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Abstract

Recently the constrained ICA (cICA) algorithm has been widely applied to many applications. But a crucial problem to the algorithm

is how to design a reference signal in advance, which should be closely related to the desired source signal. If the desired source signal is

very weak in mixed signals and there is no enough a priori information about it, the reference signal is difficult to design. With some

detailed discussions on the cICA algorithm, the paper proposes a second-order statistics based approach to reliably find suitable

reference signals for weak temporally correlated source signals. Simulations on synthetic data and real-world data have shown its validity

and usefulness.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Temporally correlated signals widely exist in various
fields, such as biomedical engineering [3,6,8,9,19,21] and
financial time series analysis [7]. These signals are often
‘‘interesting’’ and important to us. For example, in
abnormal EEG analysis the quasi-periodic complex re-
sulted from periodic synchronous discharge is of impor-
tance to determine whether or not the subject suffers from
subacute sclerosing panencephalitis (SSPE) or other
diseases. In the non-invasive extraction of fetal electro-
cardiogram (FECG) [8,19,21], the FECG, which provides
information about fetal maturity, position of the fetus and
multiple pregnancies, also can be regarded as a quasi-
periodic signal.
e front matter r 2007 Elsevier B.V. All rights reserved.
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Unfortunately, these valuable temporally correlated
source signals and other unwanted source signals are often
mixed in observed signals and often contaminated by noise.
To obtain the desired source signals, one powerful
technique is the blind source separation (BSS) [4,7], which
simultaneously separates all of the source signals. How-
ever, in many applications the number of sensors is often
large, which may result in heavy computational load and
cost lots of time, while the ‘‘interesting’’ source signals (the
desired ones) are few. For example, in EEG or MEG we
obtain typically more than 64 sensor signals but only
several source signals (e.g. the periodically evoked brain
potentials) are considered interesting, and the rest are
considered to be interfering noise. For such applications it
is essential to develop reliable, robust and effective learning
algorithms which enable us to extract only a small number
of temporally correlated source signals that are potentially
interesting and contain useful information [4,9,20–22].
The constrained ICA (cICA) (also called ICA with

reference) [10–14] is a good candidate for extracting several
source signals from a large number of observed signals.
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dx.doi.org/10.1016/j.neucom.2007.04.004
mailto:zlzhang@uestc.edu.cn


ARTICLE IN PRESS
Z.-L. Zhang / Neurocomputing 71 (2008) 1669–16791670
It needs to first construct a reference signal that should be
closely related to the desired source signal. The reference
signal is the one and only the one that is closest to the
desired source signal in terms of a closeness measure.
Therefore, the reference signal is of vital importance to
cICA. It has been pointed out [10,22] that both the shape
and the phase of the reference signal may strongly affect
the extraction results. Thus in some applications the
reference signal is difficult to construct, at least in an
automatic manner. For example, in the non-invasive
extraction of FECG, the desired FECG is very weak so
that the accurate occurrence time and shape of each
complex of FECG are often not easy to obtain, especially
when the fetus is in early phase. Besides, an improperly
selected threshold will result in the failure of cICA [14].
A feasible threshold depends on both the designed
reference signal and the closeness measure. Given the same
data set, different reference signals require different
suitable ranges of the threshold value. Similarly, different
closeness measures also determine different suitable ranges.
Lu and Rajapakse [14] suggest to use a small threshold
initially, and then gradually increase the threshold.
However, this method is not always feasible in practice.
Due to the above reasons, the applications of cICA are
limited to the ones where the reference signals are easy to
design or find, such as the artifact removal of EEG [10,13].

In this paper, we propose a second-order statistics based
approach for designing suitable reference signals for
reliably extracting weak temporally correlated source
signals, which the original cICA often fails to extract.
Another advantage of the approach is that the threshold is
easy to set, ensuring the global convergence of cICA, since
the reference signal is morphologically close to the desired
signal. The rest of the paper is organized as follows. In
Section 2 the cICA algorithm is introduced, and some
important related issues are discussed in Section 3. In the
next section, an approach to obtain feasible reference
signals for extracting weak temporally correlated source
signals is proposed. Computer simulations are presented in
Section 5 and conclusions are drawn in Section 6.

2. The constrained independent component analysis

Let us consider unknown stochastic source signals si ði ¼

1; . . . ; nÞ which are mutually independent, zero-mean and
unit-variance. It is assumed that the source signals are non-
Gaussian (at most one is Gaussian). The model for the
observed signals is

xðkÞ ¼ AsðkÞ, (1)

where k is the time index, A is an unknown non-singular
mixing matrix, sðkÞ ¼ ½s1ðkÞ; . . . ; snðkÞ�

T and xðkÞ ¼ ½x1ðkÞ;
. . . ;xnðkÞ�

T. Without knowing the source signals and the
mixing matrix, we want to recover a source signal from the
observed signals xðkÞ by the following linear transform:

yðkÞ ¼ wTxðkÞ ¼ wTAsðkÞ, (2)
where w is a column vector and yðkÞ is a recovered source
signal up to a scalar. To cope with ill-conditioned cases and
to make algorithms simpler and faster, before running
algorithms the whitening [4] is often used to transform the
observed signals xðkÞ to

zðkÞ ¼ VxðkÞ, (3)

such that EfzðkÞzðkÞTg ¼ I, where V is a whitening matrix.
A typical solution is given by

V ¼ D�1=2ET, (4)

where D is the diagonal matrix of the eigenvalues of the
matrix EfxðkÞxðkÞTg, and E is the matrix whose columns
are the corresponding unit-norm eigenvectors.
For extracting one independent source signal, a reliable

and flexible contrast function is the one based on
negentropy [7], defined by

JðyÞ � r½EfGðyÞg � EfGðvÞg�2, (5)

where y ¼ wTz is the algorithm output, r is a positive
constant, v is a Gaussian variable with zero mean and unit
variance, and Gð�Þ can be any non-quadratic function, such
as

G1ðyÞ ¼ logðcoshða1yÞ=a1Þ, (6)

G2ðyÞ ¼ expð�a2y
2=2Þ=a2, (7)

G3ðyÞ ¼ y4=4, (8)

where 1pa1p2 and a2 � 1. The algorithm that maximizes
the contrast function (5) is called one-unit ICA [7].
However, maximization of (5) will give any of source
signals. That is to say, any source signal may be the output.
When one desires a specific source signal, he needs to use
some a priori information of the desired signal to modify
the one-unit algorithm, ensuring the output is necessarily
the desired one. To achieve this goal, the cICA is derived
[14] by first defining the following constrained contrast
function:

max JðwÞ � r½EfGðwTzg � EfGðvÞg�2 ð9Þ

s:t: gðwÞ ¼ �ðy; rÞ � xp0; hðwÞ ¼ Efy2g � 1 ¼ 0, ð10Þ

where the equality constraint hðwÞ ensures that the contrast
function JðyÞ and the weight vector w are bounded. �ðy; rÞ is
the closeness measure between the extracted signal y and
the reference signal r. Note that the desired source signal is
the one and only the one closest to the reference signal r,
satisfying the following inequality relationship:

�ðw�Tz; rÞo�ðwT
1 z; rÞp � � �p�ðwT

n�1z; rÞ, (11)

where the optimum vector w� corresponds to the desired
output and wi ði ¼ 1; . . . ; n� 1Þ corresponds to other
unwanted source signals. The value of the threshold x in
(10) lies in ½�ðw�Tz; rÞ; �ðwT

1 z; rÞÞ.
From the contrast function (9)–(10) Lu and Rajapakse

derived the cICA algorithm [12–14]:

wtþ1 ¼ wt � ZR�1z G1=G2, (12)
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1Here we mean that its waveform in a period is similar to its waveform

in another period. Thus, it is not a strictly periodic signal. The reason why

we make this assumption is that in practice the strictly periodic signal is

rare.
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G1 ¼ rEfzG0yðyÞg �
1
2
mEfzg0yðyÞg � lEfzyg, (13)

G2 ¼ rEfG00y2ðyÞg �
1
2
mEfg00y2 ðyÞg � l, (14)

where t is the iteration count, Rz ¼ EfzzTg, r ¼
r � sign ðEfGðyÞg � EfGðvÞgÞ, G0yðyÞ and g0yðyÞ are the first
derivatives of GðyÞ and gðyÞ with respect to y, and G00y2 ðyÞ

and g00
y2
ðyÞ are the second derivatives. The optimum

multipliers m� and l� are found by iteratively updating
them based on a gradient-ascent method:

mt ¼ maxf0; mt�1 þ ggðwt�1Þg, (15)

lt ¼ lt�1 þ ghðwt�1Þ. (16)

3. Some important issues of cICA

There are several important issues that should be
noticed. One issue is the value of the threshold x. If the
threshold value is too large, the cICA may converge to
other source signals since there may exist several source
signals whose closeness measures are also less than the
threshold. In contrast, if the threshold is too small, the
cICA cannot converge. So the threshold value should
be carefully selected. But the value is influenced by
some factors. One is the choice of the closeness �ðy; rÞ.
A common choice is the mean square error (MSE) given
by �ðy; rÞ ¼ Efðy� rÞ2g, and another is the correlation
�ðy; rÞ ¼ �Efyrg. Clearly, different choices require different
ranges of the threshold value. Another factor affecting the
threshold value is the choice of the reference signal r. If the
reference signal is very similar to the desired source signal,
then the threshold value should be very small so that the
algorithm can globally converge. Otherwise, the value
should be larger. Obviously, the suitable value in some
degree depends on the a priori knowledge about
the quantization of the closeness between the reference
signal and the closest source signal (i.e. the desired signal),
and of the closeness between the reference signal and the
second closest source signal. Unfortunately, according to
our knowledge, there is no guide on how to set a suitable
value.

The second issue is the design of the reference signal.
James and Gibson [10] pointed out that the shape of the
reference signal may influence the output result in the
sense that source signals of slightly different morphology
may be extracted for different reference morphology. They
also pointed out that the phase of the reference signal
must be closely matched to that of the desired source
signal, or the occurrence time of each impulse of the
reference signal is consistent with that of the desired signal.
Until now, in most literature the main method is
constructing a simple impulse signal by observing the
waveform of sensor signals and/or by exploiting strong a

priori information about the desired source signal
[10,12–14]. This method requires that the desired source
signal is strong enough to be observed in a sensor signal
and/or there is sufficient a priori information available (e.g.
the morphology, the phase and the occurrence time of the
desired signal), which cannot be always satisfied. In
addition, sometimes one should use many similar reference
signals, each shifted by one sample to cover one expected
period of the desired source signal [10]. Thus, the method
sometimes may be trivial and results in increased computa-
tional load and time.
In the next section we will propose a valid approach to

find a reference signal, whose phase and waveform is well
matched to the desired source signal. Thus a suitable
threshold value is easy to set, regardless of which closeness
measure is adopted.

4. The proposed approach for designing reference signals

In this section we propose an approach to design
suitable reference signals for extracting temporally corre-
lated weak source signals. Our idea is first finding several
time delays at which the autocorrelation of the desired
source signal is maximized, and then using the time delays
to roughly extract the desired source signal. The roughly
extracted signal serves as the reference signal for the cICA
algorithm.
Suppose the desired source signal is non-Gaussian and

exhibits periodic behavior with period t0.
1 Without loss of

generality, we assume s1 is the desired source signal,
satisfying the following relations:

E
XP

p¼1

s1ðkÞs1ðk � lpt0Þ

( )
40, (17)

E
XP

p¼1

sjðkÞsjðk � lpt0Þ

( )
¼ 0 8ja1, (18)

where sj are other source signals, lp ðp ¼ 1; . . . ;PÞ are
positive integers and P is the number of the time delays
(how to find these time delays will be addressed later). Then
we propose the following objective function for coarsely
extracting s1:

max JðwÞ ¼ 2E
XP

p¼1

yðkÞyðk � lpt0Þ

( )

¼ wT
XP

p¼1

ðRzðlpt0Þ þ Rzðlpt0Þ
T
Þ

( )
w ð19Þ

s.t. kwk ¼ 1, ð20Þ

where yðkÞ ¼ wTzðkÞ ¼ wTVxðkÞ and Rzðlpt0Þ ¼ EfzðkÞ

zðk � lpt0Þ
T
g. The reason for this formulation is that for

the desired signal s1, this averaged delayed autocorrelation
has a large positive value, while for other source signals this
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value is zero. It is easy to see [20] that maximization of (19)
under the constraint (20) is equivalent to finding the
normalized eigenvector corresponding to the maximal
eigenvalue of

PP
p¼1ðRzðlpt0Þ þ Rzðlpt0Þ

T
Þ. Thus we directly

have the following algorithm:

w ¼ EIG
XP

p¼1

ðRzðlpt0Þ þ Rzðlpt0Þ
T
Þ

 !
, (21)

where EIGð
PP

p¼1ðRzðlpt0Þ þ Rzðlpt0Þ
T
ÞÞ is the operator that

calculates the normalized eigenvector corresponding to the
maximal eigenvalue of

PP
p¼1ðRzðlpt0Þ þ Rzðlpt0Þ

T
Þ. Denote

by bw the converged solution of the algorithm (21). Then the
reference signal is given by by ¼ bwT

z.
If several desired source signals exhibit periodic behavior

with the same period t0, we still can obtain suitable
reference signals for each desired source signal. To see this,
suppose among the n source signals there are q ones, say
s1; s2; . . . ; sq, that have the same period t0. Let rb ¼

Ef
PP

p¼1sbðkÞsbðk � lpt0Þg ðb ¼ 1; . . . ; nÞ. Without loss of
generality, suppose r14r24 � � �4rq4rj ðj ¼ qþ 1; . . . ; nÞ.2

In the following we will show that we can use the
normalized eigenvector wi associated with the ith largest
eigenvalue of Ef

PP
p¼1zðkÞzðk � lpt0Þ

T
g to obtain the

reference signal for si ði ¼ 1; . . . ; qÞ.
First, note that VA is an orthogonal matrix, since I ¼

EfzzTg ¼ VAEfssTgATVT and EfssTg ¼ I. Then consider
the following relation:

E
XP

p¼1

zðkÞzðk � lpt0Þ
T

( )

¼ VAE
XP

p¼1

sðkÞsðk � lpt0Þ
T

( )
ATVT, ð22Þ

which implies that all the eigenvalues of Ef
PP

p¼1zðkÞzðk �

lpt0Þ
T
g are those of Ef

PP
p¼1sðkÞsðk � lpt0Þ

T
g. Denote by wi

the normalized eigenvector associated with the ith largest
eigenvalue of Ef

PP
p¼1zðkÞzðk � lpt0Þ

T
g. We have

E
XP

p¼1

zðkÞzðk � lpt0Þ
T

( )
wi ¼ liwi; i ¼ 1; . . . ; q, (23)

where li is the ith largest eigenvalue. Since zðkÞ ¼ VAsðkÞ

and VA is an orthogonal matrix, (23) is further reduced to

E
XP

p¼1

sðkÞsðk � lpt0Þ
T

( )
ðATVTwiÞ

¼ liA
TVTwi; i ¼ 1; . . . ; q, ð24Þ

implying that ATVTwi is the normalized eigenvector

associated with the ith largest eigenvalue li of Ef
PP

p¼1

sðkÞsðk � lpt0Þ
T
g. Suppose Ef

PP
p¼1saðkÞsbðk � lpt0Þ

T
g ¼
2Since s1; s2; . . . ; sq are not strictly periodic signals, we have

EfsgðkÞsgðk � lpt0Þgo1 and it is probable that EfsgðkÞsgðk � lpt0Þga
EfshðkÞshðk � lpt0Þg ðgahÞ. Therefore, the assumption that r14r24 � � �
4rq4rj ðj ¼ qþ 1; . . . ; nÞ is held in most cases.
0 ðaab and a; b ¼ 1; . . . ; nÞ, then Ef
PP

p¼1sðkÞsðk � lpt0Þ
T
g

is a diagonal matrix. Therefore ATVTwi ¼ ei, whose the ith
element is one while other elements are zero. Then we have
y ¼ wT

i z ¼ wT
i VAs ¼ eTi s ¼ si, which means that si is

extracted by the vector wi. However, in practice the
assumption Ef

PP
p¼1siðkÞsjðk � lpt0Þ

T
g ¼ 0 ðiaj and i; j ¼

1; . . . ; nÞ cannot be met. One reason is that in real world
two source signals may be weakly correlated. Another
reason is concerned with the numerical errors. Practically
we use the empirical average over limited samples, instead
of the statistical expectation. As a result, even if two signals
satisfy the assumption, the calculated cross-correlation
over limited samples is generally non-zero (although we
have shown [20] that with sufficient time delays the
numerical errors tend to zero, in practice we may not find
so many suitable time delays). Due to these reasons,
ATVTwi � ei and thus y � si. This means that the extracted
signal by wi is only a good reference signal for further
extracting si by the cICA algorithm.3

So, according to the analysis, if we find the
matrix Ef

PP
p¼1zðkÞzðk � lpt0Þ

T
g has several large eigenva-

lues, say q eigenvalues that are obviously larger than zero,
then we can conclude that there may be q source signals
with the same period, and calculate the corresponding
eigenvectors to obtain reference signals for each source
signal.
If the desired source signal does not exhibit periodic

behavior, but only a general temporally correlated signal,
the above results should be slightly modified. Denote by s1
the desired source signal and suppose it satisfies:

E
XP

p¼1

s1ðkÞs1ðk � tpÞ

( )
40, (25)

E
XP

p¼1

sjðkÞsjðk � tpÞ

( )
¼ 0 8ja1, (26)

where t1; t2; . . . ; tP are time delays and sj are other source
signals. Similarly, the objective function is

max JðwÞ ¼ 2E
XP

p¼1

yðkÞyðk � tpÞ

( )

¼ wT
XP

p¼1

ðRzðtpÞ þ RzðtpÞ
T
Þ

( )
w ð27Þ

s.t. kwk ¼ 1. ð28Þ

And the corresponding algorithm is given by

w ¼ EIG
XP

p¼1

ðRzðtpÞ þ RzðtpÞ
T
Þ

 !
. (29)

Now we have an important issue that has not been
addressed, i.e. how to find the suitable time delays, which
3We would like to draw the readers’ attention to some similar work

[3,14] that also showed second-order statistics based reference construc-

tion methods are insufficient to recover independent source signals.
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are embodied as the peaks in correlation functions.
However, it is not a difficult problem. There are numerous
methods to estimate them, such as the autocorrelation
method [1], the heart instantaneous frequency (HIF)
estimation technique [2] and the cepstrally transformed
discrete cosine transform (CTDCT) [16]. Note that lots of
pitch estimation methods [17,18] in the speech and audio
processing field can also be directly used to find the time
delays. In addition, in some cases the time delays are
readily available [1,14]. For example, in MEG analysis the
periods of some oscillatory artifacts, such as the power
supply interference (50–60Hz), can be easily obtained. For
some EEG experiments the periods of stimuli to which
event-related brain potentials respond are readily available
as well.

Note that although the proposed approach needs to first
estimate the time delays, its performance is non-sensitive to
small estimate errors of the time delays, which is reported
in our previous work [20,22]. Furthermore, one can employ
other signal processing techniques, such as the band-pass
filtering, low-pass filtering and wavelet transform, to the
roughly extracted signal by to obtain a better reference
signal, according to the problem in hand. Another
advantage of the proposed approach is that it is non-
sensitive to additive white sensor noise and suppresses
color sensor noise to a great degree.
500 1000
−5

0

5

Sample

S
7

−5

0

5

S
6

−5

0

5

S
5

−5

0

5

S
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−5

0

5

S
3

−5

0

5

S
2

−5

0

5

S
1

Fig. 1. The seven synthetic source signals. s1 was a quasi-periodic signal, while
5. Simulations and experiments

5.1. Synthetic data set

We generated seven zero-mean and unit-variance source
signals, shown in Fig. 1. Each signal had 2500 samples. s1
was a quasi-periodic signal, while s2 and s3 behaved
periodically with the same period: 500 sampling periods.
Our goal was to extract the desired temporally correlated
source signals s1; s2 and s3 using the cICA algorithm with
suitable reference signals obtained by the proposed
approach.
The source signals were randomly mixed, shown in

Fig. 2. Denote by A the mixing matrix. Obviously, the
waveform of any source signal was not visible in the mixed
signals. Thus, it was very difficult to design reference
signals by the conventional methods, i.e. constructing
reference signals only via observing the waveform of mixed
signals. Here we used the proposed approach to find
suitable reference signals for successfully extracting each
desired source signal.
First, we should find the time delays. They correspond to

the peaks in autocorrelation functions of mixed signals.
There are many algorithms for finding these peaks
[1,2,16–18]. Here we used our recently proposed lag-finding
method [23], which can accurately find suitable time delays
1500 2000 2500

 Number

s2 and s3 behaved periodically with the same period: 500 sampling periods.
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Fig. 2. The mixed signals, from which the waveforms of the original source signals were not visible.
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Fig. 3. Finding the time delays. The result was calculated using the mixed

signal x3 in Fig. 2. Each peak corresponded to a source signal.
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(of course, other lag-finding methods [16–18] can obtain
similar results). The lag-finding method first employs
the linear prediction operator to a mixed signal, and
obtains a prediction error signal. Then it employs the
ordinary autocorrelation operator to the error signal.
Next, the result is transformed by a parameterized non-
linear function, and the final result is plotted. In this
simulation we employed the lag-finding method to the
third mixed signal x3. The result is plotted in Fig. 3,
from which we can see there were a number of peaks, each
peak corresponding to a source signal. Of course, several
peaks might correspond to a same source signal. For
example, the peaks locating at time delay 500 and
time delay 1000 held the harmonic relation, and thus the
two peaks were believed to correspond to the same
source signal. We selected the time delay set t1 ¼ f272g
and the time delay set t2 ¼ f500; 1000g for our proposed
approach.

Then the mixed signals were whitened. Denote the
whitening matrix by V and the whitened signals by zðkÞ.
Using the time delay set t1, the proposed approach
obtained a reference signal, shown in Fig. 4 (see r1).
Compared with the original source signal s1, the reference
signal matched its phase and morphology to some degree.
Finally, using the reference signal the cICA algorithm
successfully extracted the source signal s1, shown in Fig. 4
(see y1).
Using the time delay set t2 the proposed approach found
that there were two very large eigenvalues in
Ef
P2

p¼1zðkÞzðk � p � 500ÞTg, while other eigenvalues were
close to zero. According to the results in Section 4, the
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Fig. 4. Final extraction results by the reference signals obtained by the proposed approach. yi was the final extracted signal using the reference signal

ri; i ¼ 1; 2; 3.

Table 1

The averaged cross-talk indexes over 100 independent trials of the

reference signals and the final extracted signals

s1 s2 s3

Reference signal 7.1 30.7 9.7

Final extraction 27.0 31.8 21.0

The 7.1 in the second column means that the index measuring the

similarity between the reference signal r1 and the source signal s1 is 7.1 dB

and the 27.0 means that the index measuring the similarity between the

final extracted signal y1 and s1 is 27.0 dB. The same is with the other four

data.
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proposed approach calculated the eigenvectors associated
with the two large eigenvalues and then obtained two
reference signals, shown in Fig. 4 (see r2 and r3). Using
these reference signals the cICA algorithm also successfully
extracted the corresponding source signals (see y2 and y3 in
Fig. 4).

To measure the final extraction quality, we used the
following cross-talk index:

PI ¼ �10EflgðsðkÞ � ~sðkÞÞ2g ðdBÞ, (30)

where sðkÞ is a desired source signal and ~sðkÞ is a extracted
signal (both of them should be normalized to be zero-mean
and unit-variance). This index measures the similarity
between the source signal and the extracted signal. The
larger the PI is, the better the extraction quality. Generally,
the value larger than 20 dB indicates a good extraction
quality. In the simulation, the averaged cross-talk indexes
over 100 independent trials are listed in Table 1, from
which we can see that by using the reference signals
obtained by our proposed approach the cICA algorithm
can finally extract the weak source signals with good
performance.

Next, we illustrated how the phase and morphology of
reference signals affect the final extraction. We noticed that
there was a large wave from 1550 sample points to 1650
sample points in each mixed signal, indicating it might be a
part of some source signal. So, like the method in [10], we
designed several simple reference signals according to the
location and width of the wave, shown in Fig. 5. In each
simple reference signal there was only a square impulse.
The width and the occurrence time of the impulse in each
reference signal had slight differences. The width of the
impulse in c1; c2; c3 and c4 was, respectively, 20; 50; 20 and
50 sample points. The occurrence time of the impulse in
c1; c2; c3 and c4 was, respectively, 1575; 1575; 1625 and 1625
sample points. The corresponding extracted signals
u1; u2; u3 and u4 using these reference signals are shown in
Fig. 6. Obviously, the original source signals were not
recovered well. To see this, we calculated the global vector,
defined by

g ¼ wTVA, (31)
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where w is the demixing vector obtained by the cICA
algorithm, and V and A are, respectively, the whitening
matrix and the mixing matrix. If a source signal is perfectly
extracted, the global vector has only one non-zero element.
The calculated global vectors associated with the finally
extracted signals u1; u2; u3 and u4 are given below:

g1 ¼ wT
1VA

¼ ½�0:48 � 0:77 0:05 � 0:13 0:17 0:35 � 0:02�,

g2 ¼ wT
2VA

¼ ½�0:20 � 0:29 0:01 0:06 0:03 0:93 0:01�,

g3 ¼ wT
3VA

¼ ½0:20 0:82 � 0:01 � 0:04 0:15 0:45 0:18�,

g4 ¼ wT
4VA

¼ ½0:11 0:79 0:00 � 0:08 0:09 0:51 0:24�.

The results showed that each extracted signal was a
mixture of several original source signals. Further, from
the global vectors we could find that the extracted signal
u1ð¼ wT

1VAsÞ was more similar to the second source signal
s2, and so were u3ð¼ wT

3VAsÞ and u4ð¼ wT
4VAsÞ, while u2ð¼

wT
2VAsÞ was more similar to the sixth source signal s6. Thus

we calculated the cross-talk indexes of u1; u3 and u4 with
the source signal s2, and the cross-talk index of u2 with the
source signal s6. The cross-talk indexes of u1; u2; u3 and u4

were, respectively, 10:3; 15:9; 8:9 and 8.3 dB, indicating bad
extraction quality. In addition, we can see that the
reference signal c1 and c2 had the same occurrence time,
but slightly different impulse width. However, the results
were greatly different: the extracted signal by using c1 was
more similar to s2, while the extracted signal by using c2
was more similar to s6. We repeated the simulation by
different randomly generated mixing matrixes and different
simple reference signals, and obtained similar results.
Thus, we can draw the conclusion that the simple

reference signals sometimes may not lead to good extrac-
tion quality, even may not lead to the desired source
signals, especially in the cases where the desired source
signals are very weak in mixed signals. Besides, the phase
and morphology of the reference signals affect the final
extraction results; slightly different phase or morphology
may result in different source signals. Therefore, the simple
reference signals are not always safe.

5.2. ECG data

Next we used real-world ECG data to verify our
approach. The ECG data set used in this experiment was
distributed by De Moor [15], which was measured from a
pregnant woman by eight electrodes placed at different
positions on her body (Fig. 7). Signal x1–x5 were the
recordings by five electrodes placed on the woman’s
abdomen. Thus the FECG, respiratory motion artifacts
as well as the maternal ECG (MECG) were visible in these
recordings. Signal x6–x8 were the recordings by three
electrodes placed on the woman’s thorax. In these thoracic
measurements the FECG was invisible because of the
distance between the fetus and the chest leads. It has been
shown [8,19] that the recordings are the linear mixtures of
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the FECG and MECG contributions, as well as the
respiration noise, and that the separation of MECG and
FECG components can be formulated as a BSS problem.
The ECG measurements were recorded over 10 s, and were
sampled at 250Hz.
Since the FECG was visible in x1, we calculated its
autocorrelation. By carefully examining the autocorrela-
tion, and using a priori knowledge that the fetal heart
should strike every 0.5 s or so, we found that a peak
obviously lay at 0.448 s (corresponding to 112 sampling
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periods), and we believed it was just the peak for extracting
the FECG (Fig. 8). After whitening the recordings, we ran
the algorithm (29) with parameter t1 ¼ 112 and parameter
P ¼ 1. The result is shown in Fig. 9. Next, using the
extracted signal as the reference signal and setting x ¼ 0:2,
we ran the cICA algorithm for extracting the desired source
signal. The result is also shown in Fig. 9. From the figure
we can see that the desired FECG was perfectly extracted,
and the respiratory noise was removed, which was
contained in the reference signal r.

6. Conclusions

In this paper we propose a novel approach for designing
feasible reference signals for the cICA algorithm. Based on
the maximization of the averaged delayed autocorrelation
of the desired source signal at several time delays, the
approach roughly extract the desired source signal. And
the extracted signal serves as the reference signal for the
cICA algorithm.

It is worth comparing the proposed approach with the
conventional reference signal construction methods. In
literature the conventional construction methods are
designing various simple impulse signals that are matched
to desired source signals to some extent. If the desired
source signal is strong enough to appear in some mixed
signals, then the conventional methods often work well. In
contrast, if the desired source signal is very weak so that its
any waveform information cannot be obtained from the
waveforms of mixed signals, then we have to exploit strong
a priori knowledge to carefully design the impulse signals
[11]. For example, in some fMRI experiments the input
stimuli are available, and the desired task-related fMRI
responses usually follow the stimuli. Thus, we can directly
use the input stimuli as the reference signals [14]. However,
the task-related responses do not necessarily synchronize
the input stimuli, as Funase et al. [5] reported. In our
simulations we have shown that the slight different
morphology or occurrence time of the impulses of reference
signals may result in different source signals. Therefore, it
is not always a safe way to use the input stimuli as the
reference signals.

However, the proposed approach in this paper has
solved the problem greatly. It does not need to know the
occurrence time of such responses and their shapes. In fact
it only requires that the desired source signals are
temporally correlated signals, which is satisfied in most
cases. Therefore the approach is convenient when the
desired source signals are very weak or extra a priori

information (e.g. the input stimuli) is not available.
Although the proposed approach needs to first estimate
several time delays, it is not a difficult problem since there
are numerous algorithms to estimate such time delays. In
addition, the proposed approach is non-sensitive to small
estimate errors of the time delays [20] and the sensor white
noise. Since the approach can obtain a reference signal that
is similar to the desired source signal, the task of selecting
the value of the threshold x of the cICA algorithm becomes
easy. It is interesting to notice that the FICAR algorithm
[3,5] also needs to construct a reference signal to extract the
desired source signal, and our proposed approach can be
used for the algorithm as well.
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