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behavioral, and contextual data that may become ubiquitous in the future.
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ABSTRACT | Because of the increasing portability and wear-

ability of noninvasive electrophysiological systems that record

and process electrical signals from the human brain, automat-

ed systems for assessing changes in user cognitive state, intent,

and response to events are of increasing interest. Brain–

computer interface (BCI) systems can make use of such

knowledge to deliver relevant feedback to the user or to an

observer, or within a human–machine system to increase safety

and enhance overall performance. Building robust and useful

BCI models from accumulated biological knowledge and

available data is a major challenge, as are technical problems

associated with incorporating multimodal physiological, be-

havioral, and contextual data that may in the future be

increasingly ubiquitous. While performance of current BCI

modeling methods is slowly increasing, current performance

levels do not yet support widespread uses. Here we discuss the

current neuroscientific questions and data processing chal-

lenges facing BCI designers and outline some promising

current and future directions to address them.
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interface (BCI); cognitive state assessment; effective connectivity;

electroencephalogram (EEG); independent component analysis
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I . INTRODUCTION

Electroencephalography (EEG) is the recording of electric

potentials produced by the local collective partial synchrony of
electrical field activity in cortical neuropile, today most

commonly measured by an array of electrodes attached to the

scalp using water-based gel [1], [2]. EEG is the most widely

known and studied portable noninvasive brain imaging

modality; another, less developed and not considered here,

is functional near-infrared spectroscopy (fNIR). The first

report of signals originating in the human brain and recorded

noninvasively from the scalp was that of Berger in 1924 [3].
Half a century later both engineers and artists begin to

seriously consider the possible use of EEG for active

information exchange between humans and machines [4]. It

is now generally accepted that the spatio–temporal EEG

activity patterns correlate with changes in cognitive arousal,

attention, intention, evaluation, and the like, thereby pro-

viding a potential Bwindow on the mind.[ However, the bio-

logical mechanisms that link EEG patterns to these or other
aspects of cognition are not understood in much detail [2].

A companion paper [5] describes how, unlike most

other forms of functional brain imaging available today

Manuscript received December 4, 2011; accepted December 20, 2011. This work was

supported by the Army Research Laboratories and was accomplished under

Cooperative Agreement Number W911NF-10-2-0022, as well as by a gift from The

Swartz Foundation, Old Field, NY. The views and conclusions contained in this

document are those of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Army Research Laboratory or the

U.S. Government. The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright notation herein.

S. Makeig is with the Swartz Center for Computational Neuroscience, Institute for

Neural Computation and the Department of Neurosciences, University of California

San Diego (UCSD), La Jolla, CA 92093-0559 USA (e-mail: smakeig@ucsd.edu).

C. Kothe is with the Swartz Center for Computational Neuroscience, Institute

for Neural Computation, University of California San Diego (UCSD), La Jolla,

CA 92093-0559 USA.

T. Mullen is with the Swartz Center for Computational Neuroscience, Institute for

Neural Computation and the Department of Cognitive Science, University of California

San Diego (UCSD), La Jolla, CA 92093-0559 USA.

N. Bigdely-Shamlo, Z. Zhang, and K. Kreutz-Delgado are with the Swartz Center for

Computational Neuroscience, Institute for Neural Computation and the Department

of Electrical and Computer Engineering, University of California San Diego (UCSD),

9500 Gilman Drive, La Jolla, CA 92093-0559 USA.

Digital Object Identifier: 10.1109/JPROC.2012.2185009

| Proceedings of the IEEE 10018-9219/$31.00 �2012 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[functional magnetic resonance imaging (fMRI), magne-
toencephalography (MEG), positron emission tomography

(PET)], EEG sensor systems can be made comfortably

wearable and thus potentially usable in a wide range of

settings. Another companion paper [6] further explores

how advances in brain signal processing and deeper

understanding of the underlying neural mechanisms may

make important contributions to enhancing human

performance and learning. The main focus of this paper
is the description of the current state and foreseeable

trends in the evolution of signal processing approaches

that support design of successful brain–computer interface

(BCI) systems that deliver interactive cognitive and mental

assessment and/or user feedback or brain-actuated control

based on noninvasive brain and behavioral measures.

Brain–computer interactions using invasive brain mea-

sures, while also of intense current research interest and
demonstrated utility for some applications [7]–[9], will

here be discussed only briefly.

We believe that in the coming decades adequate real-

time signal processing for feature extraction and state pre-

diction or recognition combined with new, noninvasive,

and even wearable electrophysiological sensing technol-

ogies can produce meaningful BCI applications in a wide

range of directions. Here, we begin with a brief primer on
the neuroscientific basis of cognitive state assessment, i.e.,

the nature of the EEG itself, followed by a review of the
history and current state of the use of signal processing in

the relatively young BCI design field and then consider

avenues for its short-term and medium-term technical

advancement. We conclude with some thoughts on

potential longer term developments and perspectives.

A. What is EEG?
Electrical activity among the estimated twenty billion

neurons and equal or larger number of nonneural cells that

make up the human neocortex (the outer layer of the brain)

would have nearly no net projection to the scalp without

the spontaneous appearance of sufficiently robust and/or
sizable areas of at least partial local field synchrony [1], [2],

[10]. Within such areas, the local fields surrounding pyra-

midal cells, aligned radially to the cortical surface, sum to

produce far-field potentials projecting by passive volume

conduction to nearly all the scalp EEG sensors. These ef-

fective cortical EEG sources also have vertical organization

(one or more net field sources and sinks within the six

anatomic layers), though currently recovery of their exact
depth configuration may not be possible from scalp data

alone. At a sufficient electrical distance from the cortex,

e.g., on the scalp surface, the projection of a single cortical

patch source strongly resembles the projection of a single

cortical dipole termed its equivalent dipole [11], [12].

Fig. 1. (Left) Simulation of a cm2-scale cortical EEG source representing an area of locally synchronized cortical surface-negative

field activity, and (right) its broad projection to the scalp. From an animation by Zeynep Akalin Acar using a biologically realistic

Boundary Element Method (BEM) electrical head model built from an individual subject MR head image using the

Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) [13] and Freesurfer [14].
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The very broad EEG spatial point-spread function,
simulated in Fig. 1 using a realistic electrical forward head

model [13]–[15], means that locally synchronous activities

emerging within relatively small cortical areas are pro-

jected and summed at nearly all the widely distributed

scalp electrodes in an EEG recording [16]. Unfortunately,

the naive viewpoint that EEG potential differences be-

tween each scalp channel electrode and a reference elec-

trode represent a single EEG signal originating directly
beneath the active scalp electrode continues to color much

EEG analysis and BCI design.

When working with EEG it is also important to bear in

mind that the circumstances in which local cortical field

synchronies appear are not yet well understood, nor are

the many biological factors and influences that determine

the strongly varying time courses and spectral properties

of the EEG source signals. Our relative ignorance regarding
the neurobiology of EEG signals is, in part, a side effect of

the 50-year focus of the field of animal electrophysiology on

neural spike events in single-cell neural recordings [17].

During much of this period, studies of the concurrent lower

frequency spatio–temporal field dynamics of the cortical

neuropile were rare, though Freeman observed and

modeled emergent, locally near-synchronous field patterns

[18] he terms Bphase cones[ [19] and more recently Beggs
and Plenz have modeled similar Bavalanche[ events [20],

both descriptions consistent with production of far-field

potentials that might reach scalp electrodes.

1) Nonbrain EEG Artifacts: In addition to a mixture of

cortical EEG source signals, each scalp EEG recording

channel also sums potentials from nonbrain sources

(artifacts) and channel noise. Fortunately, in favorable re-
cording circumstances (e.g., using modern recording

equipment well connected to a quiet subject in an elec-

trically quiet laboratory) EEG sensor noise is relatively

small. However, the strength of contributions from non-

brain sources (eye movements, scalp muscles, line noise,

scalp and cable movements, etc.) may be larger than the

contributions of the cortical sources. EEG recorded outside

the laboratory using new wearable EEG systems with
variable conductance between the electrodes and scalp

must also take into account and handle possible large, non-

stationary increases in EEG sensor, and/or system noise

relative to laboratory recordings. Thus, for robust and

maximally efficient cognitive state assessment or other BCI

applications, explicit or implicit identification and sepa-

ration of brain source signals of interest from nonbrain and

other, less relevant brain signals is important [21].

2) Multiscale Recording and Analysis: A major obstacle to

understanding how the brain supports our behavior and

experience is that brain dynamics are inherently multi-

scale. Thus, their more complete understanding will likely

require the development of extremely high-density, multi-

resolution electrical imaging methods [22]. Unfortunately,

to date cortical field recordings sufficiently dense to fully
reveal the spatio–temporal dynamics of local cortical fields

across spatial scales are not yet available. We believe that

the most effective real-world applications using EEG signals

will depend on (but may also contribute to) better

understanding of the biological relationships between neural

electrical field dynamics and cognitive/behavioral state. This

knowledge is currently still largely inferred from observed

correlations between EEG measures and subject behavior or
experience, although efforts are underway both to observe

the underlying biological phenomena with higher resolu-

tion [23], [24] and to model the underlying biological

processes mathematically [25]–[27] in more detail.

3) The EEG Inverse Problem: Recovery of the cognitive

state changes that give rise to changes in observed EEG (or

other) measures fundamentally amounts to an inverse
problem, and although at least the broad mixing of source

signals at the scalp is linear, recovery of the (latent) source

signals from given scalp data without additional geometric

constraints on the form of the source distributions is a

highly underdetermined problem [28]. Even when given

an accurate electric forward head model [15] and a near-

exact cortical source domain model constructed from the

subject’s magnetic resonance (MR) head image, finding the
sources of an observed EEG scalp pattern remains chal-

lenging. However, finding the source of a Bsimple[ EEG

scalp map representing the projection of a single compact

cortical source domain allows for favorable assumptions (as

discussed below) and is thereby more tractable.

4) Response Averaging: Most recent approaches to

estimating EEG source spatial locations or distributions
have begun by averaging EEG data epochs time locked to

some class of sensory or behavioral events posited to

produce a single mean transient scalp-projected potential

pattern. This average event-related potential (ERP) [29]

sums projections of the (typically small) portions of source

activities in relevant brain areas that are both partially time

locked and phase locked (e.g., most often positive or negative)

at some fixed latencies relative to the events of interest. Average
ERPs were arguably the first form of functional human brain

imaging, and the study of scalp channel ERP waveforms has

long dominated cognitive EEG research.

ERP models have been the basis of many BCI designs as

well. Unfortunately, ERP averaging is not an efficient

method for finding scalp projections of individual EEG

source areas other than those associated with the earliest

sensory processing. Also, average ERPs capture only one
aspect of the EEG activity transformation following mean-

ingful events [30]. BCI designs based on an ERP model

therefore ignore other information contained in EEG data

about subjects’ cognitive responses to events, and also

require knowing the times of occurrence of such events.

Opposed to these are BCI methods that continuously mo-

nitor the EEG data for signal changes in the power spectrum
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and other higher order statistics, often data features derived

from latent source representations of the collected signals.

5) Blind Source Separation: In the last 20 years, methods

have been developed for estimating the latent time courses

and spatial projections of sources of spontaneous or evoked

EEG activity. Independent component analysis (ICA) and

other blind source separation (BSS) methods use statistical

information contained in the whole data to learn simple

maps representing the projections of individual EEG

source areas to the scalp channels [31], [32]. These can

also aid inverse source localization methods in spatially

Fig. 2. A conceptual schematic overview of evolving BCI design principles. Data obtained from sensors and devices within, on, and around a

human subject (bottom left) are transformed into informative representations via domain-specific signal preprocessing (middle left). The

resulting signals are combined to produce psychomotor state representations (upper left) using general-purpose inference methods, producing

timely estimates of the subject’s cognitive, affective, and sensorimotor state, including their cognitive and affective responses to events and

cognitive/behavioral intent). These estimates may be made available to the systems the subject is interacting with. Similar cognitive state

information derived from (potentially many) other subjects (lower right), intelligently combined, can shape statistical constraints or

priors (middle right), thereby enhancing individual state models. Mappings between data representations and psychomotor states (left)

allow exploratory data modeling (top right), providing new hypotheses that can guide the confirmatory scientific process (middle right).
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localizing the sources of both ongoing and evoked EEG
activity [33], [34]. Recently, we have demonstrated that

measures of source signals unmixed from the continuous

EEG by ICA may also be used as features in BCI signal

processing pipelines, with two possible advantages. First,

they allow more direct use of signals from cortical areas

supporting the brain processes of interest, unmixed from

other brain and nonbrain activities [35]. Second, source-

resolved BCI models allow for examination of the ana-
tomically distinct features contributing most information,

and thereby can inform neuroscientific inquiry into the

brain processes that support the cognitive process of

interest [36].

To date, most BCI signal processing research has not

concentrated on neurophysiological interpretation. We ar-

gue, however, that treating the EEG and other data used to

design and refine a successful BCI as unknown signals
from a biological Bblack box[ is unlikely to produce as

efficient algorithms as those operating on better neuro-

scientifically informed and interpretable data models; in

particular, informed models may have less susceptibility to

overfitting their training data by incorporating biologically

relevant constraints. BCI research should remain, there-

fore, an enterprise requiring, prompting, and benefiting

from continuing advances in both signal processing and
neuroscience.

II . EARLY BCI DESIGNS

BCI design is still a relatively young discipline whose first

scientific formulation was in the early 1970s [4]. In its

original definition, the term referred to systems that pro-

vide voluntary control over external devices (or prosthe-
ses) using brain signals, bypassing the need for muscular

effectors [37], originally aimed at restoring communica-

tion for cognitively intact but completely paralyzed (locked

in) persons. This is a somewhat restrictive definition, thus

various extensions have been proposed in recent years as

the field has grown. These include Bhybrid BCIs[ [38] that

relax the restriction of input signals to brain activity mea-

sures to possibly include other biosignals and/or system
state parameters, and Bpassive BCIs[ [39], [40] that pro-

duce passive readout of cognitive state variables for use in

human–computer applications without requiring the user

to perform voluntary control that may restrict performance

of and attention to concurrent tasks. Over the last

3–5 years, these developments have opened a steadily

widening field of BCI research and development with a

broad range of possible applications [41].
Since BCI systems (under any definition) transduce

brain signals into some form of control or communication

signals, they are fundamentally brain (or multimodal)

signal processing systems. Indeed, the earliest tested BCI

systems were essentially built from single-channel band-

power filters and other standard signal processing compo-

nents such as the surface Laplacian defined a priori [42], [43].

These primitives were found to detect some features of
brain signals relatively well, such as the circa 11-Hz central

mu rhythm associated with motor stasis [44] over which

many (but not all) subjects can gain voluntary control, or

some wavelet-like ERP peak complexes found to indicate

enhanced cognitive evaluation of an event by the subject,

such as the BP300[ complex following anticipated events

[30], [45].

The purpose of applying these filtering methods was to
emphasize relevant combinations of cortical source activities

associated with the subject’s movement intent or imagina-

tion. These original designs typically had preselected

parameters, for example, frequency band(s) that were at

best only slightly adapted to individual users. Weeks to

months of practice were typically required for a user to

acquire the skill of controlling a device (for example, a

cursor) using these early BCI systems, as subjects learned to
adapt their brain waves to match the expectations of the BCI

designers [46]. Not surprisingly, such systems were widely

considered to be of foreseeable practical use only to a

relatively few cognitively intact Blocked in[ users suffering

near-complete loss of muscular control [47], [48].

A. Introduction of Machine Learning Approaches
In the early 1990s, the BCI field saw a paradigm shift

with the influx of adaptive signal processing and adaptive

learning ideas. One such thrust was inspired by the under-

standing that neural networks are capable of adapting to

the information structure of a very wide range of source

signals Bblindly[ without foreknowledge of the specific

nature of the transformations needed to produce more in-

formative representations. This resulted in the first BCI

research applications of ICA [21], [49], anatomically fo-
cused beamforming [50], and other neural network learn-

ing methods (unsupervised and supervised), which have

produced a series of novel insights and successful appli-

cations [51]–[53].

A concurrent second approach to subject adaptivity

introduced classical statistical learning into the BCI field, one

of the simplest examples being Fisher’s discriminant analysis

(FDA) and the related linear discriminant analysis (LDA)
[54], and its later regularized extensions [55], [56], all of

which have been applied to EEG and other forms of

electrophysiological data with distinct success. Today, these

are among the most frequently used statistical methods for

BCI design [51], [57], [58]. Under some conditions linear

models like these can be shown to discover optimal statistical

models linking input patterns to output signals [58]. In

themselves, however, off-the-shelf machine learning (ML)
tools cannot solve the statistical problems arising from rarely

(if ever) having access to enough model training data to

completely avoid overfitting. This results in a lack of

generality and robustness to changes in the many aspects

of the recorded signals that do not contribute directly to the

parameters of interest. In part, this is because these methods

require information from both ends of the brain signal
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decoding pipeline to find the desired model parameters:
input data in some appropriate representation, and

corresponding desired output values. Information about the

desired output is often irregularly and sparsely available, and

must usually be extracted from dedicated calibration

measurementsVnot unlike using contemporary voice rec-

ognition software.

ML is not yet a consolidated field, but rather a broad

assortment of techniques and algorithms from a variety of
schools or conceptual frameworks such as neural networks

[59], statistical learning theory [60], [61], decision theory [62],

or graphical models [63]. Yet today ML plays a

fundamental role in BCI design because the functional

role of any given brain source or the precise configuration

of a source network may be specific to the individual and,

as a consequence, not identifiable in advance [64]. This is

the case both at the near cm2-scale of locally synchronous
cortical EEG source patches and at finer spatial scales

[65]. For this reason, the modeling is usually framed as a

Bsupervised[ ML problem in which the task is to learn a

mapping from some input (feature) space onto an output

(category) space from a set of (input, output) training

data examples extracted from a dedicated calibration

recording [66]. A noteworthy complementary approach is

Bunsupervised[ learning that captures structure latent in
the input space under certain assumptions without use of

Bground truth[ target values [60].

1) Gaussian Assumptions: Several well-known assump-

tions underlie the majority of popular ML approaches in

BCI research. One that has strongly influenced the design

of adaptive BCI systems is Gaussianity of input-space dis-

tributions. This assumption tends to make a vast range of
statistical problems analytically tractable, including those

modeling brain processes and their functional associations

via methods such as linear and quadratic discriminant ana-

lysis [58], linear and ridge regression [67], Gaussian mixture

models [68], kernel formulations such as Gaussian process

regression [69] as well as most BCI approaches built on signal

covariance, like common spatial patterns [70] or the dual-

augmented Lagrangian (DAL) approach [71]. However, the
BCI field is increasingly running into the limits of this not

quite justified assumption.

For input features based on scalp EEG measurements, a

Gaussian assumption might be defended by application of

the central limit theorem to the multitude of stochastic

processes that contribute to the signal. However, measur-

able EEG signals of interest are typically generated by field

activities of highly dependent neural processes. Scalp-
recorded brain signals are also contaminated by a variety of

often large, sporadic rare nonbrain source artifacts [72],

[73]. Both these factors can render the probability density

functions of the observed signal distributions heavy-tailed,

strongly distorting estimates made using Gaussian assump-

tions. Improving on these assumptions, however, requires

additional computational and theoretical machinery.

III . CURRENT BCI DESIGN DIRECTIONS
AND OPPORTUNITIES

Below we discuss a variety of emerging or foreseeable
near-term directions and avenues for improvement in de-

veloping models for online cognitive state assessment. We

point out a variety of possible advantages derivable from

explicit or implicit source representations, such as the

ability to compute informative source network properties.

Source representations also allow coregistering large pools

of empirical data whose shared statistical strength may

improve estimation accuracy, robustness, and specificity
under real-world conditions. We then discuss the impor-

tant multimodal data integration problem.

A. ICA and Related Latent Source Models
Advances in signal processing and ML affect all aspects

of EEG analysis [74]. BSS, in particular ICA [31], [32], [75]–

[77], while still far from being universally adapted, has had a

large effect on the EEG field in the past decade, playing a

significant role in removal of artifacts from EEG data [78], in

analysis of EEG dynamics [32], [79]–[81], for BCI design

[36], [82]–[84], and in clinical research applications [33],

[85], [86]. The basic ICA model assumes the multichannel

sensor data are noiseless linear mixtures of a number of
latent spatially stationary, maximally independent, and non-

Gaussian distributed sources or source subspaces. The

objective is to learn an Bunmixing[ matrix that separates the

contributions of these sources (or source subspaces) from

the observed channel data based on minimizing some

measure of their temporal dependency.

While linear propagation to and summation of EEG

signals at the scalp channels is a safe assumption [1], the
maximal independence and spatial stationarity assump-

tions used in temporal ICA may hold less strictly in some

cases. Thus, future directions in BCI research based on

ICA may exploit related multiple mixture [87], [88], con-

volutive mixture [89], and adaptive mixture [88] models

that have been introduced to model spatio–temporal non-

stationarity [90], [91], or independence within specific

frequency bands [92] and other subspaces [93], [94], or to
integrate other tractable assumptions [95]. Although the

details of cortical geometry and hence, source scalp pro-

jections, as well as source temporal dynamics vary across

individuals, accumulating some source model information

through simultaneous processing of data from multiple

subjects might prove beneficial [96].

ICA does not use an explicit biophysical model of source

and channel locations in an electrical forward head model.
While this might be seen as an insufficiency of the approach,

it may also avoid confounding effects of head and

conductance modeling errors while making efficient use of

statistical information in the data. Despite the demonstrated

utility of advanced ICA and related algorithms, because of

the lack of Bground truth[ in typical EEG data sets, its real-

world estimation errors are not easily quantified. Continued
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work on statistical modeling and validation [97] are needed
to assess the reliability of ICA separation [35], [98]–[100]

and to minimize propagation of estimation errors through

data modeling that follows ICA decomposition.

Comparing brain processes across individuals is ano-

ther important problem both for EEG analysis and for

building BCI models using data from more than one

subject. The variability of folding of the cortical surface across

individuals means it is not sufficient to simply identify com-
ponent processes common to two or more individuals by

their scalp projection patterns. Promising avenues for future

methods development here include joint diagonalization [101]

and extracting equivalent component clusters or brain

domains using relevant constraints including their coregis-

tered 3-D equivalent dipole positions [35].

B. Unsupervised Learning and Adaptive Filtering
Unsupervised learning [60] and adaptive signal proces-

sing [102] generally both perform adaptive modeling and

transformation of data samples. Among the original exam-

ples of their use for cognitive state assessment are ICA [49],

adaptive noise canceling [103], and variants of the Kalman

filter [104]. More recently, work has expanded into the

promising areas of dictionary learning [105], unsupervised

deep learning [106], and entirely new directions such as
stationary subspace analysis (SSA) [107]. One of the

currently most popular BCI algorithms, common spatial

patterns (and its 20 or more extensions) [70], [108]–[111],

can also be viewed as producing adaptive spatial filters,

although adapted using a supervised cost function involving

a categorical target or label variable. Many of these tech-

niques serve either of two purposes. The first is to generate

better (e.g., more informative, interpretable, or statistically
better behaved) signal features or latent variables based on

information readily available in the signal itself, ideally

features that make subsequent processing tractable (or

trivial). A second goal is to alleviate (or account for, as in

coadaptive calibration) the effects of nonstationarity in the

underlying brain and/or nonbrain processes, an important

avenue of development that could affect almost all BCI

methodology [112], [113].

C. Sparsity Assumptions
Signal processing exploiting data or parameter sparsity

is now emerging as a central tool in BCI design as in many

other disciplines and can serve to express assumptions of

compactness, nonredundancy, or mutual exclusivity across

alternative representations. When applied to suitable data,

sparse signal processing and modeling approaches can
achieve dramatically better statistical power than methods

that ignore sparsity, particularly when applied to sparse

but very high-dimension data [114]–[117]. Sparse repre-

sentations may also be regarded as a numerical application

of Occam’s razor (Bamong equally likely models the sim-

plest should be favored[). For example, because of func-

tional segregation in cortex, constellations of brain EEG

sources linked to a specific aspect of cognitive state of
interest (for example, imagining an action) may be assumed

to be a sparse subset of the entire source activity [118], [119].

A useful application of sparse signal processing is to

precisely estimate EEG source distributions [120]–[123].

Potential real-time EEG applications could include online

scalp and intracranial EEG source imaging to guide neuro-

surgeons [50], [124]. Sparse Bayesian learning (SBL) [125]

is a particularly promising framework for source localiza-
tion and modeling of spatio–temporal correlations among

sources [16], [126], [127]. Some other popular source lo-

calization algorithms are special cases of SBL and can be

strengthened within the SBL framework [128]. While not

designed for real-time implementation, SBL speed can be

enhanced [63], [129].

Spatio–temporal (e.g., groupwise) sparsity has been ap-

plied successfully to source signal connectivity [130]–[132]
(discussed below), where it can lead to substantial

reductions in the number of observed data samples re-

quired to accurately model a high-dimensional, sparsely

structured system. Well-established sparse regression

methods such as Lasso [60] provide improved estimates

of high-dimensional multivariate connectivity over both

unconstrained and regularization approaches [130], [133],

[134]. Sparse modeling may also use graph theoretic me-
trics to extract simple topological features from complex

brain networks represented as directed or undirected

graphs [132], [135], [136].

A complementary and often reasonable assumption is

that the biosignal data are smooth across closely related

parameters [137], [138]. Several recent further extensions

of the sparsity concept, such as low-rank structure [71] or

structured sparsity [139], can also be formulated as tracta-
ble convex and Bayesian estimation problems.

D. Exploiting Dynamic Brain Connectivity
Historically, nearly all BCI systems have been based on

composed univariate signal features. However, as the pri-

mary function of our brains is to organize our behavior (or

more particularly, its outcome), modeling brain activity as

a set of disjoint cortical processes clearly may ignore in-
formation in the EEG data about the complex, precisely

timed interactions that may be required to fulfill the

brain’s primary role. Transient patterns of cortical source

synchrony (or other dynamics) that modulate information

transmission among noncontiguous brain areas are posited

to play critical roles in cognitive state maintenance,

information processing, and motor control [140]–[143].

Therefore, an ability of BCI systems to monitor dynamic
interactions between cortical source processes could pro-

vide key information about unobserved cognitive states

and responses that might not be obtainable from composed

univariate signal analyses [142].

1) Effective Versus Functional Connectivity: Functional

connectivity refers to symmetric, undirected correlations
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among the activities of cortical sources [144]. The earliest
functional connectivity studies examined linear cross cor-

relation and coherence between measured EEG scalp

signals [145], [146]. These techniques alone carry a serious

risk of misidentification in systems involving (closed-loop)

feedback, subject to correlated noise, or having strong

process autocorrelation [147]–[149]. Although neural

systems typically exhibit one or more of these character-

istics [150], cross correlation and coherence are still among
the most commonly used methods for connectivity analysis

in the neurosciences [151], [152].

A general deficit of functional connectivity methods is

that, being correlative in nature, they cannot be used to

identify asymmetric information transfer or causal depen-

dencies between cortical sources. Thus, they cannot dis-

tinguish, for instance, between Bbottom–up[ (sensory !
cognitive) and Btop–down[ (cognitive ! sensory) inter-
actions between a set of sources. In contrast, effective con-
nectivity denotes directed or causal dependencies between

brain regions [144]. Currently popular effective connec-

tivity methods include dynamic causal modeling (DCM),

structural equation modeling (SEM), transfer entropy

(TE), and Wiener–Granger causal (WGC) methods, plus

related multivariate methods including the directed trans-

fer function (DTF) (reviewed in [151]–[154]). Because of
the potentially better fidelity of source-level multivariate

effective connectivity models to the underlying cortical

dynamics, we foresee a shift in BCI design research in

these directions.

2) Confirmatory Versus Exploratory Modeling: Methods

for effective connectivity analysis generally fall into two

categories: confirmatory and exploratory [155]. Confirma-
tory methods are hypothesis and model driven, seeking to

identify the most plausible model among a finite (generally

small) set of valid candidates. Conversely, exploratory

methods are data driven and capable of searching a large

model space without requiring a set of well-formed hypo-

theses. Confirmatory methods, such as DCM, have shown

demonstrated utility in neurobiological system identifica-

tion, and may be preferable for confirming a specific
hypothesis [156]. However, due to the current paucity in

accurate neurobiological models of networks underlying

complex cognitive states, and the computational complex-

ity of exploring very large model spaces using DCM, fast

exploratory methods such as WGC [157], [158] and exten-

sions thereof may be of greater utility for exploratory BCI

research in the near future. As distributed neurobiological

interactions are better understood, it will be fruitful to
incorporate this understanding explicitly into BCI designs

via model constraints or confirmatory model selection.

3) Bivariate Versus Multivariate Connectivity: Recent pre-

liminary BCI designs exploiting connectivity have utilized

bivariate functional connectivity estimates such as spectral

coherence and phase synchronization measures applied to

scalp channel pairs [159]–[161] with mixed performance
benefits [136], [162], [163]. While these studies have pri-

marily focused on simple motor imagery tasks, the most

significant gains from dynamic connectivity modeling

seem likely to be achieved when the objective is to identify,

in higher density data, a more complex cognitive state or

event linked to a specific pattern of multisource network

dynamics. However, for even moderately complex net-

works, bivariate connectivity methods suffer from a high
false positive rate due to a higher likelihood of excluding

relevant causal variables [164]–[166]. This leads to a

higher likelihood of incorrectly linking the same connec-

tivity structure to two or more fundamentally different

cognitive states, potentially limiting BCI performance. As

such, the use of multivariate methods is an important

consideration in efficient BCI design.

4) Source Versus Sensor Connectivity: Recent and current

advances in source separation and localization of electro-

physiological signals greatly expand possibilities for explicit

modeling of cortical dynamics including interactions

between cortical processes themselves. Assessing con-

nectivity in the cortical source domain rather than between

surface EEG channel signals has the advantage of greatly

reducing the risk of misidentifying network events because
of brain and nonbrain source mixing by volume conduction

[167], [168]. Shifting to the source domain furthermore

allows accumulating knowledge from functional neuroima-

ging and neuroanatomy to be used to constrain dynamic

connectivity models. In particular, noninvasive diffusion-

based MR imaging methods are providing increasingly

more accurate in vivo estimates of brain anatomical

connectivity that might also be used to constrain dynamic
connectivity models based on localized EEG source signals.

5) Adapting to Nonlinear and Nonstationary Dynamics:
Electrophysiological data exhibit significant spatio–

temporal nonstationarity and nonlinear dynamics [142],

[150]. Some adaptive filtering approaches that have

been proposed to incorporate nonstationarity include

segmentation-based approaches [169], [170] and factoriza-
tion of spectral matrices obtained from wavelet transforms

[171]. However, these techniques typically rely on multiple

realizations to function effectively, hindering their appli-

cation in BCI settings. Among the most promising alterna-

tives are state–space representations (SSR) that assume

the observed signals are generated by a partially observed

(or even fully hidden) dynamical system that can be

nonstationary and/or nonlinear [172]–[174]. A class of
methods for identifying such systems includes the long-

established Kalman filter [175] and its extensions in-

cluding the cubature Kalman filter [176], which exhibits

excellent performance in modeling high-dimensional

nonstationary and/or nonlinear systems [177]. These meth-

ods have led in turn to extensions of the multivariate

Granger-causality concept that allow for nonlinearity and/
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or nonstationarity while (in part) controlling for exoge-
nous or unobserved variables [174], [178], [179]. SSRs may

also flexibly incorporate structural constraints [180], spar-

sity assumptions [181], and non-Gaussian, e.g., sparse

(heavy-tailed) process distribution priors [182]. A final

advantage of the state–space framework is the potential to

jointly perform source separation and/or localization (as in

ICA) together with identification of source dynamics and

their causal interactions, all within a single unified state–
space model [134], [183].

The developments we briefly describe above suggest

that robust and efficient exploratory causal identification

in high-dimensional, partially observed, noisy, nonsta-

tionary, and nonlinearly generated EEG and other elec-

trophysiological signal sets may become a reality in the

coming decades. Leveraging the benefits of such ap-

proaches to maximize the range and robustness of brain-
based prosthetic control and cognitive state assessment

capabilities has great potential to become a key area of BCI

research and development.

E. Unified Modeling Approaches
Sparsity and Gaussianity are principles integral to both

machine learning and signal processing, exemplifying the

wide-ranging low-level connections between these dis-
ciplines despite differences in their problem formulations.

Other well-known links are convex optimization and

graphical models. Deep connections like these tend to seed

or enable the development of new methods and frame-

works in interdisciplinary domains such as BCI design [71],

[125], [184] and will likely be anchors for future BCI

methodology. For instance, while a common operating

procedure in current BCI system design is to extract and
pass domain-specific features through a processing pipe-

line built of standard signal processing and ML blocks, the

resulting approach may be neither a principled nor an

optimal solution to the overall problem. For example, it

has been shown that several of the most commonly used

multistage BCI approaches (including CSP followed by

LDA) can be replaced by a single joint optimization solution

(dual-spectral regularized logistic regression) that is prov-
ably optimal under principled assumptions [71]. A similar

unification can also be naturally realized in hierarchical

Bayesian formulations [184]. Unified domain-specific ap-

proaches like these may however require mathematically

sophisticated problem formulations and custom imple-

mentations that cut across theoretical frameworks.

F. General Purpose Tools
However, it is now easier than ever for application-

oriented scientists to design, verify, and prototype new

classes of methods, thanks to powerful tools like CVX for

convex optimization [185], BNT [186], BUGS [187], or

Infer.NET [188] for graphical modeling, and more spe-

cialized but fast and still generalizable numerical solvers

like DAL [189], glm-ie [190], or ADMM [191]. These and

other state-of-the-art tools are transforming what would
have been major research projects only 3–5 years ago into

Matlab (The Mathworks, Inc.) three liners that are already

finding their way into graduate student homework in

statistical estimation courses. As unified modeling and

estimation/inference frameworks become easier to use,

more powerful, and more pervasive, developing principled

and more close-to-optimal solutions will require far less

heavy lifting than today, leading to our expectation that
they will soon become the norm rather than the exception.

G. Mining Large Data Resources
Overcoming the moderate performance ceiling of the

current generation of BCI systems can be viewed as one of

the strongest challenges for BCI technology development

in the 21st century. One possible answer may lie in

Bscaling up[ the problem significantly beyond currently

routine data collection and signal processing limits. In the

future, more and more intensive computations may likely
be performed to calibrate brain activity models for indi-

vidual users, and these may take advantage of increasing

volumes of stored and/or online data. The potential ad-

vantages of such dual approaches to difficult problems are

common concepts in the current era of Bbig data[ but have

not yet been much explored in BCI research.

For example, current recording channel numbers are

orders of magnitude smaller than what will soon be or are
already possible using ever-advancing sensing, signal

processing, and signal transmission technology (see [5]),

though it is not known when diminishing returns appear in

the amount of useful information about brain processes

that can be extracted from EEG data as channel numbers

increase. Also, adaptive signal processing methods might

continue to adapt and refine the model of brain processes

used in working BCIs during prolonged use, thereby
enhancing their performance beyond current time-limited

laboratory training and use scenarios. In the majority of

contemporary BCI systems, the amount of training data

used for estimation of optimal model parameters amounts

to not more than a one-hour single-subject calibration

session, though for stable ML using much more data would

be preferable.

Another major limiting factor in BCI performance lies
in the tradeoff between adapting a model to the complex

context in which calibration data are initially acquired (for

example, subject fatigue or stress level, noise environment,

subject intent, etc.) and the desirable ability of the model

to continue to perform well in new operational conditions.

Although most BCI training methods attempt to maximize

generalization of their performance across the available

range of training and testing data, the lack of truly ade-
quate data that span a sufficiently rich range of situations

that could be potentially or likely encountered in practice

severely limits the currently achievable generalization of

BCI performance.
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1) Collaborative Filtering: For some applications, Bzero-
training[ [192] or Bcross-subject[ BCI designs, which are

usable without any need for individual calibration, are

highly desirable or even necessary. However, pure zero-

training BCI methods sacrifice performance compared to

BCI designs using individualized models. A promising so-

lution is to combine some training data or information

from a targeted subject with stored data and information

from a large collection of training sets collected from sim-
ilar subjects [67], [111], [193]. While incorporating rela-

tively small amounts of such data might give only marginal

improvement, the availability of massive amounts of data

can make tractable learning in previously unthinkably

sized parameter spaces, thereby gaining enough statistical

power to tune predictive models to more complex and

highly specific brain and behavioral models.

The continued scaling of both availability and cost of
computational resources and memory resources makes

possible the use of methods for production work that were

infeasible only a few years ago, particularly when it comes

to mining massive data sets (for example, brain and

behavioral recordings from hundreds to many thousands of

people) or solving optimization problems that involve

hundreds of thousands of parameters (for example, large-

scale functional connectivity estimates or full joint time/
space/frequency modeling of brain dynamics).

As a consequence, it has become possible to replace

usual ad hoc simplifying assumptions (including the need

for massive data dimensionality reduction) [194], [195] by

data-relevant assumptions (such as source or model spar-

sity or smoothness)Vor to propose to entirely displace

those assumptions by processing vast samples of routine

(or perhaps even high-quality) data from a large group of
subjectsVand thereby achieve asymptotic optimality

under quite mild conditions. Only after the first such pro-

jects are carefully explored will it be possible to empirically

estimate the ultimate BCI system performance bounds

attainable for a given goal and data type, thereby informing

further future roadmaps for sensor and processing

technology development.

The potential effectiveness of such approaches is rooted
in the genetic and social commonalities across subjects that

make it possible to find statistical support in the form of

empirical priors or constraints across populations (or

subpopulations) of users. In practice, this direction requires

further generalization of the problem formulation and some

dedicated assumptions as to the commonalities that are to be

exploited (for example, via coregistration or alignment of

individual signal representations [196]). This further
increases the need for approaches that are both highly

adapted to the particular data domain yet principled and

(ideally) provably optimal under reasonable assumptions.

2) Transfer Learning: A theoretical framework that

extends ML in these directions has recently been termed

transfer learning [197]. Transfer learning approaches [198]

have been successfully applied in a variety of fields includ-
ing computer vision [199] and natural language processing.

First, similar approaches have recently been demonstrated

for BCI training [67], [200]. Only algorithms that are

designed to exploit commonalities across similar users (for

example, users of similar age, gender, expertise, etc.),

tasks (for example, detecting either self-induced or ma-

chine errors), and operational context (e.g., while compos-

ing a letter or a piece of music) will be able to leverage this
soon-available auxiliary data to maximum effect.

Collaborative filtering and transfer learning methods

[201] designed to take advantage of such databases have

been in development for several years in other areas,

mostly fueled by needs of companies with ever-growing

data resources such as Amazon [202], NetFlix [203], and

Google [204]. These methods try to estimate some infor-

mation about each user (e.g., their movie preferences, or
for BCI their brain activity patterns) from small amounts

of information from that user (text query or brain signal)

combined with incomplete stored information from many

other users (even concurrently arriving information as in

crowd sourcing). These techniques have the potential to

elevate the performance and robustness of BCI systems in

everyday environments, likely bringing about a paradigm

shift in prevailing attitudes toward BCI capabilities and
potential applications.

H. Multimodal BCI Systems
Proliferation of inexpensive dry and wireless EEG ac-

quisition hardware, coupled with advances in wearable

electronics and smartphone processing capabilities may

soon result in a surge of available data from multimodal

recordings of many thousands of Buntethered[ users of
personal electronics. In addition to information about

brain activity, multimodal BCI systems may incorporate

other concurrently collected physiological measures (res-

piration, heart and muscle activities, skin conductance,

biochemistry), measures of user behavior (body and eye

movements), and/or ongoing machine classification of

user environmental events and changes in subject task or

challenge from audio, visual, and even thermal scene re-
cording. We have recently termed brain research using

concurrent EEG, behavioral, and contextual measures

collected during ordinary motivated behavior (including

social interactions) mobile brain/body imaging (MoBI)

[205]. Behavioral information may include information

regarding human body kinematics obtained from motion

capture [206], facial expression changes from video ca-

meras or EMG sensors [207], and eye tracking [208]. This
information will likely be partially tagged with high-level

contextual information from computer classification.

Progress in modeling each data domain, then capturing

orderly mappings between each set of data domains, and

mapping from these to the target cognitive state or re-

sponse presents significant challenges. However, the po-

tential benefits of effective multimodal integration for a
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much wider range of BCI applications to the general
population might be large, possibly even transformative

[6]. The most effective approaches for comparing and

combining disparate brain and behavioral data are not yet

known. Some progress has been made in integrating brain

activity with subject behavioral data in hybrid BCI systems

[38] and MoBI [209], [210]. Joint recordings of EEG and

functional near-infrared brain imaging data are possible

and could be near-equally lightweight [211].
Through efforts to develop more accurate automated

affect recognition systems, the field of affective computing

has shifted toward incorporating multimodal dataV
multiple behavioral (posture, facial expression, etc.) as

well as physiological measurements (galvanic skin re-

sponse, cardiac rhythmicity, etc.) [212]. EEG dynamics

have recently been shown to contain information about the

emotional state of the subject [213] and even the affective
quality of the music the subject is listening to [214] or

imagining [215], with different patterns of neck and scalp

muscle activity, recorded along with the EEG, contributing

additional nonbrain but also potentially useful information.

To overcome the significant challenge of learning map-

pings between high-dimensional, sometimes noisy, and

disparate brain and behavior modalities, it should be fruitful

to draw on successful applications of multimodal analysis in
established fields such as affective and context-aware

computing [216], as well as more general advances in ML

such as nonlinear dimensionality reduction, nonnegative

matrix and tensor factorization [95], multiview clustering

and canonical correlation analysis [217]–[219], meta-

classification approaches [220], [221], and hierarchical

Bayesian models and deep learning networks [184], [222].

Further incorporation of natural constraints and priors
derived from cognitive and systems neuroscience and

neuroanatomy, as well as those obtained from multisubject

transfer learning on large data sets, might allow design and

demonstration of a new generation of powerful and robust

BCI systems for online cognitive state assessment and other

applications. A particular type of constraint or assumption

that is still underrepresented in BCI and cognitive state

assessment algorithms today is probabilistic cognitive
modeling, which allows to incorporate finer grained and

potentially very complex knowledge about statistical

dependencies between cognitive state variables as well as

their relationship to behavioral dynamics.

IV. THE FUTURE EVOLUTION OF
BCI METHODS

A. BCI Technology for Cognitive and Mental
State Assessment

For BCI technology to exploit information provided

from expert systems modeling brain and behavioral data

(such as EEG and motion capture and/or scene record-

ing), in combination with rich if imperfect information

about subject environment and intent, some modality-
independent representations of high-level concepts in-

cluding human cognitive and affective processing states

could be highly useful. These representations could act as

common nodes connecting different aspects of each Bstate

concept.[ As a simple example, an emotional tone might

likely simultaneously affect EEG dynamics, gestural dyna-

mics (captured by body motion capture), and facial

expression (captured by video and/or EMG recording).
Development of intermediate representations of cognitive

state could not only facilitate the performance and flexi-

bility of BCI systems, but also make their results more

useful for other expert systems, again considering that

both BCI systems and intelligent computer systems will

doubtlessly grow far beyond their current levels of detail

and complexity. Possibly such representations might not

map simply onto current psychological terminology.
Availability of such representations and appropriate

functional links to different types of physiological and be-

havioral data would make it possible to combine and exploit

information from a variety of source modalities within a

common computational framework. Cognitive state and

response assessment, evolved to this stage, may lead to the

development of more efficient and robust human–machine

interfaces in a wide range of settings, from personal elec-
tronics and communication to training, rehabilitation, and

entertainment programs and within large-scale commercial

and military systems in which the human may increasingly be

both the guiding intelligence and the most unreliable link.

B. BCI Technology and the Scientific Process
Currently, we are witnessing massive growth in the

amount of data being recorded from the human brain and

body, as well as from computational systems with which

humans typically interface. In future years and decades,

mobile brain/body recording could easily become near ubi-

quitous [5]. As the amount of such data continues to

increase, semiautomated data mining approaches will be-

come increasingly relevant both for mundane BCI purposes

such as making information or entertainment resources
available to the user when they are most useful and also for

identifying and testing novel hypotheses regarding brain

support for human individual or social cognition and

behavior. BCIs, considered as a form of data mining, will

increasingly provide a means for identifying neural features

that predict or account for some observable behavior or

cognitive state of interest. As such, these methods can be of

significant use for taking inductive/exploratory steps in
scientific research. In recent years, this concept has been

considered by a growing number of researchers [223]–[226].

The meaningful interpretability of the features or feature

structures learned by such methods is required to allow them

make a useful contribution to scientific reasoning.

Scientifically accepted hypotheses about brain and

behavior may be incorporated into subsequent generations
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of BCI technology, improving the robustness, accuracy, and
applicability of such systemsVboth for BCI applications

with immediate real-world utility as well as for data

exploration for scientific purposes. Thus, machine intel-

ligence may increasingly be used Bin the loop[ of the

scientific process, not just for testing scientific hypotheses,

but also for suggesting themVwith, we believe, potential

for generally accelerating the pace of scientific progress in

many disciplines. Bayesian approaches are particularly
well suited to hypothesis refinement (e.g., taking current

hypotheses as refinable priors) and thus may represent a

particularly appropriate framework for future generations

of integrative BCI technology as continually expanding

computational power makes more and more complex

Bayesian analyses feasible.

C. BCI Systems: The Present and the Future
Today, the BCI field is clearly observing an asymptotic

trend in the accuracy of EEG-based BCI systems for cog-

nitive state or intent estimation, a performance trend that

does not appear to be converging to near-perfect estima-

tion performance but rather to a still significant error rate

(5%–20% depending on the targeted cognitive variable).

For BCI technology based on wearable or even epidermal

EEG sensor systems [227] to become as useful for everyday
activity as computer mice and touch screens are today,

technological and methodological breakthroughs will be

required that are not likely to represent marginal improve-

ments to current information processing approaches.

Some such breakthroughs may be enabled by Moore’s

(still healthy) law that should continue to allow extended

scaling up, likely also by orders of magnitude, both the

amount of information integrated and the amount of

offline and online computation performed. However, these
processing capabilities almost certainly will need to be

leveraged by new computational approaches that are not

considered under today’s resource constraintsVthus quite

possibly beyond those outlined or imagined here.

Continued advances in electrophysiological sensor

technology also have enormous potential to allow BCI

performance breakthroughs, possibly via extremely high-

channel count (thousands) and high-signal-to-noise ratio
(SNR; near physical limits) noninvasive electromagnetic

sensing systems that, combined with sufficient computa-

tional resources, could conceivably allow modeling of

brain activity and its nonstationarity at a range of spatio–

temporal scales. Alternatively, to reach this level of

information density, safe, relatively high-acceptance med-

ical procedures might possibly be developed and employed

to allow closer-to-brain source measurements (see [5]).
Continuing advances in BCI technology may also

increase imaginative interest, at least, in future develop-

ment of bidirectional, high-bandwidth modes of commu-

nication that bypass natural human sensory pathways, with

potential to affectVpositively and/or negativelyVmany

aspects of human individual and social life and society.

Meanwhile, the expanding exploration of potential means

and uses for BCI systems should continue to generate
excitement in the scientific and engineering communities

as well as in popular culture. h
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A. Kübler, R. Leeb, C. Neuper, K.-R. Müller,
and D. Mattia, BCombining brain-computer
interfaces and assistive technologies:
State-of-the-art and challenges,[ Front.
Neurosci., vol. 4, 2010, DOI: 10.3389/fnins.
2010.00161.

[42] J. R. Wolpaw, D. J. Mcfarland, and
T. M. Vaughan, BBrain-computer interface
research at the Wadsworth Center,[
IEEE Trans. Rehabil. Eng., vol. 8, no. 2,
pp. 222–226, Jun. 2000.

[43] N. Birbaumer, N. Ghanayim,
T. Hinterberger, I. Iversen, B. Kotchoubey,
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