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Comparison of Sparse Signal Recovery Algorithms
with Highly Coherent Dictionary Matrices: The

Advantage of T-MSBL
Zhilin Zhang

Abstract— This note reports a comparison result of twelve
typical sparse signal recovery algorithms when the dictionary
matrix is highly coherent. The dictionary matrix is a simplified
real-world lead-field matrix in EEG source localization. The
comparison result shows the superiority of T-MSBL [1] in this
case.

Index Terms— Sparse Signal Recovery, Compressed Sensing,
Sparse Bayesian Learning (SBL), T-MSBL

I. MODEL USED IN THE COMPARISON

The basic model of sparse signal recovery is

y = Φx + v, (1)

where Φ ∈ RN×M (N ¿ M) is a known dictionary matrix,
y ∈ RN×1 is an available measurement vector, and v is
an unknown noise vector. The task is to estimate the source
vector x, which has only K nonzero elements (K is a very
small number). Sparse signal recovery has wide applications in
source localization, radar detection, target tracking, and power
spectrum estimation, etc. In these applications, the dictionary
matrix is highly coherent.

In this note we report an experiment result, in which
twelve typical algorithms were compared when the dictionary
matrix Φ was highly correlated. The dictionary matrix was a
simplified real-world lead-field matrix used in EEG source lo-
calization (see Fig.1), whose size was 80×390. The maximum
coherence of the columns of Φ was 0.9983.

The twelve algorithms were:
• T-MSBL [1], downloaded at http://dsp.ucsd.
edu/˜zhilin/TMSBL.html. Although T-MSBL is
developed for the multiple measurement vector model [1],
it can also be used in this basic model (1);

• EM-SBL [2], downloaded at http://dsp.ucsd.
edu/˜zhilin/Software.html;

• ExCov [3], downloaded at http://home.eng.
iastate.edu/˜ald/ExCoV.htm;

• CoSaMP [4], downloaded at http://igorcarron.
googlepages.com/cosamp.m;

• Subspace Pursuit [5], downloaded at http://
igorcarron.googlepages.com/CSRec_SP.m;

• Approximate Message Passing (AMP) [6], downloaded
at http://documents.epfl.ch/users/k/ka/
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kamilov/www/ApproximateMessagePassing_
v1.tar.gz;

• Bayesian Compressive Sensing (BCS) [7], down-
loaded at http://www.ece.duke.edu/˜shji/
code/bcs_ver0.1.zip;

• Magic `1 [8], downloaded at http://users.ece.
gatech.edu/˜justin/l1magic/;

• Hard Thresholding Pursuit (HTP) [9], downloaded
at http://www.math.drexel.edu/˜foucart/
HTP.zip;

• Fast Bayesian Matching Pursuit (FBMP) [10], down-
loaded at http://www2.ece.ohio-state.edu/

˜zinielj/fbmp/download.html;
• FOCUSS [11], downloaded at http://dsp.ucsd.
edu/˜zhilin/Software.html;

• Smooth `0 [12], downloaded at http://ee.sharif.
ir/˜SLzero/.

The experiment was repeated 1000 trials. In each trial, the
number of nonzero elements in the source vector x was 3, i.e.
K = 3. These nonzero elements had the unit amplitude. Their
indexes in x were randomly chosen. The noise vector v was
generated as a Gaussian vector such that the SNR was 25dB.
The SNR is defined as SNR(dB) , 20 log10(‖Φx‖2/‖v‖2).

We used two performance measures. One was the Failure
Rate defined in [13], which indicated the percentage of failed
trials in the total trials. A failed trial was recognized if the
indexes of estimated x̂ with the K largest amplitude were not
the same as the true indexes. Another measurement was the
mean square error (MSE), defined by ‖x̂− x‖22/‖x‖22.

Note that some of the algorithms needed to know some
a priori information, and we fed these algorithms with the
required a priori information. Details are given in the following
list:

• T-MSBL: did not require any a priori information
• EM-SBL: did not require any a priori information
• ExCov: did not require any a priori information
• CoSaMP: fed with the number of nonzero elements
• Subspace Pursuit: fed with the number of nonzero ele-

ments
• AMP: did not require any a priori information
• BCS: did not require any a priori information
• Magic `1: needed to know the SNR to calculate the

regularization parameter
• FBMP: fed with the true SNR value, and the number of

nonzero elements (used to calculate the activity probabil-
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ity of elements)
• FOCUSS: fed with the true SNR value
• HTP: noise was removed, since it can only be used in

noiseless cases; in the noisy case it completely failed
• Smooth `0: noise was removed, since it can only be used

in noiseless cases; in the noisy case it completely failed
The comparison results are shown in Fig.2 (measured by

the Failure Rate) and Fig.3 (measured by the MSE). We
can clearly see T-MSBL has the best performance in both
measurement indexes. It is worth emphasizing that T-MSBL
does not require any a priori information; all the parameters
of the algorithm (such as the regularization parameter) are
automatically estimated.

All the codes and demos can be downloaded
at http://dsp.ucsd.edu/˜zhilin/papers/
Experiment.rar.

In many applications such as neuroelectromagnetic source
localization, Direction-of-Arrival estimation, radar detection,
under-water sonar processing, power spectrum estimation, the
ability of algorithms to handle the cases when dictionary
matrices are highly coherent is very important (especially
in the presence of noise). The simple experiment shows the
superiority of T-MSBL for these tasks.
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Fig. 1. EEG source localization.
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Fig. 2. Algorithm comparison in terms of the Failure Rate.
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Fig. 3. Algorithm comparison in terms of MSE. Here we only show the
MSE’s of 8 algorithms, since other algorithms completely failed as shown in
Fig.2.


