left) uncorrected average, (center) artifact-rejected average, and (right) ICA-corrected response average. (C) Averaged ERPs at site HEOG to targets

presented at each of 5 attended locations, before (blue traces) and after (red traces) ICA-based artifact removal. Note that the subject was unable to inhibit her

eye movements towards targets ipsilateral to the lesion. ICA-corrected averages (red traces) show no such lateralized differences.



sively larger eye movement artifacts in the uncorrected

averaged responses to target stimuli presented to the right

of ®xation. The corrected ERP averages (red traces) show

that the ICA-based artifact removal identi®ed and removed

these mostly unilateral eye movement artifacts, revealing

underlying neuronal phenomena consistent across stimulus
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Fig. 5. ICA correction versus regression correction in removing artifacts from ERPs. (A) The raw averages of least (red traces, 397 trials), moderately (blue

traces, 105 trials) and heavily (green traces, 64 trials) contaminated trials from a normal control subject before any artifact correction, (B) after ICA correction,

and (C) after correction by multiple-lag regression. Note that the least contaminated trails were not subjected to regression here. (D) The scalp topographies at

the P300 peak (423 ms) of least (left), moderately (middle) and heavily (right) contaminated trials before (top) and after (middle) artifact correction by ICA and

regression (bottom).



locations that would be dif®cult or impossible to measure

accurately using other analysis methods.

3.4. ICA-based artifact removal versus regression

Example 4. This example uses a data set from a normal

control to compare the use of ICA with multiple-lag regres-

sion to correct for eye movement artifacts. Again, we ®rst

viewed a histogram of the maximal potentials in each epoch

at the two periocular channels and then split all single target

response trials into 3 groups: those least (maxumVu # 25),

moderately (25 , maxumVu # 35), and most heavily

(maxumVu . 35) contaminated by eye movements.

The regression method employed the recorded signals at

sites VEOG and HEOG as reference channels. As recom-

mended, regression was performed only for single-trial

epochs containing maximal absolute potentials greater

than 25 mV. Fig. 5A shows the averages of the 3 groups

of trials before artifact removal. The averages of trials

`corrected' by ICA and by regression for the least (red,

397 trials), moderately (blue, 105 trials) and heavily

(green, 64 trials) contaminated trial groups are shown in

Fig. 5B,C, respectively. Fig. 5D shows the scalp topogra-

phies at the P300 peak (423 ms) for the 3 ERP averages

before (top 3 panels) and after (middle 3 panels) artifact

removal by ICA and by regression (bottom 3 panels). The

3 ICA-corrected averages had very similar waveforms and

scalp topographies, while the regression-corrected averages

had smaller potentials for the moderately (blue) and heavily

(green) contaminated trials compared to the averages of the

least contaminated (`artifact-free') trials (red traces). After

removal of eye movement artifacts by regression (middle

trace), the neural signals contributing to the reference

signals (VEOG and HEOG) were also eliminated from the

other frontal scalp sites. Also note that the averages of

moderately and heavily contaminated trials contain no

signals at sites VEOG and HEOG, whereas the ICA-

corrected averages reveal the neural activity contributing

to the recorded signals at these sites.

4. Discussion

The goal of the present study was to determine whether

ICA could be used to remove artifacts of non-neural origin

from single ERP data trials particularly in clinical subjects

that are heavily contaminated with eye movement artifacts,

thereby preserving the recorded event-related brain activity.

Here, ICA was applied to single-trial target response records

from a total of 50 (28 normal, 10 autistic and 12 brain

lesion) subjects in a visual selective attention experiment.

For each subject, ICA derived spatial ®lters or maps that

decomposed EEG data recorded at multiple scalp sensors

into a sum of components with ®xed scalp distributions and

maximally independent time courses. The spatial ®lters

clearly separated eye blink and eye movement artifacts

into separate components with physiologically plausible

scalp maps.

4.1. ICA correction versus artifact rejection

Rejecting contaminated EEG segments using threshold

voltage criteria, the most commonly used method for deal-

ing with artifacts in research settings, can be unacceptable

when blinks and muscle movements occur too frequently. In

contrast, ICA-based artifact removal can effectively detect

and separate contaminations arising from a wide variety of

artifactual sources in EEG records without losing neural

signals recorded at frontal and even periocular sites. This

method can preserve most or all of the recorded trials for

analysis (Fig. 4, red traces), even when few or none of the

single trials are artifact-free. In our example, ICA also

recovered from the artifact-laden data of clinical subjects

the same `P300' scalp topography (Fig. 4B, right panel)

generally obtained from normal control subjects. Before

artifact removal, this pattern was overwhelmed by a strong

artifactual negativity at frontal sites and was thus very dif®-

cult to identify either in the scalp map of the raw data

averages or the regression-corrected averages (Fig. 4B,

left and middle panels). Additionally, the result of ICA-

based artifact removal illustrates the importance of having

an effective artifact removal method when ERPs from clin-

ical populations, whose data may be heavily contaminated

by involuntary eye movements or muscle tension, are to be

measured and interpreted.

4.2. ICA correction versus regression correction

The current alternative to artifact rejection is regression

in the time or frequency domain. This is performed using

conceptually distinct sets of EEG and EOG channel data to

derive parameters characterizing the appearance and spread

of EOG artifacts in the EEG channels. However, because

EEG and ocular activity mix bidirectionally (Peters, 1967;

Oster and Stern, 1980), regressing out eye artifacts inevita-

bly involves subtracting relevant neural signals from each

record as well as ocular activity. Regression methods

become even more problematic when appropriate regressing

channels are not available. For example, regressing out

muscle artifacts using this method would require a reference

channel selective for each contributing muscle. ICA-based

methods, on the other hand, can be used to separate and

remove multiple muscle artifacts as well as ocular artifacts,

as we have shown elsewhere (Jung et al., 2000).

The present results (Fig. 5) showed that regression-based

artifact removal of moderately and heavily contaminated

trials consistently overcorrected and removed neural activ-

ity from electrodes located over frontal and periocular sites.

ICA, on the other hand, recovered the EEG activity without

relying on the availability of one or more `uncontaminated'

reference channels, even when applied to heavily contami-

nated trials. The resulting corrected response averages were
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in each case remarkably similar to the averages of the least

contaminated trials (Fig. 5).

4.3. ICA correction versus PCA correction

Compared to PCA that minimizes second-order correla-

tions among the output channels, ICA imposes a much

stronger criterion, statistical independence. Statistical inde-

pendence requires that all second-order and higher-order

correlations reduce to zero. PCA ®nds orthogonal directions

of greatest variance in the data, whereas ICA component

maps could be non-orthogonal. In general, there is no reason

why neurobiologically distinct artifact and EEG sources

should be spatially orthogonal to one another. Since ICA

does not impose any condition on the spatial ®lters, it can

collect concurrent activity arising from spatially overlap-

ping artifact and EEG source distributions. We have found

that ICA produces components whose scalp maps have only

a few spatial maxima, consistent with relatively compact or

simply connected source generators. In comparison, PCA

produces components that mostly have more complex

spatial patterns (Silberstein and Cadusch, 1992; Jung et

al., 1998b, 2000).

Elsewhere, we have shown that ICA can effectively

remove contamination from a wide variety of artifactual

sources in spontaneous EEG data with results comparing

favorably to those obtained using regression and PCA meth-

ods (Jung et al., 1999, 2000). We have also presented

evidence for the behavioral consistency of ICA decomposi-

tion applied to ERP averages (Makeig et al., 1999a,b).

4.4. ICA limitations

Although ICA appears to be quite useful for EEG analy-

sis, it is important to keep in mind that it also has some

inherent limitations.

First, infomax ICA can decompose at most N sources

from N scalp electrodes. Usually, the effective number of

temporally-independent signals contributing to the scalp

EEG is unknown, and it is likely that observed brain activity

arises from more physically separable effective sources than

the available number of EEG electrodes. We have explored

and discussed this issue elsewhere (Makeig et al., 2000a).

Second, the assumption of temporal independence used

by ICA cannot be satis®ed when the training data set is too

small, or when separate topographically distinguishable

phenomena always occur concurrently in the data. In the

latter case, simulations show that ICA may derive a compo-

nent accounting for their joint occurrence, plus separate

components accounting for their periods of solo activation.

Such confounds imply that converging behavioral or other

evidence must be obtained before concluding that spatio-

temporally overlapping ICA components measure neuro-

physiologically or functionally distinct activities.

Third, ICA assumes that the physical sources of artifac-

tual and neural activity contributing to EEG signals are

spatially stationary through time. In general, there is no

reason to believe that cerebral and artifactual sources in

the spontaneous EEG necessarily remain ®xed over time

or occurrences. Examples of non-®xed sources may include

spreading sleep spindles (McKeown et al., 1998). However,

in our studies of averaged and unaveraged data from normal

control subjects in these experiments (Jung et al., 1999), the

relatively small numbers of obtained components showing

stimulus-locked, response-locked, and non-phase-locked

categories, each accounting for activity occurring across

sets of 500 or more 1 s trials, suggests that the brain areas

generating our data were primarily ®xed. This supposition is

concordant with repeated observations in functional brain

imaging experiments that discrete, spatially restricted areas

of cortex are activated during task performance (Friston et

al., 1998), and has been further veri®ed for these data in a

computationally intense moving-average ICA study

(Makeig et al., 2000b).

4.5. Advantages of ICA-based artifact removal

Our results show that ICA has at least 3 advantages

compared with other artifact removal methods. (1) ICA

simultaneously separates EEG signals including artifacts

into independent components based on the characteristics

of the data, without relying on the availability of one or

more `clean' reference channels for each type of artifact.

This avoids the problem of mutual contamination between

regressing and regressed channels. (2) ICA-based artifact

removal can preserve all of the recorded trials, a crucial

advantage over rejection-based methods when limited data

are available, or when blinks and muscle movements occur

too frequently, as in some patient groups. (3) Unlike regres-

sion methods, ICA-based artifact removal can preserve data

at all scalp channels, including frontal and periocular sites.

ICA uses spatial ®ltering to achieve artifact removal; the

®lters derived from a brief EEG recording portion (e.g. 5±10

s) might even be applied to multichannel EEG by a simple

matrix multiplication to successive EEG epochs to create an

artifact-reduced EEG in real time. More exhaustive ICA

decomposition may be needed only when the spatial ®lters

fail to effectively remove artifacts with very different spatial

distributions. We thus believe it may be possible to perform

artifact removal in routine clinical EEG in near real time

using an appropriate hardware and software implementa-

tion.

In addition to artifact removal, ICA decomposition can be

highly useful for enhancing the amount and quality of infor-

mation in event- or response-related brain signals that can

be extracted from ERP data (Makeig et al., 1997, 1999a),

and examining systematic variations from trial to trial

within subjects (see Jung et al., 1999). The analysis of

single-trial data is particularly important in studies of orient-

ing, habituation, or associative learning. However, most or

all of the information available in single trials is usually

sacri®ced to increase signal-to-noise ratio through within-

or between-subject averaging (Kenemans et al., 1989).
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Removing EEG artifacts from brain activity by ICA can

increase the amount of behaviorally and neurophysiologi-

cally relevant information available in ERP data, and may

also give researchers the ability to examine trial to trial

response variations. Similar ICA approaches should be

equally applicable to other types of multichannel biomedi-

cal data for which linear superposition of the contributing

signals can be assumed (e.g. electromyography, magnetoen-

cephalography, electrocardiography, etc.).
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