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A B S T R A C T  
 
 
Brain responses to stimulus presentations may vary widely across subjects in both time 

course and spatial origins. Multi-subject EEG source imaging studies that apply 

independent component analysis (ICA) to data concatenated across subjects have 

overlooked the fact that projections to the scalp sensors from functionally equivalent 

cortical sources vary from subject to subject. This study demonstrates an approach to 

spatiotemporal independent component decomposition and alignment that spatially co-

registers the MR-derived cortical topographies of individual subjects to a well-defined, 

shared spherical topology (Fischl et al., 1999). Its efficacy for identifying functionally 

equivalent EEG sources in multi-subject analysis is demonstrated by analyzing EEG and 

behavioral data from a stop-signal paradigm using two source-imaging approaches, both 

based on individual subject independent source decompositions. The first, two-stage 

approach uses temporal infomax ICA to separate each subject’s data into temporally 

independent components (ICs), then estimates the source density distribution of each IC 

process from its scalp map and clusters similar sources across subjects (Makeig et al., 

2002). The second approach, Electromagnetic Spatiotemporal Independent Component 

Analysis (EMSICA), combines ICA decomposition and source current density estimation 

of the artifact-rejected data into a single spatiotemporal ICA decomposition for each 

subject (Tsai et al., 2006), concurrently identifying both the spatial source distribution of 

each cortical source and its event-related dynamics. Applied to the stop-signal task data, 

both approaches gave IC clusters that separately accounted for EEG processes expected 

in stop-signal tasks, including pre/postcentral mu rhythms, anterior-cingulate theta 

rhythm, and right-inferior frontal responses, the EMSICA clusters exhibiting more tightly 

correlated source areas and time-frequency features. 
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Introduction 

Independent Component Analysis (ICA) has been widely applied to blind separation of 

statistically independent processes in time-varying event-related response data including 

functional magnetic resonance imaging (fMRI) and electroencephalographic (EEG) 

signals, without making use of a priori knowledge of the spatial distributions or temporal 

properties of the sources processes summing to the observed responses (Hyvärinen, 1999; 

Makeig et al., 1996; Makeig et al., 1997; McKeown et al., 1998). To identify functional 

processes shared by a group of subjects, several group-level ICA approaches have been 

proposed for fMRI analysis (see Calhoun et al., 2009 for a review). To integrate EEG 

data across subjects, on the other hand, some studies have concatenated the subject data 

temporally by assuming the recorded electrode channel locations to be spatially 

equivalent across individual subjects (e.g., Kovacevic and McIntosh, 2007; Marco-

Pallarés et al., 2005; Vakorin et al., 2010), while other studies have used spatial 

concatenation, implicitly assuming that each stimulus presentation and/or task-related 

response has occurred at the same latency across trials (e.g., Eichele et al., 2009; Eichele 

et al., 2008).  The main feature of these approaches is to apply a single ICA 

decomposition to multi-subject data. However, it is well known that event-related EEG 

responses to stimulus presentations or time-locked to subject actions are in general not 

temporally consistent across trials, and their scalp topographies are not spatially 

consistent across subjects (for example, see Onton et al., 2005; Onton and Makeig, 2006). 

This is because the spatial projections of functionally equivalent cortical sources to the 

scalp electrodes can differ widely across subjects. As well, the peak latency, amplitude, 

and scalp distribution of all but the earliest brain responses to stimulus onsets can vary 

from one trial to the next within each subject, creating a data heterogeneity problem for 

multi-subject analysis.  

An alternative approach to multi-subject ICA decomposition is to first perform single-

subject ICA decompositions and then to cluster the resulting components into 

equivalence classes that share common spatiotemporal features (Langers, 2010; Makeig 

et al., 2002). However, a pair of either within- or between-subject derived independent 

components (ICs) may resemble and/or differ from each other in many respects – e.g., in 

their scalp maps, power spectra, event-related potential (ERP) time courses, and/or event 
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related spectral perturbation (ERSP) and inter-trial coherence (ITC) time/frequency 

images (Makeig, 1993; Makeig et al., 2004). The issue of how to find equivalent IC 

clusters or categories across subjects is thus theoretically non-trivial and may be viewed 

as an indeterminate problem in the ICA EEG analysis model itself, whose optimal 

solution depends on the nature of biological consistency across individuals as well as 

methodological efficiency. 

ICs have been commonly clustered into homogeneous groups by comparing their scalp 

topographies, and several studies have proposed and assessed methods for clustering ICs 

according to their cortical locations estimated from the scalp topographies (De Lucia et 

al., 2010; Delorme et al., 2007; Knyazev et al., 2011; Makeig et al., 2002; Marco-Pallarés 

et al., 2005; Milne et al., 2009; Onton et al., 2005; Pockett et al., 2007; Ponomarev et al., 

2010). The source imaging methods applied in these studies are mainly performed in a 

two-stage manner, e.g. as supported by the EEGLAB software environment (Delorme 

and Makeig, 2004). First, ICA decomposes the data from a cognitive task of interest into 

temporally and in many cases functionally distinct IC processes. Then, to assist in 

anatomic and functional interpretation of the component process a source 

localization/imaging method is used to estimate the cortical locations of the individual 

ICs from their scalp maps given by the individual columns of the ICA unmixing matrix. 

For example, each component may be modeled as one (or occasionally two) equivalent 

current dipoles (e.g., Makeig et al., 2002; Milne et al., 2009; Onton et al., 2005; Pockett 

et al., 2007; Ponomarev et al., 2010; Zhukov et al., 2000), or as a current-source density 

distribution (e.g., Congedo et al., 2010; De Lucia et al., 2010; Delorme et al., 2007; 

Marco-Pallarés et al., 2005; Ponomarev et al., 2010).  

However, identifying equivalent ICs by directly clustering either their scalp maps or 

equivalent dipole locations computed from the identified IC scalp maps may be prone to 

error; a group of ICs may have similar scalp maps but functionally different source 

locations, and functionally equivalent cortical sources may have quite different brain and 

scalp distributions. Figure 1 illustrates this problem. Fig. 1 shows a simulated EEG 

source (top row) consisting of mixtures of two Gaussian-tapered cortical patches 

(occupying approximately 163.7 !!! in the superior parietal gyrus) based on a group-

averaged inflated model in the left hemisphere cortex, and its projections onto the 
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spherical topographies of five subjects using the FreeSurfer cortical area parcellation 

applied to five subjects’ MR head images (MGH, Harvard Medical School, available 

from http://surfer.nmr.mgh.harvard.edu; Dale et al., 1999; Desikan et al., 2006; Destrieux 

et al., 2010; Fischl et al., 1999). FreeSurfer reconstruction has been widely used in 

EEG/MEG source imaging analysis over the last few years, e.g., in the MNE software 

(Hämäläinen, 2009) that computes cortically-constrained L2 minimum-norm current 

estimates from MEG/EEG signals, allowing group analyses to be computed in the same 

space.  

Here, as shown in Fig 1, by identifying and warping the subject cortical models to a 

common template (topmost), the prominent cortical sulci of the inflated cortical models 

of our five subjects (row 2) after co-registration of their major sulci. Below this are 

shown the locations on the five original fully-inflated (row 3) and native (not-inflated, 

row 4) cortical models for each subject, and below these, the scalp projection (scalp map) 

for each of these functionally equivalent sources, as computed using boundary element 

method (BEM) forward electrical head models constructed from an MR head image for 

each subject (Akalin Acar and Makeig, 2010). Because details of cortical topology and 

folding differ across the subjects, both the spatial locations and orientations of equivalent 

cortical areas and their scalp projections vary widely. The lowest two rows show the 

equivalent current dipole (Scherg and Von Cramon, 1985; Scherg and Voncramon, 1986) 

for each simulated component scalp map in a standard MNI template brain (Maintz and 

Viergever, 1998), computed using dipfit() (Oostenveld and Oostendorp, 2002) in 

EEGLAB, and sLORETA-computed source current density distributions in the individual 

subject cortical surface models (Pascual-Marqui, 2002). The topological (and presumed 

functional) equivalence of the five simulated sources is not apparent either from the 

component scalp maps, equivalent dipole source locations, or distributed sLORETA 

source current density estimates. 

This inter-subject spatiotemporal heterogeneity of functionally equivalent cortical 

sources and their scalp projections raises an important question about how best to 

perform multi-subject source-level comparison in EEG studies. However, Fig. 1 also 

suggests a possible solution. Here, unlike the now conventional two-stage approach that 

localizes the cortical source of each IC from its scalp map, we use spatiotemporal 
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EMSICA decomposition to decompose directly the continuous or concatenated trials 

EEG data into spatiotemporal components whose active source areas are identified by a 

distribution of cortical voxels on a MR-image derived model of the individual cortical 

surface. The so-identified active IC source areas are then spatially registered across 

subjects within a common spherical inflated-cortex model to which the individual cortical 

surface models have been warped and co-registered. Their event-related dynamics, in the 

form of ERSP and ITC images, are then co-registered on a common latency/frequency 

grid.  

The Methods section below gives an overview of single-subject ICA approaches to 

EEG source localization and imaging, followed by a detailed elaboration of the 

spatiotemporal alignment scheme and its use for multi-subject comparison. The proposed 

cortical alignment scheme is applied to ICs identified in an experimental data set using 

two decomposition approaches, one a conventional two-stage approach using IC scalp 

maps contained in the temporal ICA unmixing matrix to estimate IC source densities 

(Makeig et al., 2002). The other is the Electromagnetic Spatiotemporal Independent 

Component Analysis (EMSICA) method that combined temporal ICA decomposition and 

source density estimation into a single spatiotemporal model estimation process (Tsai et 

al., 2006).  

The experimental data were collected from eleven participants in a self performance-

monitoring and -inhibition stop-signal paradigm (SSP) (Logan et al., 1984; Savostyanov 

et al., 2009). The results included spatiotemporal ICA component processes in visual, 

motor, frontal and anterior cingulate cortical areas. The significance of the cortical 

activation topographies and directions for future work on the multi-subject EEG source 

imaging are highlighted. 

 

 

Figure 1. Differences in cortical locations and scalp maps for functionally equivalent 

simulated ICs. 
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Methods 

The step-by-step procedure of our proposed multi-subject EEG source imaging 

analysis approach includes: (a) realistic single-subject forward electrical head modeling, 

(b) single-subject EEG data preprocessing and spatiotemporal independent source 

decomposition (either using ICA followed by source localization or projection of the data 

onto the cortical surface followed by EMSICA), followed by, (c) multi-subject cortical 

surface alignment, (d) event-related spectral perturbation (ERSP) and/or other measure 

computation using, if relevant, (e) trial-to-trial latency alignment, and finally, (f) IC 

source clustering.  

 

Experiment design 

Eleven healthy right-handed males (ages 26 ± 3 years) participated in a stop-signal 

(SSP) experiment to investigate brain active source areas and associate event-related 

power changes involved in rapid motor response initiation and inhibition. Participants 

were presented with a picture (a deer or a tank) at roughly 4-! intervals and were asked to 

respond to each picture by pressing one of two buttons using their right or left thumb, 

respectively, thereby choosing a weapon (a rifle or an anti-tank rocket launcher) to shoot 

at the target (Savostyanov et al., 2009). The ‘deer’ and ‘tank’ stimuli were presented in 

random order with equal probability at inter-stimulus intervals randomly varying between 

3.5 ! and 5.5 !. In 30 of the 130 trials, target presentation was followed by a stop-signal 

cue indicating that the participant should not press either button; that is, cueing them to 

refrain from their prepared motor response. The interval between onset of the picture and 

stop-signal randomly varied between 250 !" and 538 !". Trials containing response 

errors (mean 4.2; min 1, max 14) were removed from the analysis. Here we considered 

two task conditions – “press” (when the participant pressed the button after target 

stimulus presentation), and “stop” (when he successfully suppressed his response 

following stop-signal presentation).  

 



 

 

8 

Data collection 

EEG data were recorded using a Neuroscan Synamps2 amplifier; 3-D positions of the 

EEG electrodes were digitized using a Polhemus FASTRAK 3-D digitizer. The high-

density physiological data were recorded using  a 131-channel Quik-cap, Neuroscan, El 

Paso, TX, with 128 scalp EEG plus peri-ocular VEOG and HEOG, and chest EKG 

reference signals. The data were bandpass filtered (0.1–100 Hz; 60-Hz notch filter 

enabled) and digitized at 1000 Hz with 32-bit resolution. The ground electrode was 

placed midway between Fz and Cz. The online reference was acquired from an electrode 

mounted between Cz and CPz. The subjects were also given T1-weighted (T1-TFE 3-D 

sequence) structural MR head scans in a Philips 3-Tesla scanner. 

 

Electrical head modeling 

Realistic head modeling relies on accurate segmentation of anatomical MR images 

into tissue types with differing conductivities. Construction of realistic head models for 

single subjects allows for between-subject variability in conductor tissue volumes and 

geometry to be taken into account in source imaging. For this purpose here we used NFT 

(Akalin Acar and Makeig, 2010) and FreeSurfer (Dale et al., 1999). The next few 

sections detail these and other steps in the procedure.  

For each subject, a lead field matrix (see Eq. (5) below) was calculated from a high-

quality realistic boundary element method (BEM) head model. Forward model 

computation for the complex, electrically heterogeneous human head relies on the ability 

of segmentation and tessellation algorithms to identify compartment boundaries between 

tissue types including brain tissue vs. CSF, CSF vs. skull, skull vs. scalp, and scalp vs. air. 

It also requires estimates of the relative conductivities of these model compartments. The 

pial surface model as well as boundaries between three other tissue types (CSF, skull, and 

scalp) were reconstructed using the BET2 software package (Jenkinson et al., 2005; 

Smith, 2002) using approximately 2,562 vertices randomly distributed in each layer to 

produce the high-quality linear surface BEM meshes used in the subsequent lead field 

computation. We assumed homogeneous isotropic conductivities of 0.33, 1, 0.0042, and 

0.33 !!!!!! for brain, CSF, skull, and scalp, respectively (Mosher et al., 1993).  The 
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white matter layer was semi-automatically reconstructed using the FreeSurfer software 

package (Dale et al., 1999; Fischl et al., 1999) from a high-resolution T1-weighted 

structural MR image. The space of possible source distributions comprised 40,960 

equivalent current dipoles centered at approximately decimated points on the white 

matter surface, each representing approximately 4.8 !!! of the cortical surface, and 

oriented normal to the local cortical surface. 

 

Preprocessing EEG data for source imaging 

For EEG source imaging, it is desirable to preprocess time varying signals by 

removing artifacts resulting from body movements, muscle and heart activity, and eye 

movements. Using ICA (or to a limited extent, PCA), EEG data can be separated into two 

parts, brain-related source signals and non-brain artifact signals. This separation may be 

accomplished by comparing the time courses of the component signals with reference 

signals collected from around the eyes and/or over the heart, by visual inspection of the 

component time courses, their power spectra, and/or scalp maps, and/or their ERP, ERSP 

or other event-related response measures (Jung et al., 2001). ICA has been found to be 

more effective than PCA for this purpose because of its ability to focus component filters 

on individual sources with maximally distinctive activity time courses (McKeown et al., 

1998). Specifically, using ICA an unmixing matrix ! decomposes the original data !!!! 
collected from ! sensors at time ! into maximally temporally independent signals (ICs), 

!!!! !!!!!!     (1) 

By simple matrix algebra, Equation (1) can be expressed as 

                                                         !!!! ! !!!!!     (2) 

where ! !!!! denoting the mixing matrix whose columns can be partitioned into 

! ! !!!!!!! with !!  of order !-by-(!!! ) denoting a collection of columns in ! 

corresponding to noise or artifacts, and !!  of order !-by-!  corresponding to brain 

signals. The artifact-free EEG recordings at time ! can be computed as follows: 

                                   !!!!! ! !! !!!!!!                                               (3) 

where !!!!!! is the sum of the potentials back-projected from the non-artifact ICs to the 
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electrodes by the brain sources.  

Here, preprocessing of each subject’s data was performed in EEGLAB (Delorme and 

Makeig, 2004). After band-pass filtering (1-50 Hz, using an FIR filter, eegfilt(), in 

EEGLAB), the extended infomax ICA algorithm (Lee et al., 1999) was applied to all 131 

scalp-channel signals across 130 concatenated trials, each trial including data from 1.0 ! 

before to 2.5 ! after picture onsets. Separation of brain signals from non-brain artifacts 

(e.g., eye movements and electrocardiographic activity) was performed using an 

automated approach that compared the IC time courses to the time courses of the three 

reference channel signals. A correlation value between an IC time course and that of a 

reference channel was computed to determine whether the IC accounted more for the 

non-brain artifact than for brain source signals. In this case the IC was excluded from 

further analysis. ICs accounting for myogenic artifacts were identified by visual 

inspection of their scalp maps and time courses, and were then removed to avoid their 

presence in the data substantially distorting estimates of active cortical source areas. In 

this step, only clearly identifiable non-brain artifacts were removed. The rest of the data 

were then back-projected to the scalp channels for further source separation and 

localization by EMSICA. 

 

Spatiotemporal independent source imaging 

To estimate the source locations and/or distributions of the effective cortical source 

generation areas from !!!!!, parametric (e.g., dipole-fitting, Mosher et al., 1992; Scherg 

and Von Cramon, 1985; Scherg and Voncramon, 1986) and distributed source imaging 

methods (e.g., weighted minimum-norm, WMN, Hämäläinen and Ilmoniemi, 1994; 

Ioannides et al., 1990; Jeffs et al., 1987; Wang et al., 1992; standardized low-resolution 

electromagnetic tomography, sLORETA, Pascual-Marqui, 2002; or low-resolution 

electromagnetic tomography, LORETA, Pascual-Marqui et al., 1999) are the two 

principal approaches used to estimate solutions to the EEG inverse problem, which is 

typically posed as a problem of estimating a course source distribution for a map 

representing a peak in an evoked response (Baillet et al., 2001). The two-stage ICA-based 

EEG source imaging approach (temporal ICA decomposition followed by either 
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parametric or distributed source imaging methods) can be used to estimate the locations 

of multiple ongoing source EEG processes that contribute to ERPs, ERSPs, and/or other 

measures.  

The value of ICA for source localization lies in the fact that many IC scalp maps 

strongly resemble the projection of coherent local field activity within a small single (or 

sometimes dual) cortical area (Delorme et al., 2012), whereas peaks in average event-

related potential (ERP) waveforms with post-event latencies of more than a few tens of 

milliseconds typically sum contributions from a number of cortical areas. Thus, ICA 

provides a basis set of ‘simple’ brain sources (in addition to separate non-brain and noise 

processes). Using ‘complete’ ICA decomposition (yielding the same number of source 

ICs as channels in the data) assumes that the cortical processes contributing to event-

related dynamics of interest have sufficiently distinctive time courses to attract an IC 

filter. As the number of recording channels is decreased, complete ICA decompositions 

must inevitably begin to pass activity from more than one such cortical process. In 

practice, however, ICs making largest contributions to ERPs of interest are typically 

those with highly ‘dipolar’ scalp maps compatible with the projection of activity within a 

small source patch. 

 

Parametric source localization typically assumes that the sources can be represented 

by one or at most a few equivalent current dipoles, each with an unknown location !! and 

orientation, !! . For the simultaneous activation of multiple dipoles, it is possible to 

connect sources to the cleaned data specified in (3)  

                                           !!!!! = !!!!!!!  =  ! !! !!! !!!!    (4) 

where ! !! !!! ! !!!! is the so-called gain matrix and !!!! ! !! denotes a collection 

of sources !!!!!, !! ! !!!! !!. Each column of ! !! !!!  relates the activity of one or 

more equivalent dipoles to the array of sensor measurements and is called the forward 

field, gain vector, or scalp topography, of the single or distributed current dipole source 

sampled by the ! discrete locations of the sensors (Baillet et al., 2001). 

 

Distributed source imaging involves a solution to the following linear system 
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                                           !!!!! ! !! !!!!!! ! !"!!!!     (5) 

where ! ! !!!! is the so-called lead field matrix relating ! dipolar source activity to the 

!  recorded scalp potentials and ! ! !!!! !  whose columns,  !! , for !! ! !!!! !! , 

contain relative weights describing the topography of locally synchronous (or partially 

synchronous) field activity on the cortical surface that contribute the component signals 

to the scalp recordings.  

To find and display the vertices in the distributed source map that belong to this 

topography, the map values are normalized to ! scores. By dividing the dipole strength 

estimate for each grid element by the standard error of the estimate, a normalized 

estimate of dipole strength can be obtained that is ! distributed under the null hypothesis 

of no dipole activity (see Beckmann and Smith, 2004 for details). For comparison 

purposes, this procedure was followed for both the LORETA and EMSICA inverse 

solutions.  Activation regions whose absolute z scores were larger than some threshold 

(!!! ! !!! in this empirical studyhere, the same as in Tsai et al., 2006) were considered to 

be active voxels that were color-coded in the component cortical maps. 

 

The two-stage temporal ICA-based approach versus EMSICA 

In essence, the two-stage ICA approach assumes that the sources !!!!! in (4) or (5) are 

temporally independent, such that!!!!!! ! !!!!!!!!
 and solves !! ! !! !! !!! !or !! ! !!" 

by performing inverse modeling of individual columns in !! corresponding to the scalp 

maps. The spatiotemporal framework of EMSICA, by contrast, uses the cleaned EEG 

signals, !!!!!, in (5) as training data to estimate a matrix ! that permits a trade-off between 

the temporal independence of their corresponding source time courses, !!!!!, and the 

spatial independence of underlying cortical source topographies, !!, for !! ! !!!! !! 

(Tsai et al., 2006). The unknown source activation topography, !! can be estimated by 

maximizing the following posterior likelihood assuming spatial as well as temporal 

independence over the continuous data or concatenated set of data trials (at times, 

! ! !!! !!!!!
!!!!! ! ! !! ! ! ! !! ! ! !!!!!!!!! ! ! ! ! !                   (6) 
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For EMSICA decomposition, the elements in the !th column of ! are considered to be a 

realization of the random variable !! ! EMSICA assumes that those variables are spatially 

(maximally) independently distributed with distribution !!!!!! such that 

                                                 !!!! ! !!!!!!!                                                    (7) 

The prior !! !!  is a probabilistic model that summarizes the spatial properties of an 

individual source. Here, super-Gaussian spatial as well as temporal probability density 

assumptions were used, i.e. !! !! ! !"# !!" !! !"#!!!!!! and !!!!!!!!! ! 

!"# !!!!! !! !"#!!!!!! !! where! !! ! !!!!!!!! , !!!  is the spatial covariance of ! 
tessellation elements and !"#! is the hyperbolic secant. In addition, for comparison 

purposes, ! !! !in the spatial prior was chosen to be the same as that of the LORETA 

inverse solution, which also uses a Laplacian operator to emphasize the contribution of 

distributed, locally synchronous (or partially synchronous) current source activations. 

Compared to EMSICA, the two-stage ICA approach, which involves performing 

source localization one IC at a time (column by column of the mixing matrix !!!), 
dramatically reduces training data information for source analysis from !!!!!!  for 

!! ! !!!! !!!  to !! !  where the number of data points are ! -by- !  and ! -by-! , 

respectively, while ! ! !. Such reduction makes the indeterminate nature of the inverse 

problem more difficult to resolve because the number of parameters to be estimated in the 

weight matrix, B of order !-by-!, is much larger than the number of training data points 

in !! of order !-by-!.  

However, EMSICA introduces into the training data errors produced by errors in the 

forward head model, whereas ICA is trained on the scalp data themselves, avoiding errors 

introduced by the head model which then come into play during the source localization of 

the IC scalp maps. The methods comparison performed here attempts to evaluate, for this 

data set, the quality of the results of the two approaches. 

Meanwhile, as demonstrated in Fig. 1, even when the locations of the active source 

areas from different subjects have the same intrinsic topological (and likely, functional) 

positions in cortex (Fischl et al., 1999), between-subject differences in brain geometry 

may lead them to have significantly different scalp maps. When such scalp maps are used 
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for source analysis based on a standard brain template (e.g., an MNI brain template; 

Maintz and Viergever, 1998), either by dipole-fitting or distributed source imaging, 

ambiguous source-localization results may follow, as illustrated in Fig. 1.  

In sum, EMSICA potentially offers a new and promising approach to source imaging, 

working directly on single-trial EEG data made artifact-free by an initial ICA 

decomposition, that estimates maximally spatiotemporally independent functional 

processes and, simultaneously, their corresponding current source densities. The 

spatiotemporal framework of EMSICA makes it possible to map single-trial EEG 

recordings onto a cortical surface model for each subject. 

 

Co-registration of IC active source areas across subjects 

Each cortical hemisphere can be represented as a topological 2-D sheet or sphere with 

more than two-thirds of its area buried in steep sulcal valleys.  Cortical connectivity and 

function is effectively modular. Between-subject differences in 3-D cortical geometry 

make between-subject co-registration of cortical areas difficult and the problem of 

identifying equivalent IC activations from different subjects on the co-registered 

topological sheet or sphere by no means trivial. Most EEG source analysis approaches to 

the problem of finding clusters of equivalent IC across subjects have attempted to match 

one or more observed active source distributions or their equivalent dipole models in a 3-

D standard head model using Talairach registration (Talairach, 1967; Talairach and 

Tournoux, 1988). These clustering approaches typically attempt to minimize the cortical 

distance between ICs assigned to a single cluster.  However, directly measuring the 

distance in 3-D space between two cortical points may underestimate their actual distance 

on the highly folded cortical surface. 

 

 

Figure 2. An IC accounting for precentral mu rhythm (in the rPREC! cluster), with and 

without group cortical alignment, shows differences in active cortical area across participants. 
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 To increase statistical power of clustering either temporally or spatiotemporally 

independent components, we here demonstrate use of a natural cortical surface-based 

coordinate system (Fischl et al., 1999). Figure 2 illustrates the cortical alignment 

procedure. The inflated image in Fig. 2a is the reconstructed right cortical hemisphere 

surface for Subject 2 in Fig. 1, with the active area of one IC source as estimated by 

EMSICA marked in red. This hemispheric model derived from an MR head image using 

cortical inflation tools in Freesufer (Dale et al., 1999) and then transformed into a sphere 

as shown in Fig. 2b using a method that minimizes metric distortion (Fischl et al., 1999). 

The warped light and dark gray areas, indicating major gyral and sulcal cortical 

landmarks, respectively, then form a natural coordinate system for co-registering 

individual surfaces and for constructing the average surface. Blue lines in Fig. 2c show an 

overlay of the group-mean sulcal/gyral boundaries (found by warping the individual 

cortical models to a common pattern onto the single-subject cortical model as 

implemented in the FreeSurfer utility function make_average_subject()). In Fig. 2d the 

subject’s inflated cortex model and active IC source area have been warped (using a 

combination of FreeSurfer's mri_surf2surf() using the 'nearest-neighbor, forward and 

reverse' argument, plus custom MATLAB code) so as to align the subject cortical surface 

to the group-mean surface by co-registering major sulcal and gyral landmarks. 

 

Event-related measure latency alignment 

Event-related changes in EEG source dynamics rapidly spread from an initial (e.g., 

specific sensory processing) focus to perturb the statistics of field dynamics in widely 

distributed cortical and sub-cortical areas (Klopp et al., 2000). Mean event-related signal 

measures capture different aspects of the perturbations in EEG source signal statistics 

time-locked to some set of experimental events (e.g., presentations of similar stimuli or 

subject responses occurring under similar task conditions). To overcome the variability in 

time delays in initiation of some underlying process in single trials, dynamic time 

warping has been used over the past few decades (Huang and Jansen, 1985; Picton et al., 

1988; Roberts et al., 1987; Wang et al., 2001). The approach involves linear or nonlinear 

expansion and/or compression of the time axis of selected EEG trial segment waveforms. 

Note that if this is applied to the time domain data, it may change their power spectral 
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distribution. 

The event-related spectral perturbation (ERSP; Makeig, 1993), giving a 

time/frequency image of mean event-related changes in the EEG power spectrum, can 

characterize significant event-related power changes (measured as log power differences) 

from the pre-stimulus mean (log) baseline spectrum. Here, instead of expansion or 

compression of the time axis of the EEG waveforms, a linear time-warping procedure 

(Gwin et al., 2011; Makeig et al., 2007) was applied to the single-trial ERSPs. That is, the 

common-baseline normalized event-locked single-trial spectrograms for each component 

source were firstly computed. The single-trial spectrograms were then linearly time-

warped in such a way that sequences of events of interest (here, stimulus onset and 

ensuing stop signal presentation or participant button press) occurring in each trial were 

latency-aligned to allow across-trial averaging.  

Applying such latency alignment to the single-trial ERSPs (normalized log 

spectrograms) can avoid smearing and possible cancellation of event-related power 

increases and decreases that would be produced in the trial-average ERSP by (here) 

different motor response latencies across trials with respect to the preceding stimulus 

onsets. Standardizing response latencies by this means (e.g., aligning the response times 

to the group-median response latency) also allows averaging across subjects with 

different reaction time distributions. Note that the latency alignment method can be used 

to standardize not only the recorded response latencies but also the estimated lags of 

brain responses captured by, e.g., the lag extraction tool, pop_extractlag( ) implemented 

as an EEGLAB plug-in by Gramfort et al. (2010). 

Figure 3 demonstrates the procedure of time-warping ERSPs to more than one event in 

a sequence of events that occurred in each trial. If the peak of the average motor 

response-locked ERP for an IC, such as that shown as blue trace below the stacked-trials 

ERP-image plots in Fig. 3a, is as large as or larger than the post-stimulus and stimulus 

time-locked ERP features, the single-trial ERSPs may need to be time-warped. 

Accordingly, here a two-sample !-test was performed to test the null hypothesis that the 

observed ERSP peak came from populations with equal means, against the alternative 

that the means are unequal. In the case that the test rejected the null hypothesis at the 

default ! ! !!!" significance level, single-trial ERSPs were then linearly time-warped so 
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that the adjusted latency of the button press was the same in each epoch. 

In the conventional procedure illustrated in Fig. 3b, the average of the single-trial 

ERSPs is derived from single-trial data time-locked to imperative stimulus onsets. Since 

the single-trial ERSP contains features time-locked to the variable-latency subject button 

press, not to the imperative stimulus, and the button press latencies with respect to 

stimulus onsets vary widely across trials, near the range of reaction times the average 

ERSP becomes indistinct and prone to misinterpretation. Fig. 3c shows the response 

time-warped ERSP derived by warping single-trial ERSPs to be time-locked to both 

stimulus onsets and to button presses, thereby making the mean ERSP time-locked both 

to imperative stimulus onsets and button press responses. The time-warped mean ERSP 

suggests that a near 20-Hz peak in the IC power spectrum begins to emerge at or just 

before the button presses, not well before them as suggested (indistinctly) by the 

stimulus-locked mean ERSP in Fig. 3b. 

 

 

Figure 3. An IC in the rPREC! cluster exhibits a mean ERSP difference before and after time 

warping to both stimulus onsets and button press responses. 

 

 

Multiple-subject IC clustering 

We applied an enhancement of the original Ranking and Averaging Independent 

Component Analysis by Reproducibility (RAICAR; Yang et al., 2008) clustering 

approach to both within-subject as well as across-subjects component reproducibility 

analyses. Figure 4 illustrates the procedure of source imaging, cortical and event-related 

measure latency alignment, component selection and clustering. To prepare the data for 

clustering, the spatiotemporal (source-localized ICA or EMSICA) component source 

distributions were concatenated and then reshaped into a vector. The subject 2-D (latency 

by frequency) ERSP images were also concatenated and then vectorized. The vectorized 

ERSP and the IC active source area data were scaled to have equal variance and then 

stacked to form a single column vector for each IC. The resulting IC column vectors were 
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concatenated to form a (tall) 2-D matrix of size (rows: #latencies " #frequencies " 

#conditions + #vertices on the left and right cortical surface meshes) by (columns) the 

number of components, !! The 2-D matrix from the !  runs (for the reproducibility 

analysis within subjects) or subjects (for reproducibility analysis across subjects) were 

pooled together to construct a between-runs or between-subjects correlation matrix. The 

left upper images in Fig. 4c and 4d illustrate the correlation matrix, after rearrangement 

by RAICAR clustering.  

In RAICAR clustering, an IC pair with the highest pairwise similarity is selected to 

form a cluster, and all the ICs from these two subjects are excluded from the further 

selection process. The remaining ICs with the highest pairwise similarity to the two 

selected ICs are grouped into the cluster, this procedure continuing until each subject has 

one and only one IC selected into the cluster. This clustering procedure is repeated to 

form more clusters until ! aligned component clusters are identified. 

In the original RAICAR approach, a reproducibility index for each aligned component 

is defined by summing the spatiotemporal correlation coefficients (SCCs), among the 

aligned components that are above a specific SCC threshold. As demonstrated by Pendse 

et al. (2011), RAICAR may use an arbitrary threshold selected ”by eye,” or may be set to 

an arbitrary value, such as 50% of the maximum reproducibility value. Meanwhile, the 

normalized reproducibility obtained by RAICAR may be much lower for between-

subjects analysis compared to within-subject analysis (Pendse et al., 2011, Figure 1).  

Here, we used a simple modification to RAICAR, using the test-retest reproducibility 

analysis to avoid subjective user decisions but still allowing for threshold optimization. 

We defined !!  as the probability that a truly reliable component is classified as 

reliable and !!, the probability that a truly unreliable component is classified as reliable. 

In the component selection process, the true status of each component is unknown, but 

the two proportions can be estimated from SCCs of the aligned components. Genovese et 

al. (1997) suggested estimating the proportions at a particular threshold by assuming a 

mixed binomial model underlying the number of times (of !  replications) that a 

component is consistently classified as reliable. Let !! ! represent the number of 

replications (#!) in which a component is classified reliable. Unlike conventional 

RAICAR, we redefined !!!! to be the reproducibility index of the !"! cluster. In the 
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reproducibility analysis, the data are assumed to be statistically independent across both 

components and replications, and each !!, is assumed to be a random sample drawn from 

the mixture of two binomial distributions 

!!!! !!! ! !! ! !
!! !!!!! !! !! !!!! ! !! ! !!!! !! !! !!!!   (8) 

where ! is the proportion of truly reliable components. Given a SCC threshold, the 

number of classified reliable component in the !"! cluster, !!, can be determined, and 

the likelihood function, the product of (8) for ! aligned components, can be written as, 

! !! !!! ! ! ! ! !! !!! ! !!
!!! . This study used a maximum likelihood procedure to 

estimate parameters !! ! !! and ! given all possible SCC thresholds, allowing us to plot 

the Receiver Operating Characteristic (ROC) curve. The operational point on the ROC 

curve (i.e., the optimal threshold) for classifying components as reliable or unreliable was 

found by maximizing the !"##" value (Cohen, 1960; Liou et al., 2003) defined as 

!"##" ! !!!!!
!!!!

     (9) 

where!!! is the proportion of correct classifications and  !!, its expected value. The right 

upper images in Fig. 4c and 4d show ROC (red) and !"##" (green) traces. 

Component selection within subjects involved IC reproducibility analysis to examine, 

within subjects, the extent of IC consistency in both cortical location and ERSP features. 

Similar to most ICA algorithms (see, Himberg et al., 2004; Yang et al., 2008), EMSICA 

is stochastic, giving slightly different estimates in multiple runs on the same data. To 

assess the algorithmic reliability of the estimated components, the EMSICA 

decomposition was run several (here, 25) times using different starting points. ICs with a 

reproducibility index lower than 75% were then removed. The bar chart at the bottom of 

Fig. 4c shows the reproducibility index of the runs within Subject 1. After algorithmic 

component reliability analysis for each subject, for each subject about 25 ICs on average 

for each subject were retained for clustering. Most unreliable ICs had “sparse” brain 

activation patterns and noisy (and on the scalp, relatively small) time courses. 

Component clustering across subjects was conducted by examining the consistency 

of spatiotemporal component measures, clustering together ICs from different subjects 

that were relatively similar to each other by both (cortically co-registered) source location 
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and (time-warped) ERSP features. Automatic determination of the number of clusters 

used the results of component reproducibility analysis, as shown in Fig. 4d. Here we 

retrieved the IC cortical maps that were spatially proximal and moderately reproducible 

(over 75%) across subjects.  

 

 

Figure 4. Multi-subject spatiotemporal cortex- and ERSP latency-aligned IC clustering. 

 

 

Results 

Clustering the cortical surface co-registered and motor response latency-aligned 

EMSICA components produced ten IC clusters. Eight of them are summarized in the 

panel of the first column in Figure 5 which shows supra-threshold voxel clusters on the 

cortical surface and cluster-mean time-warped, both stimulus-locked and motor response-

locked ERSP images. The ten IC clusters were selected as having relatively large mean 

intra-cluster distances from one another and for consistency of the ERSP features with 

activity patterns reported in other auditory/visual stop-signal tasks (Alegre et al., 2004; 

Aron et al., 2004; Knyazev et al., 2008; Savostyanov et al., 2009). For comparison, the 

corresponding IC clusters obtained by grouping the ICs prior to spatial and temporal 

alignment, and by the conventional two-stage ICA approach using LORETA, with and 

without cortical-surface and ERSP-latency alignment, are shown in the !nd, !rd, and !th 

columns, respectively.  

In Fig. 5a (top row), trial by trial ERSP images in the ‘stop’ condition are plotted next 

to the cortical activation maps. The left pars opercularis cluster (lPOPE!) comprising the 

posterior region of Broca's area on average exhibited strong theta band excitation 

following stimulus onsets. This active area appeared in each cluster IC from all 11 

subjects. Region 1A (Fig. 5a, 1st column: EMSICA results with alignment,) had a more 

compact spatial distribution than Region 1B in the results of EMSICA without alignment 

(1st row, 2nd column). Similarly, the period of alpha-band (mu) suppression labeled 1C in 

the time-warped ERSP image (1st column) is briefer than Region 1D in the not time-
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warped ERSP (2nd column). Inspection of individual member components of this cluster 

showed this duration difference to be consistent across subjects.  

The second cluster is associated with voxels in the anterior cingulate cortex (ACC! in 

Fig. 5b). Comparing the areas labeled 2A, 2B, 2C, and 2D, the cortex- and latency-based 

aligned EMSICA results again exhibit more compact spatial/temporal distributions. 

The right inferior frontal cluster (rIFC! in Fig. 5c) is associated with voxels in right 

pars opercularis, pars triangularis, and pars orbitalis. At least nine member components 

show right lateralization with high !-values. Although the activity in area 3B in the un-

aligned data labeled (2nd column) appears to be more compact than in region 3A in the 

aligned data (1st column), the cluster quality index (described below) is actually lower. 

Furthermore, theta synchronization in this area (feature 3D, unaligned data) seems to be 

not so pronounced as that in 3C (aligned data).  

 

 

Figure 5. Eight spatiotemporal component clusters of interest. 

 

 

The fourth cluster shown (lIPp300 in Figure 5d) has supra-threshold voxels in the left 

inferior parietal that exhibit a late positive-going response complex (P300) in the ERP as 

well as a low-frequency power increase following stimulus onset.  This cluster appears to 

sum similar event-related activity patterns occurring in several brain areas of inferior 

parietal cortex. The ERSP images in the ‘press’ condition are plotted next to the cortical 

activation maps. The low-frequency excitation is clearly weaker in the two-stage cluster 

data (features 4B and 4C) than in the cortex- and latency-aligned EMSICA results 

(feature 4A). 

The left precentral and postcentral component clusters (lPRECµ  and lPSTSµ; Fig. 5e-

5f) exhibit the defining feature of mu rhythms (Babiloni et al., 1999; Cochin et al., 1998) 

— characteristic spectral peaks near 11 Hz and 22 Hz that are strongly attenuated before 

and/or after movements. Right precentral and postcentral mu rhythm component clusters 

(clusters rPRECµ and rPSTSµ, not shown) with similar mu blocking and weaker beta 
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rebound peaks were also found by EMSICA clustering. The beta band rebound peak is 

more pronounced in the motor response-aligned data results (ERSP Features 6B and 6E) 

than in the unaligned data results (Features 6C and 6F).  

Further, the active area for lPSTSµ obtained using EMSICA (Region 6A) appears to 

be in or near hand-related postcentral somatosensory cortex, while Region 6D obtained in 

the two-stage ICA source imaging approach is shifted to (or near) the lower face area, 

suggesting that clustering EMSICA components with alignment can obtain more precise 

activation regions.  

The active areas of the occipital alpha-rhythm component clusters (lLOCC! and 

rLOCC! in Fig. 5g-5h) are in the left and right occipital regions. This active area 

obtained using EMSICA with alignment (Fig. 5g-5h, 1st column) appears to have a more 

compact spatial distribution than for EMSICA without alignment, including voxels in 

temporal cortex (2nd column, Regions 7C and 8C). The latency-aligned EMSICA 

components were also time-warped to the subject motor response. Comparing Regions 

7A with 7C, 7B with 7D, 8A with 8C, and 8B with 8D, the surface- and latency-aligned 

EMSICA components appear to exhibit more compact spatial/temporal features.  

Figure 5 also shows that counterparts of some EMSICA clusters are missing in the 

results of the two-stage approach (e.g., the lPOPE! and lPRECµ clusters). To further 

characterize the compactness of each cluster in terms of its active cortical topography and 

its ERSP image, we computed the cluster quality index defined by (Himberg et al., 2004) 

as 

!! ! !
!!!!!

!!!"!!!!!!!            (10) 

where !!!"! is the absolute value of the correlation coefficients between component 

members ! and !, whereas !! is the set of indices belonging to the !th cluster, and !!!! is 

the size of the !th cluster. Figure 6 gives a summary of cluster quality indices listed 

according to active cortical areas (Fig. 6a) and ERSP images (Fig. 6b), respectively, for 

each component cluster. For all clusters, and by both ERSP image and active cortical area 

correlations EMSICA components produced, on average, higher cluster quality indices.  
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Figure 6. Compactness of clusters summarizing similarities for all component pairs in each of 

the eight clusters. 

 

Discussion and Conclusions 

Conventional ICA decomposition of EEG and MEG data first separate the component 

time courses then locate the cortical origins of the separated components. This approach 

is viable for group analysis because source dipole probability distributions can be 

estimated by equivalent single dipole (or on occasion symmetric dual-dipole) models of 

individual component source distributions (Delorme et al., 2012; Onton et al., 2005). This 

study proposes a further group analysis step based on unified spatiotemporal ICA 

decomposition, spatial cortical model alignment and temporal event latency alignment, 

and uses this approach to explore consistent EEG source dynamics from eleven subjects 

performing a stop-signal task.  

The group analysis found ten clusters (lPOPE!, ACC!, rIFC!, lIPp300, l/rPRECµ, 

l/rPSTSµ, and l/rLOCC!) of spatiotemporal ICA component processes involved in the 

inhibition and performance-monitoring task: Knyazev et al. (2010) showed that 

reciprocal relationships between anterior slow-wave (delta and theta) and posterior alpha 

activity reflect interaction of activation and inhibition during behavior regulation. Here, 

the active area of the lPOPE! cluster is consistent with studies reported an association 

between the ventrolateral prefrontal cortex (VLPFC) and maintenance of rules involving 

item properties (Aron et al., 2004; Christoff and Keramatian, 2007; Garavan et al., 2002).  

According to horse-race model (Band et al., 2003), anterior cortex (frontal areas and 

anterior cingulate) is an area of competition between activating and inhibitory processes. 

Many neuroimaging studies have demonstrated that the anterior cingulate cortex (ACC) 

is engaged in detecting or dealing with conflict between a stop signal and an intended 

action (Gehring and Knight, 2000), and that, subsequently, right inferior frontal cortex 

(rIFC) is involved in suppressing the intended response (Aron et al., 2004), supporting 

the findings of the involvement of ACC! and rIFC! in these data. The 

neurophysiological functions of the source clusters for this stop signal task are worth 
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further exploration to better understand the hierarchy of inhibitory processes (see Huster 

et al., 2013 for a review). For example, the association of beta oscillations in and 

coherence between the rIFC and pre-supplementary motor areas associated with 

inhibitory control has also become a focus of attention in this task context (Aron, 2011; 

Swann et al., 2009; Swann et al., 2012).  

As shown in Fig. 5(a-c, e-h) when single-trial ERSPs are time-warped to produce 

fixed latencies of each of a sequence of experimental trial events (here, stimulus onsets 

and ensuing stop signals, Fig. 5a-5c, or subject button presses, Fig. 5e-5h), the spectral 

modulation of different frequency bands associated with specific aspects of the events 

becomes more precise and pronounced.  

The left precentral and postcentral mu rhythm (lPRECµ and lPSTSµ) clusters located 

in or near right-hand somatomotor cortex exhibited near 10-Hz and 20-Hz spectral peaks 

that were, as expected, blocked when subjects performed motor responses. In addition, 

power near 20 Hz showed a more pronounced and earlier rebound following the motor 

response than power near 10 Hz, especially in the precentral cortex (Hari, 2006; 

Nagamine et al., 1996; Pfurtscheller, 1981; Salmelin and Hari, 1994). Figure 5e shows a 

clearer termination of alpha desynchronization before movement and beta rebound after 

movement in the spatially and temporally aligned EMSICA components than in the 

temporally nonaligned components. In general, latency alignment increased the 

amplitude of the event-related theta bursts in the left and right LOCC! clusters, the 20-Hz 

increase in the lPRECµ and lPSTSµ clusters following the motor response, and the theta-

band increase in the ACC! cluster following the Stop signal. All these sensorimotor brain 

areas are known to be involved in human perception of, reaction to, and interactions with 

the external environment.  

The time-warping method was originally proposed in (Makeig et al., 2007) and was 

applied in (Gwin et al., 2011). This study enhanced this method by introducing a two-

sample t-test procedure to automatically determine whether the component needs to be 

time-warped or not. It has been shown that ICA component processes can exhibit both 

stimulus- and response-locked response features. However, these mostly occur in mostly 

separate classes of independent components (Jung et al., 2001). Here, the numbers of 

components in each class varied between subjects. In these data, about 10 of 25 
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components on average for each subject, retained for clustering by IC reproducibility 

analysis, had significant two-sample t-test values at response-locked (in the ‘press’ 

condition) ERP peaks and 5 components had significant values at stop-signal locked 

peaks (in the ‘stop’ condition).  

This procedure for detecting components with response-locked activities is 

demonstrated in Fig. 3. By performing a similar procedure on the stimulus-locked peaks, 

we found about 15 components to have stimulus-locked activity peaks. Our results for 

each subject also found that a few component activities had ERP peaks time-locked to 

both stimulus presentations and button presses. The linear time-warping procedure was 

also applied to single-trial ERSPs for these components, since the procedure ensured that 

time-locked responses to both events of interest (stimulus onsets and participant 

responses) were latency aligned across trials. Because homogeneity of an IC cluster is 

most accurately assessed and characterized by the activities of its constituent ICs, those 

identified event-related activity patterns may also provide auxiliary information useful for 

obtaining functionally consistent clusters.  

While ERSP latency alignment by time-warping allows better visualization of spectral 

perturbations time-locked to a sequence of two (or more) trial events with varying inter-

event latencies, cortical surface-based alignment of active source areas enables multi-

subject analysis that takes into account inter-subject cortical surface variability. The now 

conventional approach to EEG source localization performs inverse modeling of EEG 

current dipole/density source distributions in an individual or template 3-D head model, 

e.g., using a boundary element method (BEM) forward head model based on an MNI 

head template based on a large number of MRI head images. The cortical alignment 

procedure demonstrated here localizes sources on a high-resolution individual cortical 

surface model for each subject, then maps the individually-aligned cortical source areas 

onto a template cortical hemisphere computed from the individual cortical hemisphere 

models of all the subjects.  

Here, the precentral and postcentral mu rhythm (lPRECµ and lPSTSµ) clusters found 

by single spatiotemporal ICA decomposition (Fig. 5e-5f, columns 1 and 2) were merged 

into a single component cluster by the two-stage ICA approach (columns 3 and 4). 
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Inspection of nonaligned individual maps in each cluster suggested a large variation 

among locations of the most active voxels. The proposed corticospatial and latency 

alignment approach thus might offer more meaningful component clusters that are more 

spatially compact and have more distinct event-related spectral dynamics (Fig. 6, Column 

1 versus the others).  

 ICA approaches take advantage of the high temporal resolution of EEG imaging to 

directly examine the brain dynamics of cortical component processes including their 

event-related spectral perturbations that, as here, may have a duration of 2 ! or more 

following meaningful task events. Most psychophysiological source analysis studies, 

however, have performed inverse solutions only on ERP peak latencies (e.g., in the 

latency range including the P1, P2, P300, N400 ERP peaks). Studies applying ICA to 

individual subject data have found that time courses of average ERPs in cognitive tasks 

are generated by multiple, spatially-distributed sources with overlapping scalp 

topographies (Makeig et al., 2004; Makeig et al., 2002; Moores et al., 2003). Performing 

ICA decomposition of the single-trial or continuous EEG data to separate the data into 

temporally independent components, and then performing source localization post hoc 

may thus give more useful information about cortical function than conventional ERP 

peak localization. However, because of inadequacy of template head models and 

between-subject differences in cortical geometry, ICA-based two-stage source analysis 

estimated from each IC’s scalp map may not yield precise and spatially distinct clusters 

of response generators. The EMSICA single-stage decomposition approach demonstrated 

here may potentially more clearly separate EEG data into a sum of cortical source 

activities. 

The approach taken in this study takes into account substantial inter-subject cortical 

and latency variations while identifying clusters of EEG sources, co-registered to the 

cortical surface and in common across a group of subjects. Here, for both the extended 

infomax ICA and EMSICA decomposition approaches, aligning component active 

cortical topographies and single-trial ERSP image events not only helped reduce inter-

subject variability in cortical areas and event-related responses, but also facilitated 

identification and visualization of spatially, temporally, and functionally equivalent IC 

processes across subjects. Because of this, the proposed spatiotemporal independent 
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source imaging and clustering approach may be more accurate than existing source-

localization methods. Comparing cortical surface-clustered ICA and EMSICA results in 

Figure 6 gave some (weak) evidence that EMSICA may deliver better results than 

extended infomax ICA, However, a more detailed statistical comparison at the single-

subject level would be required to answer this question.  

 To more precisely localize and identify the source distributions, a whole-head 

structural MR image of each subject can be used to build a high-quality BEM or finite 

element method (FEM) head model for each subject, and to co-register these with the 

known or recorded electrode positions and thereby compute accurate lead field matrices 

(Akalin Acar and Makeig, 2010, 2013). In this paper, we assumed homogeneous isotropic 

conductivities of 0.33, 1, 0.0042, and 0.33 !!!!!! for brain, CSF, skull, and scalp, 

respectively (Mosher et al., 1993). The skull conductivity was used as 1/80 as compared 

with brain conductivity. The issue of brain-to-skull conductivity ratio has recently drawn 

attention in biophysics research of the brain. For example, Akalin Acar and Makeig 

(2013) and Wang and Ren (2013) have demonstrated that correct modeling of skull 

conductivity is an important factor for EEG source localization, quite possibly 

outweighing the choice of head model. In future work we should consider the effects of 

skull conductivity on EMSICA results. 

Chief among the problems introduced by spatiotemporal independent EEG source 

imaging is the issue of how to cluster ICs across subjects. It is worth discussing some 

alternatives to spatiotemporal component clustering to define clusters that represent 

common EEG activities across subjects.  This study applied a modified RAICAR 

procedure using the test-retest reproducibility analysis for threshold optimization to select 

acceptable clusters and their components. The matching procedure in RAICAR, however, 

forces every subject to contribute exactly one component to each cluster.  Though here, 

the SCC threshold was determined post hoc and therefore some or all clusters may not 

have included contributions from all subjects, those excluded components did not have 

any chance to become members of other clusters. To address this problem, during the 

matching procedure components whose average correlation values with other 

components are lower than the threshold (and thus are excluded from the cluster) are 
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allowed to be candidates for other clusters. Here again, the threshold might be determined 

using test-retest reproducibility analysis. 

Though the preliminary multiple-subject IC clustering strategy presented in this article 

demonstrates some of the basic capabilities of the proposed analysis procedure, some 

issues, for example, how to balance between the correlation matrix of measures still need 

to be explored. Here, the ERSP images and active source area data were concatenated to 

form a single vector and correlation matrix. One might also introduce weights on the 

temporal and spatial correlation matrices to balance between them (Esposito et al., 2005). 

These weights could depend on the task performed or on other factors (Kherif et al., 

2003). An extension of the Measure Projection clustering approach of Bigdely-Shamlo et 

al. (2013) to the flattened, co-registered cortical surface might also be of interest. 

A further step in group analysis may be to cluster component processes on other 

measures of EEG dynamics, such as inter-trial phase coupling (Makeig et al., 2004; 

Sauseng et al., 2008), phase-amplitude coupling (Tort et al., 2010), component cross-

coherence, and/or source information flow measures (Mullen et al., 2010; Supp et al., 

2007). Incorporating more EEG dynamics may produce component clusters that are more 

neurophysiologically robust. However, it is also possible that the spatial boundaries of 

clusters of similar component processes may not be the same for different measures 

(Bigdely-Shamlo et al., 2013; Onton and Makeig, 2006).  

We recognize that for many EEG studies the expense of MR imaging and/or its 

requirement that the subject lie still during the scan may not make analysis using 

individual MR head images possible. We believe, however, that when possible, using 

cortically aligned spatial head models and event-aligned component process measures 

may represent another step toward the long-elusive goal of achieving both high spatial 

and temporal resolution in EEG imaging, an accomplishment that could bring EEG once 

again to the forefront of human neuroscience research.  
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Figure 4. Multi-subject spatiotemporal cortex- and ERSP latency-aligned IC 
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