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The analysis of electroencephalographic (EEG) and mag-
netoencephalographic (MEG) recordings is important both for
basic brain research and for medical diagnosis and treatment.
Independent component analysis (ICA) is an effective method for
removing artifacts and separating sources of the brain signals
from these recordings. A similar approach is proving useful for
analyzing functional magnetic resonance brain imaging (fMRI)
data. In this paper, we outline the assumptions underlying ICA
and demonstrate its application to a variety of electrical and
hemodynamic recordings from the human brain.
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I. INTRODUCTION

Independent component analysis (ICA) refers to a family
of related algorithms [1]–[10] that exploit independence
to perform blind source separation. In Section II, an ICA
algorithm based on the Infomax principle [6] is briefly
introduced. In Section III, ICA is applied to electroen-
cephalographic (EEG) recordings. Although these weak
signals recorded from the surface of the scalp have been
studied for nearly 100 years, their origins, exact dynamics,
and relationship to brain function has been difficult to assess
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because signals recorded at the scalp are mixtures of signals
from multiple brain generators. ICA may be helpful in iden-
tifying different types of generators of the EEG as well as its
magnetic counterpart, the magnetoencephalogram (MEG).
This application also illustrates questions concerning the
assumptions required to apply ICA to biological time series.
In Section IV, we show that ICA can also be used to analyze
hemodynamic signals from the brain recorded using func-
tional magnetic resonance imaging (fMRI). This exciting
new area of research allows neuroscientists to noninvasively
measure brain activity in humans indirectly through slower
changes in brain blood flow. In all of these examples,
great care must be taken to examine the validity of the
assumptions that are used by ICA to derive a decomposition
of the observed signals and/or to evaluate the reliability and
functional significance of the resulting components.

II. I NDEPENDENTCOMPONENTANALYSIS

ICA [4] was originally proposed to solve the blind
source separation problem, to recover source signals,

, (e.g., different voice, music, or
noise sources) after they are linearly mixed by multiplying
by , an unknown matrix, ,
while assuming as little as possible about the natures of
or the component signals. Specifically, one tries to recover a
version, , of the original sources,, identical save
for scaling and permutation, by finding a square matrix,

, specifying spatial filters that linearly invert the mixing
process. The key assumption used in ICA to solve this
problem is that the time courses of activation of the sources
(or in other cases the spatial weights) are as statistically
independent as possible. Most ICA is performed using
information-theoretic unsupervised learning algorithms.
Despite its relatively short history, ICA is rapidly becoming
a standard technique in multivariate analysis.

Mathematically, the ICA problem is as follows: We are
given a collection of -dimensional random vectors,
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(sound pressure levels atmicrophones, -pixel patches of
a larger image, outputs of scalp electrodes recording brain
potentials, or nearly any other kind of multidimensional
signal). Typically there are diffuse and complex patterns of
correlation between the elements of the vectors. ICA, like
principal component analysis (PCA), is a method to remove
those correlations by multiplying the data by a matrix as
follows:

(1)

(Here, we imagine the data is zero-mean; see below for pre-
processing details.) But while PCA only uses second-order
statistics (the data covariance matrix), ICA uses statistics of
all orders and pursues a more ambitious objective. While
PCA simply decorrelates the outputs (using an orthogonal
matrix ), ICA attempts to make the outputs statistically
independent, while placing no constraints on the matrix.
Statistical independence means the joint probability density
function (pdf) of the outputfactorizes

(2)

while decorrelation means only that , the covariance
matrix of , is diagonal (here, means average).

Another way to think of the transform in (1) is as

(3)

Here, is considered the linear superposition ofbasis
functions(columns of ), each of which is activated
by an independent component,. We call the rows of
filters because they extract the independent components. In
orthogonal transforms such as PCA, the Fourier transform
and many wavelet transforms, the basis functions and filters
are the same (because ), but in ICA they are
different.

The usefulness of a nonorthogonal transform sensitive to
higher order statistics can be seen in Fig. 1, which shows
the PCA and ICA basis functions for a simulated two-dimen-
sional (2-D) non-Gaussian data distribution. Clearly the ICA
axes capture much more about the structure of these data
than the PCA. Similar data distributions are actually more
common in natural data than those who model data by “mix-
tures of Gaussians” might suppose. This fact arises from the
common nonorthogonal “mixing together” of highly sparse
independent components. By sparse, we typically mean a
distribution that is much “peakier” (e.g., near zero) than a
Gaussian distribution, and with longer tails. A more tech-
nical term for sparse is super-Gaussian, usually identified
with positive kurtosis.

The ICA problem was introduced by Herault and Jutten
[1]. The results of their algorithm were poorly understood
and led to Comon’s 1994 paper defining the problem, and
to his solution using fourth-order statistics. Much work took
place in this period in the French signal processing commu-
nity, including Phamet al.’s [3] Maximum Likelihood ap-
proach that subsequently formed the basis of Cardoso and

Fig. 1. The difference between PCA and ICA on a nonorthogonal
mixture of two distributions that are independent and highly sparse
(peaked with long tails). An example of a sparse distribution is the
Laplacian:p(x) = ke . PCA, looking for orthogonal axes
ranked in terms of maximum variance, completely misses the
structure of the data. Although these distributions may look strange,
they are quite common in natural data.

Laheld’s [7] EASI method. These methods are very close to
the “Infomax” approach [6], so this algorithm may be called
Infomax/ML ICA. Earlier, Cichockiet al. [5] had proposed
an algorithm which motivated Amari [8] and colleagues to
show that its success was due to its relation to a “natural gra-
dient” modification of the Infomax/ML ICA gradient. This
modification greatly simplified the algorithm, and made con-
vergence faster and more stable.

The resulting gradient-descent algorithm (implemented
for routine use by Makeiget al. (http://www.cnl.salk.edu/
~scott/ica.html [11]) has proved useful in a wide range of
biomedical applications. Batch algorithms for ICA also
exist, such as Hyvärinen’sFastICA and several cumu-
lant-based techniques, including Cardoso’s widely used
fourth-order algorithmJADE. When these well-known
algorithms are compared, they generally perform near
equally well. However, applied to actual data sets for which
no ground truth solutions exist, and for which the exact-
ness of the ICA assumptions cannot be tested, they may
produce differences whose relative value and significance
are difficult to evaluate. Review papers comparing different
ICA algorithms and their interrelationships are available
[12], [13], as are two edited collections of papers [14], [15]
and proceedings from two international workshops (ICA99,
ICA2000). A third workshop in this series is planned (see
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Fig. 2. Optimal information flow in sigmoidal neurons. (left) Inputx raving probability
density functionp(x), n this case a Gaussian, is passed through a nonlinear functiong(x). The
information in the resulting density,p(x) depends on matching the mean and variance ofx to
the threshold,w , and slope,w, of g(x) (Nicol Schraudolph, personal communication). (right)
p(y) is plotted for different values of the weightw. The optimal weight,w transmits most
information (from [2] by permission.)

http://ica2001.org). Matlab code for several algorithms,
including those mentioned above, is also available through
the World Wide Web. Below, we sketch the derivation and
development of Infomax ICA.

A. The Infomax ICA Algorithm

A more general linear transform of is the affine trans-
form: where is an -by-1 “bias” vector
that centers the data on the origin. If we assume the indepen-
dent component pdfs, are roughly symmetrical, then
it is simpler to subtract the mean, , from the data before-
hand. A second preprocessing step that speeds convergence
is to first “sphere” the data by diagonalizing its covariance
matrix

(4)

This yields a decorrelated data ensemble whose covari-
ance matrix satisfies , where is the identity
matrix. This is a useful starting point for ICA decomposi-
tion. This sphering method is not PCA, but rather zero-phase
whitening which constrains the matrix to be symmetric.
By contrast, PCA constrains it to be orthogonal, and ICA,
also a decorrelation technique but without constraints on,
finds its constraints in the higher order statistics of the data.

The objective of the Infomax ICA algorithm is to minimize
redundancybetween the outputs. This is a generalization of
the mutual information

(5)

This redundancy measure has value 0 when the pdf
factorizes, as in (2), and is a difficult function to minimize di-
rectly. The insight that led to the Infomax ICA algorithm was

that is related to the joint entropy, , of the out-
puts passed through a set of sigmoidal nonlinear functions,

(6)

Thus, if the absolute values of the slopes of the sigmoid
functions, are the same as the independent compo-
nent pdf’s, then Infomax [maximizing the joint en-
tropy of the vector], will be the same as ICA (mini-
mizing the redundancy in the vector).

The principle of “matching” the s to the s is illustrated
in Fig. 2, where a single Infomax unit attempts to match
an input Gaussian distribution to a logistic sigmoid unit, for
which

(7)

The match cannot be perfect, but it does approach the max-
imum entropy pdf for the unit distribution by maximizing the
expected log slope, .

The generalization of this idea to dimensions leads
to maximizing the expected log determinant of the abso-
lute value of the Jacobian matrix . This
optimization attempts to map the input vectors uniformly
into the unit -cube (assuming that the-functions are still
0-1 bounded). Intuitively, if the outputs are spread evenly
(like molecules of a gas) throughout their (-cube) range,
then learning the value of a data point on one axis gives no
information about its values on the other axes and maximum
independence has been achieved. Bell and Sejnowski [6]
showed that the stochastic gradient descent algorithm that
maximizes is

(8)
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where denotes inverse transpose, and the vector-func-
tion, , has elements

(9)

When for all , then, according to (6),
the ICA algorithm is exact. Unfortunately, this leaves a dif-
ficulty. Either one has to estimate the functionsduring
training, or one needs to assume that the final term in (6) does
not interfere with Infomax performing ICA. We have em-
pirically observed a systematic robustness to misestimation
of the prior, . Although unproven,
this robustness conjecture can be stated [16]: Any super-
Gaussian prior will suffice to extract super-Gaussian inde-
pendent components. Any sub-Gaussian prior will suffice to
extract sub-Gaussian independent components. This conjec-
ture also leads to the generally successful “extended ICA” al-
gorithms [9], [10] that switch the component priors, ,
between super- and sub-Gaussian functions. In practice, as
the robustness principle suggests, this switching may be all
the estimation needed to obtain a correct solution. The same
insight underlies “negentropy” approaches to ICA that max-
imize the distance of the from Gaussian, described in
[13] and by Leeet al. [10].

For most natural data (images, sounds, etc.), the indepen-
dent component pdfs are all super-Gaussian, so many good
results have been achieved using “logistic ICA,” in which the
super-Gaussian prior is the slope, , of the common lo-
gistic sigmoid function (8) so often used in neural networks.
For this choice of , the function in (8) evaluates simply to

.
Infomax ICA is almost identical to the maximum like-

lihood approach [3]. In maximum likelihood density esti-
mation, one maximizes a parameterized estimate of the log
of the pdf of the input, . A simple argument
shows that the absolute value of the determinant of the Ja-
cobian matrix, is exactly such a den-
sity estimate [for much the same reason that is a
density estimate for in (6)]. Infomax maximizes this
log likelihood, and therefore inherits the useful properties of
maximum likelihood methods while preserving an informa-
tion-theoretic perspective on the problem.

An additional and important feature was added to the In-
fomax ICA algorithm by Amari and colleagues [8], who ob-
served that a simpler learning rule, with much faster and more
stable convergence, could be obtained by multiplying the In-
fomax gradient of (8) by , obtaining

(10)

Since , which scales the gradient, is positive-def-
inite, it does not change the minima and maxima of the
optimization. Its optimality has been explained using infor-
mation geometry [8] and equivariance—the gradient vector
local to is normalized to behave as if it were close to

(see [14]). Both interpretations reflect the fact that the
parameter space of is not truly Euclidean, since its axes
are entries of a matrix. Equation (10) is clearly a nonlinear

decorrelation rule, stabilizing when . (The
minus sign is required because thefunctions are typically
decreasing.) The Taylor series expansion of thefunctions
provides information about higher order correlations neces-
sary to perform ICA.

In addition to its effective use in solving blind source sepa-
ration problems in signal processing where known indepen-
dent “ground truth” sources are known, at least for test ex-
amples, ICA has also been applied to data from the natural
world where the degree to which the ICA assumptions are
satisfied is unknown and for which no clear idea of what
the maximally independent sources may be. First, we will
examine an application of ICA to natural images that sup-
ports an Infomax-based theory of perceptual brain organiza-
tion [17] and also illustrates the nature of independence.

III. D ECOMPOSITION OFNATURAL IMAGES

The classic experiments of Hubel and Wiesel on neurons
in primary visual cortex revealed that many of them are ori-
entation-selective feature detectors. This raised the question
“Why do we have edge detectors?” In other words, are there
coding principles that predict the formation of localized, ori-
ented receptive fields? Horace Barlow proposed that our vi-
sual cortical feature detectors might be the end result of are-
dundancy reductionprocess, in which the activation of each
feature detector is supposed to be as statistically indepen-
dent from the others as possible. However, algorithms based
only on second-order statistics failed to give local filters. In
particular, the principal components of natural images are
Fourier filters ranked in frequency, quite unlike oriented lo-
calized filters. Other researchers have proposed “projection
pursuit”-style approaches to this problem, culminating in Ol-
shausen and Field’s [18] demonstration of the self-organiza-
tion of local, oriented receptive fields using a sparseness cri-
terion.

The assumption implicit in this approach is that early vi-
sual processing should attempt to invert the simplest pos-
sible image formation process, in which the image is formed
by linear superposition of basis vectors (columns of ),
each activated by independent (or sparse) causes,. Bell
and Sejnowski [19] showed that ICA basis images for a set
of small image patches taken at random from natural images
do consist of oriented, localized contrast-sensitive functions
[“edge-detectors” (Fig. 3)]. Since sparseness is often related
to super-Gaussianity, it is clear why logistic ICA produced
filters sensitive to sparse patterns. These distributions, fur-
thest from Gaussian on the super-Gaussian side, are the most
likely to be as statistically independent as possible, through
the Central Limit Theorem argument that any mixture of
two independent distributions should produce a distribution
that is closer to Gaussian. Note that none of the indepen-
dent components of these data were sub-Gaussian, as was
verified using the “extended ICA” algorithm [10]. Later, van
Hateren and Ruderman derivedbasis moviesof moving im-
ages (http://hlab.phys.rug.nl/demos/ica) [20], which were lo-
calized, oriented and moving perpendicular to their orienta-
tion direction, as in monkey visual cortex.
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Fig. 3. A selection of 144 basis functions (columns ofW )
obtained from training on patches of 12-by-12 pixels from pictures
of natural scenes.

IV. A NALYSIS OF EEGAND AVERAGED EVENT-RELATED

POTENTIAL (ERP) DATA

The EEG is a noninvasive measure of brain electrical ac-
tivity recorded as changes in potential difference between
points on the human scalp. Because of volume conduction
through cerebrospinal fluid, skull and scalp, EEG data col-
lected from any point on the scalp may include activity from
multiple processes occurring within a large brain volume.
This has made it difficult to relate EEG measurements to un-
derlying brain processes or to localize the sources of the EEG
signals. Furthermore, the general problem of determining the
distribution of brain electrical sources from electromagnetic
field patterns recorded on the scalp surface is mathematically
underdetermined.

Event-related potentials (ERPs), time series of voltages
from the ongoing EEG that are time-locked to a set of sim-
ilar experimental events, are usually averaged prior to anal-
ysis to increase their signal/noise relative to other nontime
and phase-locked EEG activity and nonneural artifacts. For
several decades, ERP researchers have proposed a number of
techniques to localize the sources of stimulus-evoked poten-
tials, either by assuming a known or simple spatial configu-
ration [21], or by restricting generator dipoles to lie within
and point outward from the cortical surface [22].

Makeiget al. [23] noted that ICA could be used to sepa-
rate the problem of EEG (or MEG) source identification from
the problem of source localization. That is, ICA (or other
blind source separation algorithm) may tellwhattemporally
independent activations compose the collected scalp record-
ings without specifying directlywherein the brain these ac-
tivations arise. By separating the contributions of different
brain and nonbrain sources to the data, however, ICA is also
proving to be an efficient preprocessing step prior to source
localization [24].

Subsequent work has explored the application of ICA to
collections of averaged ERPs [11], [25]–[27] to unaveraged
single-trial ERP epochs [28]–[32], and to clinical EEG
data [33]. Many other groups, including MEG researchers
[34]–[37], have now begun working in this area.

A. Assumptions of ICA Applied to EEG/MEG Data

Four main assumptions underlie ICA decomposition of
EEG (or MEG) time series. 1) Signal conduction times are
equal and summation of currents at the scalp sensors is linear,
both reasonable assumptions for currents carried to the scalp
electrodes by volume conduction at EEG frequencies [38]
or for superposition of magnetic fields at SQUID sensors. 2)
Spatial projections of components are fixed across time and
conditions. 3) Source activations are temporally independent
of one another across the input data. 4) Statistical distribu-
tions of the component activation values are not Gaussian.

What are the Independent Components? For biomedical
time series analysis (EEG, MEG, etc.), the rows of the input
matrix, , are EEG/ERP signals recorded at different elec-
trodes and the columns are measurements recorded at dif-
ferent time points. ICA finds an “unmixing” matrix, , that
decomposes or linearly unmixes the multichannel scalp data
into a sum of temporally independent and spatially fixed
components, . The rows of the output data ma-
trix, , are time courses of activation of the ICA compo-
nents. The columns of the inverse matrix, , give the
relative projection strengths of the respective components
at each of the scalp sensors. These scalp weights give the
scalp topography of each component, and provide evidence
for the components’ physiological origins (e.g., eye activity
projects mainly to frontal sites). The projection of theth
independent component onto the original data channels is
given by the outer product of theth row of the component
activation matrix, , with the th column of the inverse un-
mixing matrix, and is in the original channel locations and
units (e.g., V). Thus, brain activities of interest accounted
for by single or by multiple components can be obtained by
projecting selected ICA component(s) back onto the scalp,

, where is the matrix, of activation wave-
forms with rows representing activations of irrelevant com-
ponent activation(s) set to zero.

B. Analyzing Collections of AveragedERPs

Many studies employ ERP peak measures to test clinical or
developmental hypotheses. However, ERPs cannot be easily
decomposed into functionally distinct components, because
time courses and scalp projections of different brain gener-
ators generally overlap. We have shown, however, that ICA
can effectively decompose multiple overlapping components
from selected sets of related ERP averages [25].

Fig. 4 illustrates results of decomposing a collection of 25
to 75 1-s averages from different task and/or stimulus condi-
tions, each summing a relatively large number of single trials
(250–7000). Participating subjects, eight males and two fe-
males, were right-handed with normal or corrected to normal
vision. During 76-s trial blocks, subjects were instructed to
attend to one of five squares continuously displayed on a back
background 0.8 cm above a centrally located fixation point.
The (1.6 1.6 cm) squares were positioned horizontally at
angles of 0, 2.7 , and 5.5 in the visual field 2 above
from the point of fixation. Four squares were outlined in blue
while one, marking the attended location, was outlined in
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Fig. 4. (a) Grand mean evoked response to detected target stimuli in the detection task (average of
responses from ten subjects and five attended locations). Response waveform at all 29 scalp channels
and two EOG channels are plotted on a common axis. Topographic plots of the scalp distribution
of the response at four indicated latencies show that the LPC topography is labile, presumably
reflecting the summation at the electrodes of potentials generated by temporally overlapping
activations in several brain areas each having broad but topographically fixed projections to the
scalp. All scalp maps shown individually scaled to increase color contrast, with polarities at their
maximum projection as indicated in the color bar. (b) Activation time courses and scalp maps of
the four LPC components produced by Infomax ICA applied to 75 1-s grand-mean (10-Ss) ERPs
from both tasks. Map scaling as in (a). The thick dotted line (left) indicates stimulus onset. Mean
subject-median response times (RTs) in the Detection task (red) and Discrimination task (blue) are
indicated by solid vertical bars. Three independent components (P3f, P3b, Pmp) accounted for
95%–98% of response variance in both tasks. In both tasks, median RT coincided with Pmp onset.
The faint vertical dotted line near 250 ms shows that the P3f time courses for targets and “nogo”
nontargets (presented in the target location) just at the onset of the left-sided Pnt component, which
was active only in this condition. (c) Envelopes of the scalp projections of maximally independent
component P3f, (red filled) superimposed on the mean response envelopes (black outlines) for all
5� 5 response conditions of the Detection task. (d) The top panels show the grand mean target
response at two scalp channels, Fz and Pz (thick traces), and the projections of the two largest ICA
components, P3b and Pmp, to the same channels (thin traces). The central panel shows a scatter
plot of ten average target ERPs at the two electrodes. The data contain two strongly radial (and,
therefore, spatially fixed) features. The dashed lines (middle panel) show the directions associated
with components P3b and Pmp in these data, as determined by the relative projection strengths of
each component to these two scalp channels (shown below as black dots on the component scalp
maps). The degree of data entropy attained by ICA training is illustrated by the (center right) plot
insert, which shows the (31-channel) scatter-plotted data after logistic transformation and rotation to
the two component axes (from [25] by permission).
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green. The location of the attended location was counterbal-
anced across trial blocks. In the “Detection” task condition,
all stimuli were filled circles and subjects were required to
press a right-hand held thumb button as soon as possible fol-
lowing stimuli presented in the attended location. In the “Dis-
crimination” task condition, 75% of the presented stimuli
were filled circles, the other 25% filled squares. Subjects
were required to press the response button only in response
to filled squares appearing in the attended location, and to ig-
nore filled circles. In this condition, 35 blocks of trials were
collected from each subject, seven blocks at each of the five
possible attended locations. Each block included 35 target
squares and 105 distractor (or “nogo”) circles presented at
the attended location, plus 560 circles and squares presented
at the four unattended locations.

EEG data were collected from 29 scalp electrodes
mounted in a standard electrode cap (Electrocap, Inc.) at
locations based on a modified International 10–20 System,
and from two periocular electrodes placed below the right
eye and at the left outer canthus. All channels were refer-
enced to the right mastoid with input impedance less than 5
k . Data were sampled at 512 Hz within an analog passband
of 0.01–50 Hz.

Responses evoked by target stimuli [their grand mean
shown in Fig. 4(a),colored traces] contained a prominent
“late positive complex” (LPC, often called “P300”) fol-
lowing expected early peaks P1, N1, P2, and N2. In the
grand-mean detection-task response, the scalp topography
of the response varied continuously [Fig. 4(a),scalp maps].

ICA was applied to all 75 31-channel responses from both
tasks (1-s ERPs from 25 detection-task and 50 discrimina-
tion-task conditions, each a grand average over ten subjects)
producing 31 temporally independent components. Of these,
just three accounted for 95%–98% of the variance in the ten
target responses from both tasks.

Component P3f(blue traces) became active near the N1
peak. Its active periodcontinued throughthe P2 and N2 peaks
and the upward slope of the LPC. That is, P3f accounted for a
slow shift beginning before LPC onset, positive at periocular
and frontal channels and weakly negative at lateral parietal
sites (top rows). Fig. 4(c) shows the 31-channel projections of
P3f as (red) filled data envelopes within the outlined envelope
of the whole responses in each condition.

Component P3b, the largest of the three independent LPC
components, had a central parietal maximum and a right-
frontal bias, like the LPC peak itself. In the Detection task, its
peak amplitude appeared inversely related to median RT. In
the Discrimination task, the 90 ms delay between RT and
the P3b peak observed in the detection task was reproduced
only in the fast-responder response. These characteristics of
the central LPC component (P3b) identified by ICA appear
consistent with those of the LPC peak in the Detection task.
However, in the Discrimination-task subaverages, the ERP
and P3b peaks didnot coincide. The P3b component also
accounted for some early response activity. This appeared to
reflect a tendency of the algorithm to make very large compo-
nents “spill over” to account for periods of weak activity with
related scalp distributions. Subsequent decompositions of the

Detection-task data by PCA with our without Varimax, and
Promax rotation (see [25]) produced P3b analogs in which
this “spillover” was stronger than for ICA.

Component Pmp.Pmp was activated only following target
stimuli followed by button presses. Its posterior maximum
was contralateral to response hand, and its latency and topo-
graphic variability across subjects strongly resembled that of
the 200-ms post-movement positivity in the voluntary motor
response [39]. However, in the discrimination task no Pmp
was present in target responses of the five faster responders.
Pmp accounted for the later post-response portion of the LPC
originally called SW (for “slow wave”) [40].

Component Pnt.A fourth LPC component was active only
in response to nontarget stimuli presented in the target loca-
tion. Inhibiting a quick motor response to these stimuli re-
quired conscious effort. Component Pnt (for nontarget) had
a left-sided scalp projection, consistent with lesion and fMRI
studies showing that a brain area below these electrodes is in-
volved in response inhibition.

These results suggested that ICA can parsimoniously de-
compose complex ERP data sets comprised of many scalp
channels, stimulus types, and task conditions into tempo-
rally independent, spatially fixed, and physiologically plau-
sible components without necessarily requiring the presence
of multiple local response peaks to separate meaningful re-
sponse components. Although the results reported here and
elsewhere [11], [25], [26] are encouraging, we need to keep
in mind that for averaged ERP data, the ICA assumptions
may only be approximately satisfied. That is, as illustrated
in Fig. 4(d), given real data, any ICA algorithm can return at
bestmaximallyindependent components.

Spatial stationarity.Spatial stationarity of the component
scalp maps, assumed in ICA, is compatible with the observa-
tion made in large numbers of functional imaging reports that
performance of particular tasks increases blood flow within
small ( cm ), discrete brain regions [41]. ERP sources re-
flecting task-related information processing are generally as-
sumed to sum activity from spatially stationary generators,
although stationarity might not apply to subcentimeter scales
or to some spontaneous macroscopic EEG phenomena such
as spreading depression or sleep spindles [42]. Our results
to date suggest that most EEG oscillations, including alpha
rhythms, can be better modeled as composed of temporally
independent islands of coherent cortical activity, rather than
as traveling waves [32].

Temporal independence.ICA assumes that sources of
the EEG must be temporally independent. However, brain
components of averaged ERPs most often have temporally
overlapping active periods. Independence of ERP features
may be maximized by, first, sufficiently and systematically
varying the experimental stimulus and task conditions, and,
next, training the algorithm on the concatenated collection
of resulting event-related response averages. Fortunately,
the first goal of experimental design, to attain independent
control of the relevant output variables, is compatible with
the ICA requirement that the activations of the relevant data
components be independent. Thus, for example, the subject
group-mean ERP data we analyzed successfully using ICA
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(Fig. 4) consisted of collections of 25 to 75 1-s averages
from different task and/or stimulus conditions, each sum-
ming a relatively large number of single trials (250–7000).
Unfortunately, however, independent control of temporally
overlapping ERP components may be difficult or impossible
to achieve. Simply varying stimuli and subject task does not
guarantee that all the spatiotemporally overlapping response
components appearing in the averaged responses will be
activated independently in the resulting data. Thus, the
suitability of ICA for decomposition of small sets of ERP
averages cannot be assumed, and such decompositions must
be examined carefully, using convergent behavioral and/or
physiological evidence, before accepting the functional
independence of the derived components. Also, ERP com-
ponents, even those derived by ICA, may actually represent
sums of event-related phase and amplitude perturbations in
components of the ongoing EEG (see below).

Dependence on source distribution.Because of the ten-
dency described by the Central Limit Theorem, mixtures that
appear normally distributed may be the sum of non-Gaussian
sources. In theory, ICA cannot separate multiple Gaussian
processes, although in practice even small deviations from
normality can suffice to give good results. Also, not all ICA
algorithms are capable of unmixing independent compo-
nents with sub-Gaussian (negative-kurtosis) distributions.
For example, the original Infomax ICA algorithm using the
logistic nonlinearity is biased toward finding super-Gaussian
(sparsely activated) independent components (i.e., sources
with positive kurtosis). Super-Gaussian sources, which have
more near-zero values than the best-fitting Gaussian process,
are common in speech and many other natural sounds and
visual images (see Section III) [19], [43].

The assumption that source distributions are super-
Gaussian is compatible with the physiologically plausible
assumption that an averaged ERP is composed of one or
more overlapping series of relatively brief activations within
spatially fixed brain areas performing separable stages of
stimulus information processing. Nonetheless, sub-Gaussian
independent components have been demonstrated in EEG
data [28], including line noise, sensor noise and low
frequency activity. In practice, however, sub-Gaussian
components rarely appear in ERPs or in spontaneous EEG.
The super-Gaussian statistics of independent components of
ERP data may indicate that brain information processing is
dominated by spatially sparse, intermittently synchronous
brain structures.

C. Analyzing Collections of Event-Related EEG Epochs

Response averaging ignores the fact that response activity
may vary widely between trials in both time course and
scalp distribution. This temporal and spatial variability
may in fact reflect changes in subject performance or
in subject state (possibly linked to changes in attention,
arousal, task strategy, or other factors). Thus conventional
averaging methods may not be suitable for investigating
brain dynamics arising from intermittent changes in subject

state and/or from complex interactions between task events.
Further, response averaging makes possibly unwarranted
assumptions about the relationship between ERP features
and the dynamics of the ongoing EEG.

Analysis of single event-related trial epochs may poten-
tially reveal more information about event-related brain
dynamics than simple response averaging, but faces three
signal processing challenges: 1) difficulties in identifying
and removing artifacts associated with blinks, eye-move-
ments and muscle noise, which are a serious problem for
EEG interpretation and analysis; 2) poor signal-to-noise
ratio arising from the fact that nonphase locked back-
ground EEG activities often are larger than phase-locked
response components; and 3) trial-to-trial variability in
latencies and amplitudes of both event-related responses
and endogenous EEG components. Additional interest in
analysis of single-trial event-related EEG (or MEG) epochs
comes from the realization that filtering out time- and
phase-locked activity (by response averaging) isolates only
a small subset of the actual event-related brain dynamics of
the EEG signals themselves [44].

Recently, a set of promising analysis and visualization
methods for multichannel single-trial EEG records have
been developed that may overcome these problems [23],
[29], [45]. These tools were first used to analyze data from
the aforementioned visual Detection experiment on 28
control subjects plus 22 neurological patients whose EEG
data, recorded at 29 scalp and two EOG sites, were often
heavily contaminated with blink and other eye-movement
artifacts.

To visualize collections of single-trial EEG records,
“ERP image” plots [29], [45] are useful and often reveal
unexpected inter-trial consistencies and variations. Fig. 5(a)
shows all 641 single-trial ERP epochs recorded from an
autistic subject time-locked to onsets of target stimuli
(left vertical line). Single-trial event-related EEG epochs
recorded at the vertex (Cz) and at a central parietal (Pz) site
are plotted as color-coded horizontal traces (see color bar)
sorted in order of the subject’s reaction time latencies (thick
black line). The ERP average of these trials is plotted below
the ERP image.

ICA, applied to these 641 31-channel EEG records,
separated out (clockwise): 1) artifact components arising
from blinks or eye movements, whose contributions could
be removed from the EEG records by subtracting the
component projection from the data [30], [46]; 2) compo-
nents showing stimulus time-locked potential fluctuations
of consistent polarity many or all trials; 3) components
showing response-locked activity covarying in latency with
subject response times; 4) “mu-rhythm” components [47] at
approximately 10 Hz that decreased in amplitude when the
subject responds; 5) other components having prominent
alpha band (8–12 Hz) activity whose intertrial coherence
[Fig. 5(b), lower middle panel, bottom trace], measuring
phase-locking to stimulus onsets, increased significantly
after stimulus presentation, even in the absence of any
alpha band power increase (middle trace); and 6) other
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Fig. 5. ERP-image plots of target response data from a visual selective attention experiment and
various independent component categories. (a) Single-trial ERPs recorded at a central (Cz) and a
parietal electrode (Pz) from an autistic subject and timelocked to onsets of visual target stimuli (left
thin vertical line) with superimposed subject response times (RT). (b) Single-trial activations of
sample independent components accounting for (clockwise) eye blink artifacts, stimulus-locked and
response-locked ERP components, response-blocked oscillatory mu, stimulus phase-reset alpha,
and nonphase locked activities.

EEG components whose activities were either unaffected
by experimental events or were affected in ways not re-
vealed by these measures. This taxonomy could not have
been obtained from signal averaging or other conventional
frequency-domain approaches.

Better understanding of trial-to-trial changes in brain re-
sponses may allow a better understanding of normal human
performance in repetitive tasks, and a more detailed study
of changes in cognitive dynamics in normal, brain-damaged,
diseased, aged, or genetically abnormal individuals. ICA-
based analysis also allows investigation of the interaction
between phenomena seen in ERP records and its origins in
the ongoing EEG. Contrary to the common supposition that
ERPs are brief stereotyped responses elicited by some events
and independent of ongoing background EEG activity, many
ERP features may be generated by ongoing EEG processes
(see Fig. 5).

Decomposition of unaveraged single-trial EEG records al-
lows: 1) removal of pervasive artifacts from single-trial EEG
records, making possible analysis of highly contaminated
EEG records from clinical populations [46]; 2) identifi-
cation and segregation of stimulus- and response-locked

EEG components; 3) realignment of the time courses of
response-locked components to prevent temporal smearing
in the average; 4) investigation of temporal and spatial
variability between trials; and 5) separation of spatially
overlapping EEG activities that may show a variety of
distinct relationships to task events. The ICA-based analysis
and visualization tools increase the amount and quality of
information in event- or response-related brain signals that
can be extracted from event-related EEG (or MEG) data.
ICA thus may help researchers to take fuller advantage of
what until now has been an only partially realized strength of
event-related paradigms—the ability to examine systematic
relationships between single trials within subjects [29], [32],
[45], [48].

Although ICA appears to be a promising method for ana-
lyzing for EEG and MEG data, results of ICA must be inter-
preted with caution. In general, the effective number of in-
dependent components contributing to the scalp EEG is un-
known and between-subject variability is difficult to resolve.
One approach is to sort components into between-subject
clusters recognizable by their spatial and temporal patterns
as well as by their time-domain (ERP) and frequency-domain
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Fig. 6. ERP-image plot of single-trial activations of one alpha
component from the selective visual attention experiment described
in Section IV.Top image: Single-trial potentials, color coded
(scale: redpositive,greenzero andbluenegative). Blue traces
below image: (top trace) averaged evoked response activity of this
component, showing “alpha ringing.”Units: proportional to�V.
(middle trace) Time course of rms amplitude of this component at
its peak frequency, 10 Hz.Units: relative tolog (�V ). (bottom
trace) Time course of inter-trial coherence at 10 Hz. (thick), plus
the bootstrap (p = 0:02) significance threshold (thin). Intertrial
coherence measures the tendency for phase values at a given time
and frequency to be fixed across trials.Bottom left: Mean power
spectral density of the component activity (units, relative decibels).
Bottom right: scalp map showing the interpolated projection of the
component to the scalp electrodes.

(e.g., ERSP, event-related spectral perturbation) reactivities
[32].

D. Case Study: Stimulus-Induced “Alpha Ringing”

EEG data were recorded from a subject performing the
selective attention experiment described above. Fig. 6 shows
an ERP-image plot giving the time course of activation of
one independent component whose activity spectrum (lower
left) had a strong peak (near 10 Hz) in the alpha range. Its map
(lower right) could be well approximated by the projection of
a single equivalent dipole, suggesting that its source might be
a small patch of unknown size in left medial occipital cortex.

The “ERP-image” view shows the time course of activa-
tion of this component in over 500 single trials each time
locked to the presentation of a target stimulus (vertical line).
Here, the trials have been sorted not in order of response time
(as in Fig. 5), but rather in order of their phase at 10 Hz in a
three-cycle window ending at stimulus onset. Phase sorting
produces an apparent autocorrelation of the signals. The ERP
(uppermost trace) suggests that following the stimulus this
component produced nearly a second of increased alpha ac-
tivity superimposed on a slow negative wave. Note, however,
that the slope of the negative-phase lines (dark stripes) be-
comes near-vertical a half second (at the first tick mark) after
stimulus presentation. This change in slope represents a sys-

tematicphase resettingof the component alpha activity in-
duced by the stimulus.

The vertically time-aligned phase maxima between 200
and 700 ms after the stimulus produces the appearance of in-
creased 10-Hz activity in the ERP (upper trace). However
(as themiddle traceshows), mean power at 10 Hz in the
single-trial EEG itself doesnot increase above its baseline.
Instead (as thelower traceshows), the phase resetting of
the component process by the stimulus, becomes significant
(horizontal thin line) about 200 ms after stimulus onset, pro-
ducing the 10-Hz ripples in the ERP.

Here, ICA allows the actual event-related EEG dynamics
producing the observed (normal) “alpha-ringing” in the av-
eraged evoked response to be accurately modeled, whereas
measuring the average evoked response alone could suggest
a quite different (and incorrect) interpretation. As Makeiget
al. [32] have shown, ICA identifies several clusters of inde-
pendent EEG alpha components, each with a scalp map re-
sembling the projection of one (or in one cluster of cases,
two) dipoles located in the posterior cortex. Typically, sev-
eral of these sum to form a subject’s spatially complex and
variable recorded “alpha rhythm.”

E. Component Stability

We have investigated the component stability of ICA
decomposition of EEG/ERPs at three different scales: 1) the
replicability of components from repeated ICA trainings on
the same data set; 2) within-subject spatiotemporal stability
of independent components of collections of temporally
overlapping or distinct subepochs of the single-trial EEG
records; and 3) between-subject replicability of independent
components of 1- or 3-s single-trial EEG epochs.

Infomax ICA decomposition is relatively robust and insen-
sitive to the exact choice or learning rate or data batch size
[25], [26], [31], [49]. Training with data in different random
orders has little effect on the outcome: Independent compo-
nents with large projections are stable, though typically the
smallest components vary.

The within-subject spatiotemporal stability of independent
components of the EEG was tested by applying moving-
window ICA to overlapping event-related subepochs of the
same single-trial recordings used in this study [32]. ICA de-
composition of multichannel single-trial event-related EEG
data gave stable and reproducible spatiotemporal structure
and dynamics of the EEG before, during and after experi-
mental events. In addition, component clusters identified in
single ICA decompositions of concatenated whole target-re-
sponse epochs strongly resembled those produced by the sub-
window decompositions.

We then investigated the between-subject stability of
independent components of the single-trial EEG epochs
by applying a component clustering analysis (compo-
nent-matching based on the component scalp maps and
power spectra of component activations) to 713 components
derived from 23 normal controls participating in the same
visual selective attention task. Clusters accounting for eye
blinks, lateral eye movement, and temporal muscle activities
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contained components from almost all subjects. In general,
clusters accounting for early stimulus-locked activity, late
response-locked activity (P300), event-modulated mu and
alpha band activities (see Fig. 5) were largely replicated in
many subjects.

V. FUNCTIONAL MAGNETIC RESONANCEIMAGE

The fMRI technique is a noninvasive technique making
it possible to localize dynamic brain processes in intact
living brains [50]. It is based on the magnetic susceptibilities
of oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR) and is used to track blood-flow-re-
lated phenomena accompanying or following neuronal
activations. The most commonly used fMRI signal is the
blood-oxygen-level-dependent (BOLD) contrast [51]. The
analysis of fMRI brain data is a challenging enterprise, as
the fMRI signals have varied, unpredictable time courses
that represent the summation of signals from hemodynamic
changes as a result of neural activities, from subject motion
and machine artifacts, and from physiological cardiac,
respiratory and other pulsations. The relative contribution
and exact form of each of these components in a given
session is largely unknown to the experimenter, suggesting a
role for blind separation methods if the data have properties
that are consistent with these models [52]–[55].

The assumptions of ICA apply to fMRI data in a different
way than to other time series analysis. Here, the principle of
brain modularity suggests that, as different brain regions per-
form distinct functions, their time courses of activity should
be separable (though not necessarily independent, particu-
larly when, typically, only a few hundred or fewer time points
are available). Spatial modularity, plus the relatively high
3-D spatial resolution of fMRI, allows the use of ICA to
identify maximallyspatially independent regions with dis-
tinguishable time courses. Decreases as well as increases in
brain activity are observed, which allows components to have
overlapping spatial regions and still be approximately inde-
pendent. However, the spatial independence of active brain
areas is not perfect, and therefore the nature and functional
significance of independent fMRI components must be vali-
dated by convergent physiological and behavioral evidence.

A. General Linear Model (GLM)

Traditional methods of fMRI analysis [41] are based on
variants of the general linear model (GLM), i.e.,

(11)

where
by row mean-zero data matrix with the

number of time points in the experiment;
total number of voxels in all slices;
specified by design matrix containing the time
courses of all factors hypothesized to modulate
the BOLD signal, including the behavioral manip-
ulations of the fMRI experiment;

by matrix of parameters to be estimated;

matrix of noise or residual errors typically assumed
to be independent, zero-mean and Gaussian dis-
tributed, i.e., .

Once is specified, standard regression techniques can be
used to provide a least squares estimate for the parameters
in . The statistical significance of these parameters can be
considered to constitute spatial maps [41], one for each row
in , which correspond to the time courses specified in the
columns of the design matrix. The GLM assumes: 1) the de-
sign matrix is known exactly; 2) time courses are white; 3)
the s follow a Gaussian distribution; and 4) the residuals are
thus well-modeled by Gaussian noise.

B. ICA Applied to fMRI Data

Using ICA, we can calculate an unmixing matrix, , to
calculate spatially independent components

(12)

where again, is the by row mean-zero data matrix with
the number of time points in the experiment andthe total

number of voxels. is an by unmixing matrix, and is
an by matrix of spatially independent component maps
(sICs).

If is invertible, we could write

(13)

An attractive interpretation of (13) is that the columns of
represent temporal basis waveforms used to construct

the observed voxel time courses described in the columns of
. Since the rows of are maximally independent, the spa-

tial projection of any basis waveform in the data is maximally
independent of the spatial projection of any other.

The similarity between ICA and the GLM can be seen by
comparing (11) and (13). Starting with (13) and performing
the initial simple notation substitutions, and

, we have

(14)

which is equivalent to (11) without the Gaussian error term.
Note, however, the important teleological differences be-
tween (11) and (14): When regression equation (11) is used,
the design matrix is specified by the examiner, while
in (14) the matrix , computed from the data by the ICA
algorithm, also determines. That is, ICA does not reply
on the experimenter’sa priori knowledge or assumptions
about the time courses of brain activities and recording noise
during the recording, and makes only weak assumptions
about their probability distributions.

C. An fMRI Case Study

Fig. 7 shows the results of applying ICA to an fMRI data
set. The fMRI data were acquired while a subject performed
15-s blocks of visually cued or self-paced right wrist supina-
tions/pronations, alternating with 15-s blocks in which the
subject rested. ICA found a maximally spatially independent
component that was active during both modes of motor ac-
tivity and inactive during rest [Fig. 7(b)]. Fig. 7(c) shows re-
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Fig. 7. (a) An fMRI experiment was performed in which the subject was instructed to perform
15-s blocks of alternating right wrist supination and pronation, alternating with 15-s rest blocks.
The movement periods where alternately self-paced or were visually cued by a movie showing
a moving hand. (b) ICA analysis of the experiment detected a spatially independent component
that was active during both types of motor periods but not during rest. The spatial distribution of
this component (threshold,z � 2) was in the contralateral primary motor area and ipsilateral
cerebellum. (The radiographic convention is used here, the right side of the image corresponding to
the left side of the brain and vice versa) (from McKeown,et al., manuscript in preparation). (c)
A similar fMRI experiment was performed in which the subject supinated/pronated both wrists
simultaneously. Here, ICA detected a component that was more active during self-paced movements
than during either visually cued movement or rest periods. The midline region depicted threshold,
z � 2 is consistent with animal studies showing relative activation of homologous areas during
self-paced but not visually cued tasks. (e.g. [69]).

sults from a similar fMRI experiment in which the subject
was asked to supinate/pronate both wrists simultaneously.
Here, ICA detected a component more active during self-
paced movements than during either visually cued movement
blocks or rest periods. Its midline, frontal polar location (de-
picted) is consistent with animal studies showing relative ac-

tivation in this area during self-paced but not during visually
cued tasks.

D. Future Directions

In many respects, uses for the GLM and ICA are com-
plementary [56], [57]. The advantage of the GLM is that
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it allows the experimenter (given several statistical assump-
tions) to check the statistical significance of activation corre-
sponding to the experimental hypothesis. The disadvantages
of the GLM are related to the fact that these assumptions out-
lined do not fairly represent the fMRI data. Also, dynamic,
distributed patterns of brain activity [58] may not be well
modeled by the GLM regression framework, which incor-
rectly considers each voxel to be a discrete, independent unit.

ICA, on the other hand, has proved to be an effective
method for detecting unknown unanticipated activations
[52]–[54], [59]–[61] without requiringa priori assumptions
of time courses and spatial distributions of different brain
processes, but does not provide a significance estimate for
each activation, which makes difficult for experimenters to
interpret their results. McKeown has recently proposed a
method that uses ICA to characterize portions of the data
and then enables the experimenter to test hypotheses in the
context of this data-defined characterization [55] by defining
a metric that allows a qualitative assessment of the relative
mismatch between hypothesis and data.

VI. DISCUSSION

Biomedical signals are a rich source of information about
physiological processes, but they are often contaminated
with artifacts or noise and are typically mixtures of unknown
combinations of sources summing differently at each of
the sensors. Further, for many data sets even the nature of
the sources is an open question. Here, we have focused on
applications of ICA to analyze EEG and fMRI signals. ICA
has also been applied to MEG recordings [37] which carry
signals from brain sources and are in part complementary
to EEG signals, and to data from positron emission tomog-
raphy (PET), a method for following changes in blood flow
in the brain on slower time scales following the injection
of radioactive isotopes into the bloodstream [62]. Other
interesting applications of ICA are to the electrocorticogram
(EcoG)—direct measurements of electrical activity from
the surface of the cortex [63], and to optical recordings
of electrical activity from the surface of the cortex using
voltage-sensitive dyes [64]. Finally, ICA has proven effec-
tive at analyzing single-unit activity from the cerebral cortex
[65], [66] and in separating neurons in optical recordings
from invertebrate ganglia [67]. Early clinical research
applications of ICA include the analysis of EEG recordings
during epileptic seizures [33].

In addition to the brain signals that were the focus of this
paper, signals from others organs, including the heart [31]
and endocrine system [68] have similar problems with ar-
tifacts that could also benefit from ICA. ICA holds great
promise for blindly separating artifacts from relevant signals
and for further decomposing the mixed signals into subcom-
ponents that may reflect the activity of functionally distinct
generators of physiological activity.

Strength of ICA Applied to EEG/ERP and fMRI Data

ICA of single-trial or averaged ERP data allows blind sep-
aration of multichannel complex EEG data into a sum of tem-

porally independent and spatially fixed components. Our re-
sults show that ICA can separate artifactual, stimulus-locked,
response-locked, and nonevent related background EEG ac-
tivities into separate components, allowing:

1) removal of pervasive artifacts of all types from single-
trial EEG records, making possible analysis of highly
contaminated EEG records from clinical populations;

2) identification and segregation of stimulus- and re-
sponse-locked event-related activity in single-trail
EEG epochs;

3) separation of spatially overlapping EEG activities over
the entire scalp and frequency band that may show a
variety of distinct relationships to task events, rather
than focusing on activity at single frequencies in single
scalp channels or channel pairs;

4) investigation of the interaction between ERPs and on-
going EEG.

Historically, there has been a separation between related
research in ERPs and EEG. The ERP community has
largely ignored the interaction between ERPs and ongoing
EEG, whereas the EEG community has primarily analyzed
EEG signals in the frequency domain, most often using
measures of power in standardized frequency bands. Re-
searchers studying averaged ERP waveforms assume that
evoked responses are produced by brief synchronous neural
activations in brain areas briefly engaged in successive
stages of stimulus-related information processing. In this
view, response averaging removes background EEG activity
since its phase distribution is independent of experimental
events. Our recent results [32], on the contrary, showed
that many features of an evoked response may actually be
produced by event-related changes in the autocorrelation
and cross-correlation structure of ongoing EEG processes,
each reflecting synchronous activity occurring continuously
in one or more brain regions, or by more subtle perturbations
in their dynamics. These new insights would have been
difficult to obtain without first separating spatially overlap-
ping stimulus-locked, response-locked event-related activity
and event-modulated oscillatory activity into different
components by ICA in single-trial EEG epochs. Applying
these new techniques reveals that the EEG (and MEG) data
are a rich source of information about mechanisms of neural
synchronization within and between brain areas.

ICA, applied to fMRI data, has proven to be a powerful
method for detecting task-related activations, including
unanticipated activations [52]–[54], [59]–[61] that could not
be detected by standard hypothesis-driven analyses. This
may expand the types of fMRI experiments that can be
performed and meaningfully interpreted.

Limitations of ICA Applied to EG and fMRI Data

Although ICA appears to be generally useful for EEG and
fMRI analysis, it also has some inherent limitations.

First, ICA can decompose at most sources from data
collected at scalp electrodes. Usually, the effective number
of statistically independent signals contributing to the scalp
EEG is unknown, and it is likely that observed brain activity
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arises from more physically separable effective sources than
the available number of EEG electrodes. To explore the ef-
fects of a larger number of sources on the results of the ICA
decomposition of a limited number of available channels, we
have analyzed simulated EEG recordings generated from a
head model and dipole sources that include intrinsic noise
and sensor noise [63]. This identifies the conditions when
ICA fails to separate correlated sources of ERP signals. Re-
sults confirmed that the ICA algorithm can accurately iden-
tify the time courses of activation and the scalp topogra-
phies of relatively large and temporally independent sources
from simulated scalp recordings, even in the presence of a
large number of simulated low-level source activities. An-
other approach to validating ICA is to simultaneously record
and compare more than one type of signal, such as concur-
rent EEG and fMRI which, respectively, have good spatial
(fMRI) and temporal resolution (EEG) [70], if these prove
to be correlated. However, very small or briefly active EEG
sources may be too numerous to separate, particularly in data
sets with large numbers of electrodes in which small artifacts
may be abundant.

Second, the assumption of temporal independence used by
ICA cannot be satisfied when the training data set is small, or
when separate topographically distinguishable phenomena
nearly always co-occur in the data. In the latter case, sim-
ulations show that ICA may derive single components ac-
counting for the co-occurring phenomena, along with addi-
tional components accounting for their brief periods of sep-
arate activation [63]. Such confounds imply that behavioral
or other experimental evidence must be obtained before con-
cluding that ICA components with spatiotemporally overlap-
ping projections are functionally distinct. Independent com-
ponents may be considered functionally distinct when they
exhibit distinct reactivities to experimental events, or when
their activations correspond to otherwise observable signal
sources.

Third, ICA assumes that physical sources of artifacts and
cerebral activity are spatially fixed over time. In general,
there is no reason to believe that cerebral and artifactual
sources in the spontaneous EEG might not move over
time. However, in our data, the relatively small numbers of
components in the stimulus-locked, response-locked, and
nonphase locked categories, each accounting for activity
occurring across sets of 500 or more 1-s trials, suggests
that the ERP features of our data were primarily stationary,
consistent with repeated observations in functional brain
imaging experiments that discrete and spatially restricted
areas of cortex are activated during task performance [71].
One general observation that has emerged from applying
ICA to brain data is the effectiveness of the independence
assumption. In the case of ERP and EEG analysis, the largest
components had scalp maps that could be accurately fitted
with one or two dipoles. This is unlikely to occur unless
time courses of coherently synchronous neural activity in
patches of cortical neuropil generating the EEG are nearly
independent of one another [32].

Fourth, applied to fMRI data, ICA does not provide an
experimenter with a significance estimate for each compo-

nent activation, which may discourage experimenters from
attempting to interpret the results. By placing ICA in a re-
gression framework, it is possible to combine some of the
benefits of ICA with the hypothesis-testing approach of the
GLM [55].

Although results of applying ICA to biomedical signals
have already shown great promise and given new insights
into brain function, the analysis of these results is still in its
infancy. They must be validated using other direct or con-
vergent evidence (such as behavior and/or other physiolog-
ical measurements) before we can interpret their functional
significance. Current research on ICA algorithms is focused
on incorporating domain-specific constraints into the ICA
framework. This would allow information maximization to
be applied to the precise form and statistics of biomedical
data.
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