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Abstract

There is a trend to develop blind or semi-blind source extraction algorithms based on
second-order statistics, due to its low computation load and fast processing speed.
An important and primary work is done by Barros and Cichocki, who propose an
extraction algorithm based on a time delay. The algorithm is simple and fast, but its
performance is not satisfying. The paper extends their work and proposes a robust
algorithm based on eigenvalue decomposition of several delayed covariance matrices.
It is faster and has better performance, which is confirmed by theoretical analysis
and computer simulations.
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1 Introduction

Blind source extraction (BSE) [1] is a type of powerful technique that is closely
related to blind source separation (BSS) [1,11,12]. The basic task of BSE is
estimating part of source signals that are linearly combined in observations.
Compared to BSS, BSE has many advantages, and has received wide atten-
tion in various fields such as biomedical signal processing [3,4,6] and speech
processing [1].
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In BSE, one observes an n-dimentional stochastic signal vector x that is re-
garded as the linear transformation of an n-dimensional zero-mean and unit-
variance source vector s, i.e., x = As, where A is an unknown mixing matrix.
The goal of BSE is to find a vector w such that y = wTx = wTAs is an esti-
mated source signal up to a scalar. To cope with ill-conditioned cases and to
make algorithms simpler and faster, a linear transformation called prewhiten-
ing is often used to transform the observed signals x to x̃ = Vx such that
E{x̃x̃T} = I, where V is a prewhitening matrix. For convenience, in the fol-
lowing we assume that x are the prewhitened observed signals.

Many source extraction algorithms [1] extract a specific signal as the first out-
put, by using some a priori information, such as sparseness [2] and high-order
statistics [3]. But the algorithms exploiting sparseness or high-order statis-
tics often have relatively high computation load. Thus a trend is to develop
second-order statistics based extraction algorithms using a priori knowledge
about signals’ time structure. An important work is done by Barros and Ci-
chocki [6]. They propose a fast and simple algorithm, which requires the precise
estimation of an optimal time delay that corresponds to some time structure of
the desired source signal. Unfortunately, the algorithm’s performance strongly
depends on the time delay; small estimation errors of the time delay often lead
to poor performance.

In this paper we propose a robust extraction algorithm based on eigenvalue
decomposition, furthering the primary work of Barros and Cichocki. Our algo-
rithm is very fast, and its performance is not affected by the estimation errors
of the time delay as long as the errors are not large, which is confirmed by
theoretical analysis and computer simulations.

2 Proposed algorithm

Assume that the desired source signal si is temporally correlated, satisfying
the following relations for a specific time delay τ ∗:





E {si(k)si(k − τ ∗)} > 0

E {si(k)sj(k − τ ∗)} = 0

E {sj(k)sl(k − τ ∗)} = 0 ∀j 6= i, l 6= i,

(1)

where k is the time index, and τ ∗ is an integer delay, which can be positive or
negative. Without losing generality, in the following the time delay is assumed
to be positive. Note that (1) is very similar to the assumption in [6]. Under
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the constraint ‖w‖ = 1, maximizing

J(w) = E{y(k)y(k − τ ∗)} = wT E{x(k)x(k − τ ∗)T}w (2)

leads to the desired source signal. Here, y(k) = wTx(k) is the output signal.
When J(w) reaches a maxima, y(k) estimates the desired signal si up to a
scalar. The reason for this proposal is that for the desired source signal, this
autocorrelation should have a high value, while for other source signals this
value should be very small. For convenience, we assume the desired source
signal is periodic. But this does not imply that the proposed algorithm in this
paper is limited to the extraction of periodic signals. In fact, other non-periodic
signals can also be extracted, providing that they satisfy the assumption (1)
and the corresponding time delay can be estimated.

Following the idea of Barros and Cichocki [6] and based on the assumption
(1), we can easily obtain the Barros’s algorithm:





w+ = E{x(k)x(k − τ ∗)T}w
w = w+/‖w+‖

(3)

If the desired signal is periodic with fundamental period τ0, then τ ∗ can be
set as τ ∗ = rτ0, where r is a non-zero integer.

Now consider the objective function (2) again. We have

J(w) =
1

2
J(w) +

1

2
J(w)T

=
1

2
wT E{x(k)x(k − τ ∗)T}w +

1

2
wT E{x(k − τ ∗)x(k)T}w

=
1

2
wT

(
Rx(τ

∗) + Rx(τ
∗)T

)
w, (4)

implying that maximization of (2) under the constraint ‖w‖ = 1 is equivalent
to finding the eigenvector corresponding to the maximal eigenvalue of the real
symmetric matrix R = Rx(τ

∗)+Rx(τ
∗)T , where Rx(τ

∗) = E{x(k)x(k−τ ∗)T}.
Thus we have the following algorithm:





Rx(τ
∗) = E{x(k)x(k − τ ∗)T}

w = EIG
(
Rx(τ

∗) + Rx(τ
∗)T

)
,

(5)

where EIG(T) is the operator that calculates the normalized eigenvector cor-
responding to the maximal eigenvalue of the real symmetric matrix T. Com-
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pared to Barros’s algorithm (3), the algorithm (5) has faster speed due to
efficient eigenvalue decomposition techniques [8].

Some practical issues, however, should be considered. An important issue is
the effect of finite samples. Although the signals are mutually uncorrelated,
in fact the cross-correlation values of source signals calculated over the finite
samples are generally non-zero, due to the fact that the expectation operator
E{z(k)} is replaced by the mathematical average

∑N
k=1 z(k)/N (N is the data

length). Even the number of available samples is very large, in practice they
are often divided into consecutive blocks, because of the processing type of
batch algorithms. So in this case the cross-correlation values are still non-zero.
Another crucial issue is the estimation errors of the time delay. In many cases
the errors cannot be avoided. As we will see later, the limit of available samples
and estimation errors greatly influence the performance of the algorithms (3)
and (5).

Thus we modify the algorithm (5) to (the reason will be given in Section 3)





Rx(τ
∗) = E{x(k)x(k − τ ∗)T}

w = EIG

(
∑P

i=1

(
Rx(iτ

∗) + Rx(iτ
∗)T

))
,

(6)

which maximizes the new objective function

J(w) =
P∑

i=1

E{y(k)y(k − iτ ∗)} = wT
( P∑

i=1

E{x(k)x(k − iτ ∗)}
)
w (7)

under the constraint ‖w‖ = 1, where P is a positive integer, and τ ∗ is the
fundamental period of the desired source signal.

3 Theoretical analysis

In this section we consider the effect of finite samples. The issue is primarily
discussed from the perspective of high-order statistics by Bermejo [9]. Here we
discuss the issue from the perspective of second-order statistics in the case of
two source signals.

Denote by V the prewhitening matrix and by A the unknown mixing matrix,
then VA is orthogonal. Therefore, the function (2) becomes

J(w) = wT E{(VA)s(k)s(k − τ ∗)T (VA)T}w = qTRs(τ
∗)q, (8)
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where q = wTVA and Rs(τ
∗) = E{s(k)s(k − τ ∗)T}. Thus maximizing (2) is

equivalent to maximizing (8) under the constraint ‖q‖2 = 1. Due to the effect
of finite samples mentioned above, Rs(τ

∗) 6= I.

In the case of two source signals, maximization of (8) can be expressed as
maximization of

J(q1, q2) = aq2
1 + bq2

2 + cq1q2, (9)

under the constraint q2
1 + q2

2 = 1, where q = [q1, q2]
T , a = E{s1(k)s1(k− τ ∗)},

b = E{s2(k)s2(k− τ ∗)}, and c = E{s1(k)s2(k− τ ∗)}+ E{s2(k)s1(k− τ ∗)}. s1

is the desired signal with period τ ∗. Generally we have a > 0 and a > b.

If c = 0, implying the calculated cross-correlation value of s1 and s2 is zero
(this is the ideal case), the optimal solution to (9) is q1 = ±1, q2 = 0, and
the extracted signal y(k) = wTx(k) = qT s(k) = q1s1(k) + q2s2(k) = ±s1(k).
Obviously, in this case the desired source signal is perfectly extracted.

But in practice, c 6= 0. For c > 0, the solution to (9) is given by





q1 = ± h+
√

h2+1√
1+(h+

√
h2+1)2

q2 = ± 1√
1+(h+

√
h2+1)2

(10)

where h = (a− b)/c. For c < 0, the solution is given by





q1 = ± h−√h2+1√
1+(h−√h2+1)2

q2 = ± 1√
1+(h−√h2+1)2

(11)

Since q = wTVA is a global vector, a good extraction performance measure
is given by

PI1 =
1

N − 1

(
N∑

i=1

q2
i

maxi q2
i

− 1

)
, (12)

whose value lies in [0, 1] for any vector q = [q1, · · · , qN ]T . The smaller PI1 is,
the better the extraction performance is. In the case of two source signals,
without losing generality, we consider the case of c > 0, in which

PI1 =

(
a− b

c
+

√(a− b

c

)2
+ 1

)−2

. (13)
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So, in order to improve the extraction performance, we should increase the
value of a, and decrease the values of b and |c| (incorporating results in the
case of c < 0).

Now consider the modified objective function (7), which is equivalent to

J̃(w) =
1

P
qT

( P∑

i=1

E{s(k)s(k − iτ ∗)}
)
q, (14)

whose ã =
∑P

i=1 E{s1(k)s1(k − iτ ∗)}/P , b̃ =
∑P

i=1 E{s2(k)s2(k − iτ ∗)}/P
and c̃ =

∑P
i=1 E{s1(k)s2(k − iτ ∗) + s2(k)s1(k − iτ ∗)}/P . Remember that τ ∗

is the fundamental period of s1. So, compared to a, b and c in (9), b̃ and
|c̃| generally tend to decrease rapidly with P increasing, while ã tends to be
invariant (or tends to decrease with relatively slow speed). As a result, the PI1

of the proposed algorithm (6) tends to be smaller than that of the algorithm
(5), implying the extraction quality is improved, which will be confirmed by
simulations below.

4 Computer simulations

4.1 Effect of the non-zero cross-correlation values of source signals

In this simulation we select two source signals with zero mean and unit variance
(one is a fetal electrocardiogram (FECG), the other is a noise signal), shown
in Fig.1. The desired source signal is the FECG, whose fundamental period is
112. The source signals are randomly mixed, followed by the prewhitening. We
set τ ∗ as 112, 224, 336, 448, respectively. For each value, we run the algorithm
(5) and the Barros’s algorithm (3). The simulation is repeated 100 times, and
their averaged performance indices are calculated and shown in Table 1.

It is clear to see that with the decline of the values of b and |c|, the performance
of (5) is improved. Furthermore, one can find that for both algorithms different
time delay leads to different performance. Some delays (for example, τ ∗ =
224) result in good extraction performance, while some delays result in bad
performance. In addition, for the same τ ∗, the performance of (5) is better
than that of the Barros’s algorithm.

Then, we set τ ∗ = 112 and P = 1, 2, 3, 4, respectively, for the algorithm (6).
The theoretical and the averaged performance indices are shown in Table 2.
Comparing Table 1 with Table 2, we can see that the algorithm (6) provides
satisfying and stable performance, in contrast to the Barros’s algorithm (3)
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Fig. 1. Two source signals. The top is an FECG ; the bottom is a noise signal.

Table 1
The relationship between the cross-correlation matrix Rx(τ∗) and the
averaged performance indices over 100 independent trials in Section 4.1.
In addition, the corresponding theoretical performance index is given
as well. PI1, P̂ I1 and P̃ I1 are, respectively, the theoretical performance
index, the averaged one of (5), and the averaged one of (3). Note that
here we multiply the Rs(τ∗) by a scalar that makes the element in the
first row and the first column of Rs(τ∗) unity.

τ∗ 112 224 336 448

a 1.000 1.000 1.000 1.000

b 0.902 0.188 -1.507 -5.426

c 0.200 -0.045 -0.781 -2.076

PI1 0.390 0.000 0.023 0.025

P̂ I1 0.447 0.000 0.021 0.024

P̃ I1 0.450 0.064 0.100 0.052

and the algorithm (5), whose performance is greatly affected by the selection
of τ ∗. Through lots of experiments we find a good result will be obtained when
τ ∗P < N/5, where N is the length of each data block.

4.2 Effect of the estimation errors of the time delay

The estimation of the time delay is crucial to the algorithms (3), (5) and (6).
For estimating it, there are several methods, such as calculating the auto-
correlation of the mixtures [6], and the heart instantaneous frequency (HIF)
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Table 2
The relationship between the cross-correlation matrix Rx(τ∗) and the
averaged performance index over 100 independent trials in Section 4.1.
In addition, the corresponding theoretical performance index is given as
well. PI1 and P̂ I1 are, respectively, the theoretical performance index
and the averaged one of (6). Note that here we multiply the Rs(τ∗) by
a scalar that makes the element in the first row and the first column of
Rs(τ∗) unity.

P 1 2 3 4

a 1.000 1.000 1.000 1.000

b 0.902 0.635 0.274 -0.079

c 0.200 0.108 -0.041 -0.167

PI1 0.390 0.021 0.000 0.005

P̂ I1 0.447 0.035 0.000 0.004

estimation technique [7]. In many applications the task of estimating τ ∗ is not
difficult, but estimation errors are inevitable. For many extraction algorithms
that use one time delay, such as the Barros’s algorithm (3), their performance
is greatly affected by the estimation errors of the time delay. We will see,
however, that the new algorithm (6) is relatively robust to the errors, if some
techniques are taken.

To verify this, we carry out another simulation using the same source signals
(Fig.1). Assume we only know the value of the fundamental period of the
FECG lies in the range [109, 115] (the case often appears when the estima-
tion errors cannot be avoided). We set τ ∗ = 109, 110, 111, 112, 113, 114, 115,
respectively, for the Barros’s algorithm (3). The performance is measured by

PI2 = −10E{lg(s(k)− s̃(k))2}, (dB) (15)

where s(k) is the desired source signal (i.e., the FECG), and s̃(k) is the ex-
tracted signal (both of them are normalized to have zero mean and unit vari-
ance). The higher PI2 is, the better the performance is. We have found that
only for τ ∗ = 112 (i.e., the estimated time delay is accurately equal to the
period of the FECG), the Barros’s algorithm can extract the FECG with the
averaged performance index P̂ I2 = 6.2 dB (averaged over 100 independent
trials), while for other values it fails.

Similarly, we run the proposed algorithm (6). Since we do not know the true
value of the fundamental period, we cannot directly perform it. However, we
can modify it as follows,
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w= EIG

(
3∑

i=1

(
Rx(109i) + Rx(109i)T + Rx(110i) + Rx(110i)T

+Rx(111i) + Rx(111i)T + Rx(112i) + Rx(112i)T + Rx(113i)

+Rx(113i)T + Rx(114i) + Rx(114i)T + Rx(115i) + Rx(115i)T
))

. (16)

The technique is feasible as long as the estimation errors are not too large
(generally the condition is satisfied in practice). The averaged performance
index over 100 independent trials is 21.5 dB. The results show that even if we
cannot obtain the accurate fundamental period of the desired source signal,
we still can get satisfying results by the new algorithm (6).

4.3 Experiment on real-world ECG data

Now we test our algorithm for the well-known ECG data (Fig.2) measured
from a pregnant woman and distributed by De Moor [10]. Sampling rate is
250 Hz. From it one can see the strong and slow heart beating of the mother
and the weak and fast one of the fetus. The task is to extract the FECG.
The estimated fundamental period is 112 sampling period [6]. Then three
algorithms are performed. One is the famous second-order statistics based
SOBI algorithm 2 [11], for which the number of delayed covariance matrices
is 150. Another algorithm is the Barros’s algorithm (3), for which τ ∗ = 112.
The third algorithm is our algorithm (6), for which P = 3 and τ ∗ = 112.
The results are shown in Fig.3 (Note that SOBI algorithm is a blind source
separation algorithm, and it separates all the source signals at one time).
Obviously, the extracted FECG by our algorithm (6) is the clearest, while the
one by Barros’s algorithm is mixed by noise. The result by the SOBI algorithm
is the worst, which is mixed by the heart beating of the mother and lots of
noise.

5 Conclusions

In this paper we propose a fast and robust source extraction algorithm based
on eigenvalue decomposition of several delayed covariance matrices. It provides
stable and good performance, confirmed by theoretical analysis and simula-
tions. It is clear to see that the proposed algorithm relates to the principle
component analysis (PCA). Thus many results [1,5,8] on PCA can be used to
improve the algorithm, which is our future work.

2 The Matlab files come from http://www.bsp.brain.riken.go.jp/ICALAB/
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Fig. 2. ECG data from a pregnant woman
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Fig. 3. Extracted FECG. (a) is separated by SOBI algorithm [11]; (b) is by Barros’s
algorithm (3); (c) is by our algorithm (6).

Note that developing algorithms by eigenvalue decomposition is one of the
trends in BSE and BSS. To achieve satisfying results, the previous algorithms
[13] use lots of delayed covariance matrices of observations, say, 500 matrices,
thus reducing algorithms’ efficiency. The situation also appears in the joint
diagonalization based algorithms [11,12]. This paper, however, indicates that
it is possible to greatly reduce the number of used matrices by exploiting a
priori information. Another work on this topic refers to [4,14].
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