
1 

 

ReSync: Correcting the trial-to-trial asynchrony of event-related brain potentials 

to improve neural response representation 

Guang Ouyang 

Faculty of Education, The University of Hong Kong 

 

Contact information for corresponding authors: 

Address correspondence to: Dr. Guang Ouyang, Faculty of Education, The University 

of Hong Kong, Pokfulam, Hong Kong Island, Hong Kong, e-mail: ouyangg@hku.hk 

 

 

 

 

 

  



2 

 

 

Abstract: For various reasons, the brain response activities in EEG signals are not 

perfectly synchronized from trial to trial with respect to event markers – a problem 

commonly referred to as ERP latency jitter. EEG experimental technologies have been 

greatly advanced to reduce technical timing errors so as to reduce the jitter. However, 

there are intrinsic sources of jitter that are difficult, if not impossible, to remove. The 

problem becomes more complicated when facing multiple sub-components with 

different jitter. The jitter issue renders trial-averaged ERP inaccurate at best and 

misleading at worst. Effectively correcting the jitter has profound significance in brain 

research. I present a simple method and easy-to-use toolbox ReSync for correcting ERP 

jitters based on signal processing theories and techniques. ReSync can be used to 

correct multiple overlapping ERP sub-components with different degrees of jitter 

without affecting each other (including the static one). The theories, principles, 

technical details, and limitations of ReSync were presented in this paper, along with a 

series of simulation and real data examples for evaluating and validating the method. 

Keywords: Event-related potential; Brain response variability; ERP latency jitter 

correction; single trial ERPs; ERP decomposition 
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1. Introduction 

1.1 The Importance of Timing Precision in Brain Response Characterization by 

ERP 

Characterization of dynamic brain response to stimuli in cognitive tasks forms a 

cornerstone in neurocognitive research. To understand how dynamic cognitive 

processes unfold in the brain, neuroscientists usually give the brain a ‘kick’ (sensory 

input) and observe its dynamic neural response, like physicists studying the motions of 

a pendulum and its governing laws (Fig 1a, b). EEG technology provides a non-invasive 

means to observe such dynamic neural responses with millisecond resolution. As EEG 

signal contains a large amount of spontaneous activity, the pattern of the response 

activity to the ‘kick’, i.e., ERP, becomes visible only after averaging multiple trials (Fig 

1c). Such a trial-averaged ERP approach provides a great venue for studying brain 

responses and has given birth to fruitful research outcomes in cognitive research over 

the last century. 

However, the average ERP has long been recognized to be subject to the latency jitter 

issue – the single trial activation components may not be locked to the event marker 

with a fixed latency from trial to trial, rendering the average ERP a blurred 

representation of the neural response (Fig 1c, d). This variability may stem from neural 

functional mechanisms (e.g., adaptation and learning (Brooks, Carriot, & Cullen, 2015; 

Cavanagh & Frank, 2014; A. G. E. Collins & M. J. Frank, 2018; Dhawale, Smith, & 

Olveczky, 2017)), from dynamical nature of multilevel neural working (Mendonca et 

al., 2016), or simply from noise (Faisal, Selen, & Wolpert, 2008) or technical issues 

(Peirce et al., 2019). And furthermore, at neural cognitive level, different ERP sub-
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components may display different degrees or features of jitter. The latency jitter issue 

may mislead interpretations of neural mechanisms in neurocognitive research (Stokes 

& Spaak, 2016).  

 

Figure 1. EEG as a tool to characterize dynamic brain response. (a) A typical 

EEG experiment paradigm in which discrete events are presented to the 

subject to elicit brain response while continuous EEG signal is being recorded. 

(b) Eliciting brain response by stimulus can be analogized to hitting a 

pendulum and observing its dynamic response. (c) The average ERP method 

assumes that a specific response activity is evoked by stimulus and is added to 

the spontaneous activity (This is based on additive model. An alternative 

model, phase resetting model, assumes that ERP is generated by phase 

resetting of spontaneous activity, see (Sauseng et al., 2007)). By averaging a 

number of trials to stimulus onsets the spontaneous activity will be cancelled 

out and the evoked response will remain. However, due to the trial-to-trial 

variability of brain response, the average ERP may end up showing a blurred 

version of the response pattern. (d) Real EEG data showing that there are 

different sub-components in the single trial ERPs with differential latency 

variabilities. The data are single trials ERP sorted by P3 latencies from 

electrode CPz of a single subject from a face recognition task (Rellecke, 
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Sommer, & Schacht, 2012). 

 

2. Summary of previous solutions 

The pursuing of a more accurate characterization of brain response based on addressing 

the latency jitter issue has a long history and is still advancing. The earliest relevant 

attempt dates back to half a century ago (Woody & engineering, 1967). Woody 

pioneered the method of identifying the single trial latencies of ERP components 

(mainly late component) and re-synchronizing single trials according to the estimated 

latencies with the aim of obtaining a ‘rectified’ ERP. Since then, various methods and 

approaches have been attempted. In the following, I concisely reviewed this vein of 

research. I only focus on methods that aimed to correct ERP waveforms that are blurred 

due to latency jitter. The correction will thus mainly benefit research works concerning 

the unfolding of neural cognitive activities in response to external input, such as neural 

dynamical modellings, mental chronometry, and studying of separate sequential neural 

cognitive stages, and so on. I do not cover ERP signal processing methods that aim to 

extract EEG information by other means but not focusing on the depiction of ERP 

waveforms, such as time frequency analysis, Laplacian filter, blind source separation, 

or advanced statistical analysis like random stimulus effect modelling  (Westfall, 

Nichols, & Yarkoni, 2016)) that aimed to improve or rectify the statistical relationships 

between neural signal and external factors. 

 

2.1 Averaging after resynchronization 

Resynchronization is the core procedure for dealing with the asynchrony problem. The 
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basic procedure is to identify the single trial latencies of a ERP component (See 2.2) 

and re-synchronize single trials to the identified latencies instead of to stimulus onsets 

and obtain a new ERP (Patterson et al., 2000; Pomalazaraez & Mcgillem, 1986; Woody 

& engineering, 1967). This approach was the earliest attempt and has been applied to 

answer research questions that do not require very fine-grained examination of various 

ERP sub-components, such as, in the cases only concerning jittering of large ERP 

components (Kutas, Mccarthy, & Donchin, 1977; Sekar, Findley, & Llinas, 2012; 

Spencer, Abad, & Donchin, 2000; Yu, Dube, & Donchin, 2017). However, 

resynchronization of single trials to any other set of latencies is as problematic as 

stimulus-locked averaging, because an ERP is not a single fixed-shape component that 

are deterministically elicited by single time event, but rather, it could contain multiple 

components not locked to each other (Fig 2). For instance, a reaction time (RT)-locked 

average ERP will simply blur stimulus-locked portions (Berchicci, Spinelli, & Di Russo, 

2016) (Fig 2). The multi-compositional nature of ERP with differential trial-to-trial 

latency variability makes simple resynchronization of single trials an insufficient 

approach to addressing the ERP asynchrony issue. Driven by this, methods that 

decompose ERP into multiple components with differential trial-to-trial variability have 

been developed, which will be reviewed later. 
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Figure 2. Dilemma of representing neural response by trial averaging. The red 

and blue component represents two components that are temporally locked to 

different events (e.g., stimulus onsets and RTs). Averaging the single trials to 

either event will blur the representation of the component that is locked to 

another event. 

 

2.2 Single Trial Latency Estimation 

Resynchronization requires single trial latency estimation. Various methods of single 

trial latency estimation have been proposed, differing in algorithm complexity and 

theoretical basis. Some examples are simple peak-picking in combination with 

temporal and spatial filtering for de-noising (Gratton, Kramer, Coles, & Donchin, 1989; 

Quiroga & Garcia, 2003), cross-correlation based template matching (Gratton et al., 

1989; Woody & engineering, 1967), and maximum likelihood approach assuming the 

Gaussianity of background noise spectrum (Jaskowski & Verleger, 1999; Tuan, Mocks, 

Kohler, & Gasser, 1987). The pros and cons of each type of methods have been well 

elaborated in another review (Ouyang, Hildebrandt, Sommer, & Zhou, 2017). The key 

challenge lies in the heterogeneity of ERP components which renders the complication 

as to which component’s latency is to be measured. Single trial ERPs consist of low-

level/exogenous (e.g. P1/N1) and high-level/endogenous components (e.g., P3/N400), 

functional oscillations, spontaneous activity and noise, and interactions between them. 

Clearly defining (and thus refining) the component to be estimated is in most cases 
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more important than the algorithms used for the single trial latency estimation (Ouyang 

et al., 2017). For example, to characterize the single trial morphology and latency of P3, 

deliberate temporal and spatial filtering settings have to be applied (Gratton et al., 1989; 

Jaskowski & Verleger, 1999, 2000; Mccarthy & Donchin, 1981) to avoid poor 

measurement of the latency in the raw data that is embedded with profound oscillations. 

But in characterizing early components like P50, P1 or N1 latency, the temporal and 

spatial settings can be completely different (Milne, 2011; Patterson et al., 2000).   

 

2.3 ERP decomposition and reconstruction 

As different clusters of ERP sub-components appear to display different 

degrees/features of latency jitter (Tzyy‐Ping Jung et al., 2001), it has been proposed 

that these components can be separated based on their distinct latency variability feature 

and relevant methods have been developed. The earliest attempt was simply to separate 

an ERP into a stimulus-locked component cluster and a response-locked component 

cluster based on markers of stimulus onsets and reaction times, which can be done with 

mathematical derivation (Bardy, Van Dun, Dillon, & Cowan, 2014; Dandekar, Privitera, 

Carney, & Klein, 2012; Hansen, 1983; Smith & Kutas, 2015a, 2015b; Takeda, 

Yamanaka, & Yamamoto, 2008; J. Zhang, 1998). In essence, such decomposition 

methods were based on general linear model (GLM), where the time markers serve as 

the regressors (independent variables), the raw EEG data serve as the dependent 

variable, and the waveform associated with each regressor is the coefficient vector to 

be solved in the GLM framework. 

However, as neural cognitive processes are functionally modular – they can be divided 
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into different stages, for example, perception, central cognition, and response/execution 

(Hurley, 2001), RT is not sufficient for capturing the interval variability. In fact, no 

external markers are available for indicating the interval latency jitters of different 

stages of neural activations. Motivated by this issue, researchers have proposed several 

methods to decompose ERP without fully relying on time markers (G. Ouyang, W. 

Sommer, & C. S. Zhou, 2015b; Takeda, Sato, Yamanaka, Nozaki, & Yamamoto, 2010; 

Truccolo et al., 2003; Wu et al., 2014). The basic approach is to estimate the latencies 

of the components (see the section above), thus creating ‘time markers’ that are to be 

fed into the time marker-based ERP decomposition methods, as described above.  

Upon the successful decomposition of ERP into different components with different 

latency jitter, an improved representation of ERP can be achieved by summing up them 

together at their respective most probable latencies, thus forming an in-principle more 

accurate representation of the dynamic neural response at the single trial level (Fig 3b). 

An analog of this issue is shown in Fig 3a: when we directly average multiple facial 

pictures we get a blurred and not-so-meaningful version; but if we were able to 

parameterize the feature of each element (eye, mouth, nose, etc.) and use the average 

parameters to construct a new face, this face would be far more meaningful for our 

understanding of the facial structure averaged from different individuals than the 

blurred version (Fig 3a). Similarly, ERP can in reconstructed following the same 

principle (Fig 3b) by incorporating the aforementioned decomposition methods. 
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Figure 3. Obtaining a more accurate and meaningful neural dynamic response 

pattern by jitter-corrected ERP reconstruction. (a) Face averaging as a 

conceptual analogue of ERP reconstruction. Different faces can be aligned by 

the eye positions and averaged, which will lead to a blurred face picture (left). 

Or different facial elements (eyes, noses, mouths) can be separately 

parameterized and aligned, which will lead to a meaningful average face picture 

(right). (b) Following the similar idea of face averaging, ERP sub-components 

can be separated (by decomposition methods) and re-aligned to obtain a 

reconstructed pattern that more meaningfully represents a likely response 

pattern in single trials. 
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It is worth noting that the methods mentioned above are all relying on utilizing the 

latency variability information to decompose ERP, and they all operate on EEG data 

that has been preprocessed with major artifacts removed. Different from this type of 

methods, there is another highly noticeable class of decomposition methods that could 

also be adopted for improving brain response characterization by tackling the latency 

jitter issue: blind source separation (BSS). BSS methods assume that independent 

neuronal or non-neuronal signal generators simultaneously contribute to scalp EEG. 

Various algorithms with different theoretical bases have been developed to decompose 

EEG data within this framework (Albera et al., 2012; Lee, Girolami, & Sejnowski, 1999; 

Uriguen & Garcia-Zapirain, 2015). The assumption of source independence is 

reasonable in view of the heterogeneity of EEG data and its high susceptibility to 

various non-neuronal artifacts. Its relevance to the ERP latency jitter issue is that 

different independent sources may account for different ERP subcomponents with 

different degrees of latency variability. If this is the case, each independent component 

(IC) can be synchronized to their own latencies (given that the single trial latency 

estimation is reliable) to generate jitter-corrected source ERPs that can more precisely 

describe the brain response. In fact, using BSS to address the latency jitter issue has 

been touched upon based on the infomax ICA algorithm (T. P. Jung et al., 2001). In that 

work, the ICs were classified into two types: those that were locked to stimulus onsets 

and those that were with variable latencies associated with response times. Through 

resynchronization of different ICs, a reconstructed ERP can be generated with latency 
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jitter compensated for. The rationale for such ICA-based decomposition and 

reconstruction of ERPs after correction of all latency variabilities is clear. The 

remaining question is that different resultant ICs have yet to be proven to capture only 

a single component with a specific type of jitter (e.g., ideally, an IC mainly capturing 

the latency-variable P3 component should not contain the latency-stable P1/N1 

components). This issue could be challenging but it is worthwhile to further investigate 

this line in the future development. 

 

2.4 General issues and challenges 

Considering the ample evidence, detailed demonstration, wide recognition and 

discussion of the latency jitter issue in ERP research (D'Avanzo, Schiff, Amodio, & 

Sparacino, 2011; T. P. Jung et al., 2001; Knuth et al., 2006; Kutas et al., 1977; Lau-Zhu, 

Fritz, & McLoughlin, 2019; Ouyang et al., 2017; Sassenhagen & Bornkessel-

Schlesewsky, 2015; Saville et al., 2015; K. B. Walhovd, H. Rosquist, & A. M. Fjell, 

2008), it is surprising that no well accepted tool for correcting latency jitter has come 

into play in the community. Researchers are still largely using trial-averaged ERP as a 

representation of dynamic brain response. A robust framework for tackling the latency 

jitter issue and improving the representation is strongly needed. In the following, I 

summarize some major issues and challenges previous methods have faced before 

presenting the ReSync method and toolbox. 

 

Methodological complication. Probably no method can be simpler than trial-averaging 

in the arena of EEG research. Although having inherent limitations, trial-averaging is 
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based on a much simpler assumption than that of decomposition methods that separate 

ERP into two (Hansen, 1983; Takeda et al., 2008), three (Knuth et al., 2006; Ouyang et 

al., 2015b), four or higher number of components (Wu et al., 2014), up to the number 

of electrodes (Lee et al., 1999). The introduction of component multitude complicates 

the interpretation and reasoning of the method-generated results due to the implication 

of theoretical and methodological factors in the results. Additionally, component 

multitude brings challenges in new analysis such as multivariate analysis, classification 

and clustering, and high-dimensional feature extraction, which leads to a more 

complicated analysis scenario than trial-averaging and could give birth to 

epiphenomenon problems. This could be one of the reasons that hinders the application 

of methods for addressing the jitter issue. 

 

Theoretical problems. Decomposition of ERPs 1  is an inverse problem. A critical 

question concerning decomposition is whether it is theoretically worthwhile and 

meaningful. As an analogy, one can cut an apple into two halves or peel a banana to 

separate the peel and pulp. The latter is clearly more ‘theoretically’ meaningful. ERP 

components may or may not be composed of multiple components in the way that 

various methods assume. Without proper theoretical or statistical assessment, it is 

difficult to tell whether a method improperly decomposes the ERP. For instance, the 

early components (e.g., P1) are more associated with low-level sensory processing 

 
1 Decomposition of ERP is different from decomposition of EEG. The former operates on the brain 

response component (ERP) triggered by external events, whereas the latter directly operates on 

the raw EEG signal with much more heterogeneous components including various artifacts.  
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(Tobimatsu & Celesia, 2006), and the late components (e.g., P3) are more related to 

high order cognitive processing (Twomey, Murphy, Kelly, & O'Connell, 2015). It would 

be ideal if these two types of components were exclusively separated into different 

components, but decomposition methods are not necessarily able to separate them 

cleanly because the expectation that they can be separated are based on a neurocognitive 

perspective, which is blind to methods that are only based on quantifiable data features 

and relations (e.g., Gaussianity, correlation, statistical independence). So, whether the 

separation is theoretically proper remains a non-trivial and open issue where 

conventional ERP researchers would not easily invest effort in investigating. 

In some cases, the decomposition method even gives rise to theoretically unacceptable 

solutions, one example is noise amplification which has a mathematical root (Ouyang 

et al., 2015b). Specifically, when two kinds of markers (e.g., stimulus, RT) have very 

small inter-marker jitter across trials, the mathematical solution gives rise to two 

complementary waveforms (with large amplitude) in the two decomposed components 

that are biologically implausible (Ouyang et al., 2015b). This is due to the close-to-

singularity of the covariance matrix of the two regressors (Ouyang et al., 2015b). 

Similar issues exist in dipole source localization when different dipole sources have a 

high spatial correlation, in which case the source temporal activity will have 

complementary patterns resembling amplification of noise (Wolters, Beckmann, 

Rienacker, & Buchner, 1999). This issue requires introduction of regularization which 

brings another layer of complication that may deter most researchers. Apart from the 

above, there are other theoretical issues in ERP decomposition that need not to be 
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concerned in trial-averaging, for example, the linearity assumption about the 

constitution of the separate components, the multiple comparison issue in statistical 

analysis when a large number of separate components are analyzed instead of only one 

average ERP.  

 

Technical complication. Currently, researchers focusing on trial-averaged ERPs can 

easily conduct data analysis in various well-developed software. Accessing the 

landscape of brain responses in single trials is technically more demanding and is thus 

usually limited to smaller groups of experienced researchers. Developing tools for 

single trial and inter-trial characterization, analysis, and modelling involves a much 

higher degree of complexity in parameters and algorithms than for average-based 

analysis. Many latency jitter-tackling methods are only available in the original paper 

or relatively complicated form of codes or toolboxes (Ouyang et al., 2015b; Takeda et 

al., 2010; Truccolo et al., 2003; Wu et al., 2014). 

 

As such, methods for tackling the latency jitter issue have certainly not permeated the 

ERP community despite the wide recognition of the need. On a positive note, single 

trial ERP analysis has received increasing attention driven by the rich functional 

implications of trial-to-trial variability (A. G. Collins & M. J. Frank, 2018; Dinstein, 

Heeger, & Behrmann, 2015; Stokes & Spaak, 2016; Trenado et al., 2019). Hitherto 

single-trial ERP analysis has been mostly based on statistical features across trials, but 

has much less focused on improving the characterization of the ERP dynamic waveform, 
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which is essential for studying neural cognition at a mechanistic level. Integrating the 

various issues summarized above, in the next sections I present the ReSync method and 

toolbox aiming to address some of the aforementioned issues based on a simple 

theoretical and methodological framework.  

 

3. ReSync – A Simple method to correct ERP jitter 

Considering the aforementioned complication in using ERP decomposition for 

addressing jitter issue, the scope of ReSync will not cover decomposed or separated 

ERP sub-components. The aim of ReSync is to simply obtain a jitter-corrected ERP in 

a format that is totally identical to standard ERP, namely, trial-averaged ERP. This will 

certainly limit its utility in investigating ERP sub-components with different functional 

and cognitive signatures which many other methods and tools were developed for, 

many of which have demonstrated great merit in this respect, e.g., (Delorme & Makeig, 

2004; Dien, 2010; G. Ouyang, W. Sommer, & C. Zhou, 2015a). But it will meet the 

needs of those researchers who are simply concerned with the latency jitter issue and 

want to correct them without bringing additional complications. 

However, as ERP contains different components with different jitter (Fig 1d), it is 

impossible to correct one without affecting the other (Fig 2) without decomposing it. 

Therefore, ReSync will still incorporate decomposition in its internal steps. Here I first 

describe the general principles of ReSync before describing the theoretical and 

technical parts. 

1. The purpose of ReSync is to provide a jitter-corrected ERP. 
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2. In a typical scenario, a researcher would identify an ERP component (e.g., P1, 

N1, P3, or N400, etc) that is affected by latency jitter. The researcher would then 

need to specify a time window for ReSync to estimate the single trial latencies 

(see procedures later). This set of latencies will be used to isolate the latency-

varying component from single trials, obtain its jitter-corrected form, and sum 

it back with other components to obtain a jitter corrected ERP (Fig 3b). This 

way will not affect (blur) other components (like what is shown in Fig 2). 

3. After correcting the first component, a new time window can be specified to 

correct a second component without affecting the rest. The procedure can go on 

and on. A demonstration of the procedure will be illustrated later. 

3.1 ERP decomposition and reconstruction 

This section will describe the theoretical foundation and technical details of ReSync. 

Assuming that a single trial contains only an activation component lasting for a fixed 

period of time, an EEG trace from an electrode can be expressed as: 

𝐸𝐸𝐺(𝑡) = ∑𝐶(

𝑇

𝜏=1

𝜏)𝑋(𝑡 − 𝜏) + 𝜀. (1) 

where C denotes the event-elicited component covering sample points from τ = 1 to T, 

X is a timing function (also called stick function in neuroimaging field (Pisauro, 

Fouragnan, Retzler, & Philiastides, 2017) coding the events by denoting event 

occurrence time points as 1 and all other time points as 0, and ε denotes noise. 

 

If there are two activation components existing in every single trial, temporally locked 

to different events, the EEG trace is then: 
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𝐸𝐸𝐺(𝑡) =∑𝐶1(

𝑇1

𝜏=1

𝜏)𝑋1(𝑡 − 𝜏) +∑𝐶2(

𝑇2

𝜏=1

𝜏)𝑋2(𝑡 − 𝜏) + 𝜀. (2) 

A typical example is that C1 is the stimulus-locked component and C2 is the RT-locked 

component, in which case X1 and X2 are the timing functions for stimulus onset and RT, 

respectively.  

Equation (2) can be written in a matrix form: 

 

𝐄𝐄𝐆 = 𝐗 ∙ 𝐂 + 𝜀. (3) 

 

With the information of the time markers X, the least square error-based solution of the 

components can be expressed as (Dandekar et al., 2012):  

 

𝐂 = (𝐗𝒕𝐗)−𝟏 ∙ 𝐗𝒕 ∙ 𝐄𝐄𝐆. (4) 

 

Based on this solution, each component can be isolated (Fig 4), given that the 

covariance matrix (𝐗𝒕𝐗)  is not singular. When the covariance matrix is close to 

singularity (i.e., when the inter-component latency variability approaches zero), the 

background noise will be severely amplified and injected to the solution (Ouyang et al., 

2015b), leading to a divergent solution that is biologically implausible and unacceptable. 

The noise amplification issue, however, does not affect the reconstruction procedure as 

shown later. 
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Figure 4. Decomposition of overlapping ERP components using GLM with the 

time markers of different components being regressors. 

 

In the context of a stereotypical ERP experiment, the timing function 𝑋1 is usually for 

coding the stimulus onsets, thus for deriving stimulus-locked component C1 (If only 

one component is assumed, C1 is the standard ERP). In the ReSync framework, new 

components with non-stimulus locking features are to be extracted and separately re-

synchronized (so as not to affect the stimulus locking ones). The latency-variable 

component is not confined to late ones but can also be the early ones, e.g., P1, N1. If 

components with latency jitter are assumed to exist, their timing functions need to be 

provided. In a generic case, the timing (latencies) can be estimated. In ReSync, the 

method of latency estimation of the latency-varying component is based on cross-

correlation-based template matching. Basically, the template is derived from the 

average waveform within the specified time window. The template is then moved both 

left- and rightward until a peak value of correlation between the template and single 

trial is found. This peak will be used to determine the lag (latency) of the single trial 

activity with respect to the template. The whole set of latencies are then fed to the 
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decomposition procedure. It has to be noted that a low-pass filtering on the cross-

correlation curve is crucial as it will allow relevant peak to be found. For example, 

when searching a P3-like component, it is used to be suggested to use around 4 Hz 

(Gratton et al., 1989; Jaskowski & Verleger, 1999, 2000; Mccarthy & Donchin, 1981); 

when searching a P1/N1 complex-like component, it can be set to be around 10 Hz (or 

higher) as the component is much sharper. However, as there is great variability across 

individuals and experiments, using a fixed value to low-pass the cross-correlation curve 

is not ideal. I proposed an automatic identification of the low pass filtering frequency 

as described below. 

As ERP component clusters (e.g., P1/N1 complex, P3) displays a clear and structured 

waveform in the averaged time course, there should be a dominant frequency each 

component (cluster) possesses. Visually, P1/N2 seems to be around 10 Hz, and P3 

around 2-4Hz, but very much depending on data specificities. The dominant frequency, 

once is known, can be used to low-pass the cross-correlation curve in the latency 

estimation procedure. We can estimate the dominant frequency in this way: first 

transform each single trial (within a specific time window, linearly detrended) into 

frequency domain using Fourier Transform, then average the Fourier coefficients (in 

complex values) across single trials and identify the frequencies with maximum 

modulus from the average. The identified peak frequency f0 will be regarded as the 

dominant frequency and f0 + 1 Hz will be used to low-pass the cross-correlation curve 

(+1 is from consideration of trial-to-trial fluctuation). In this case, the dominant 

frequency can be automatically determined, and this value is saved in the ReSync 
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output.      

After the two components, namely, stimulus-locked and latency-varying component 

were isolated based on (4), the ERP can be reconstructed in a way that the latency-

varying one is represented in a de-blurred form as shown in Fig 3b. If the researcher 

considers that there is still other latency-varying component in other time window, a 

new time window can be specified and a new set of latencies can be estimated, and the 

ERP reconstruction can be conducted again. The detailed instruction is described in the 

online manual. Below I use an example to describe the basic implementation procedure. 

 

3.2 Simple Operations in ReSync Toolbox 

The ReSync toolbox can be installed as an extension in EEGLAB toolbox (Delorme 

& Makeig, 2004). The basic interface is shown in Fig 5a. The data for demonstration 

is from a facial recognition experiment (Rellecke et al., 2012). User simply needs to 

select the electrode and time markers from which ERP will be generated. If multiple 

electrodes are selected, the data will be averaged over the selected electrodes. After 

the selection, the average ERP as well as the single trial data can be plotted (Fig 5b) 

for examination and for identification of proper time window(s) for ReSyncing.  

 



22 

 

 

Figure 5. Interface of ReSync toobox (a) and the visualization of single trials 

and average ERP for determining the time window for jitter correction (b). 

 

For the next step, user needs to specify a key parameter for ReSyncing: ReSync time 

window – the time window where the single trial jitter is to be corrected. In the 

illustrated example shown in Fig 5b, we see a very jittering component within 400-

800 ms, so the ReSync time window can be set to be from 400 to 800 to correct the 

jitter of this late positive component. After specifying all parameters, clicking ReSync 

button will generate the ReSync results as shown in Fig 6. The ReSync result is 

informative in that it provides the original single trials sorted by estimated latency 

(Fig 6a), the highlighted latency-varying single trial activities (Fig 6b), and jitter-

corrected single trials (Fig 6c), the jitter-corrected ERP as well as its comparison with 

the original one (Fig 6d). There are three major descriptive points from Fig 6 that are 

worth to be stressed: 1) The latency estimation appears to be reliable as shown in the 
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sorted trials (Fig 6a b); 2) The correction of jitter in the specified time window (400 

ms to 800 ms) still preserve the jitter features in other time windows (e.g., early ones, 

see Fig 6c); 3) The correction in the average waveform is also exclusively taking 

effect in relevant window (Fig 6d). 

 

Figure 6. Visual summary of Resync results. (a) Single trials ERP sorted by 

estimated latency. (b) Highlighted component activities that are with latency 

jitter. (c) Jitter-corrected single trials. (d) Comparison of standard average 

ERP and jitter-corrected ERP (specified ReSync time window is indicated by 

the light color background).  

 

Likewise, the latency jitter issue can occur in the early time window as well, and its 

functional relevance has been studied (Kovarski et al., 2019; Magnuson, Iarocci, 

Doesburg, & Moreno, 2019; Milne, 2011). To serve as a demonstration, we can 
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specify the time window 200-400 ms encompassing the early component in the 

sample data. In this case, ReSync corrected the ERP jitter only within this window 

without affecting activities in other times (Fig 7).  

 

Figure 7. Visualization of Resync results for correcting jitter in early time 

window. 

 

The correction of multiple components can be done iteratively (each step overwriting 

the previous EEG data). The final effect of correcting the above-mentioned two 

components were shown in Fig 8, which shows that the jitter in both 200-400 ms and 

400-800 ms were corrected. Detailed implementation procedures were described in 

the online manual (https://github.com/guangouyang/ReSync). 
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Figure 8. Correcting jitter in both early and late time windows. 

 

Although the electrode(s) need to be specified for estimating the latency jitter, the 

ReSync correction can be done on the entire scalp, namely, all electrodes, not just on 

the specified ones. This is because that, due to high volume conduction, ERP 

component’s signal are usually widespread. Therefore, all electrodes’ ERP should be 

corrected for jitter using the single trial latencies estimated from the specified 

electrode(s) where the component is strongest. If an electrode contains very little 

activation of the component of interest (e.g., P3), the correction would only have 

minimal change to the original ERP on this electrode. Correcting all electrodes can be 

simply implemented by clicked the button ‘ReSync Globally’. After that, the EEG 

data will be modified (with jitter corrected) and user can choose to overwrite the 

original EEG dataset or create a new one. The jitter-corrected new EEG dataset has an 

identical format with the original one. Users can do all the subsequent analysis just 

like what they would do on standard ERP. They can also export the data and load 

them into other software. 
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To sum up here, ReSync provides an easy-to-use signal processing tool to correct ERP 

waveforms that are blurred by latency jitters by re-synchronizing each latency-varying 

components without affecting others. The respective component synchronization was 

achieved by first decomposing the ERPs and isolating the latency-varying component 

from the rest, and summing back the de-blurred form of latency-varying one to the 

rest (Fig 3b). The decomposition is automatically conducted as internal steps in the 

processing pipeline, which is not apparent in the final result where only the jitter-

corrected data is presented in a same form with standard ERP. The entire procedure of 

ReSync is quite straightforward and practical. In the next section, I will evaluate and 

validate this method from different aspects. 

 

4. Evaluation and Validations 

4.1 Effect of Signal-to-Noise Ratio and degree of latency jitter to the performance 

of ReSync 

One of the most crucial factors that affects most signal processing method is signal-to-

noise ratio (SNR). In ReSync, SNR mainly affects the latency estimation procedure. 

Overly strong background noise will lead to arbitrary latency identification (because 

noise can override/mimic ERP components) and thus worsen all the subsequent 

processing – garbage in garbage out. Therefore, it is important to evaluate the SNR of 

ERP data and how it determines the performance of ReSync. 

To examine this, I simulated single trials ERP data with systematically assigned SNR 
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(Fig 9). Specific parameters are as follows: trial number: 50; sampling rate: 1000 Hz; 

epoch length 300 ms; ERP component: a half-sinusoidal shape spanning 100 ms; type 

of background noise: 1/f noise. The SNR of the simulation data will be systematically 

varied. SNR is defined in a way that is also easy to be calculated from real ERP data. 

The signal is defined as the ERP, and the standard deviation of it is denoted as SD(ERP). 

The noise is defined as the spontaneous EEG signal overriding on ERP in each single 

trial. The standard deviation of the noise (assumed to be stable) is denoted as SD(noise). 

SNR is then SD(ERP)/SD(noise). To estimate the noise strength, we can first invert the 

signs of half (randomly drawn) of the trials and average all the trials. In this way the 

ERP is effectively cancelled out. The SD of the resultant average waveform from the 

half-inverted trials is denoted as σ1. SD(noise) will be calculated as σ1×√𝑛 where n is 

the number of trials. Denoting the SD of the standard trial-averaged waveform as σ0, 

SD(ERP) will be calculated as √σ02 − σ12. Based on the above-described procedure, 

SNR can be obtained in both simulation and real ERP data. The calculated SNR from 

the sample simulation data is shown above Fig 9d. 

 
Figure 9. Evaluating the performance of ReSync on simulation data with 
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different parameters. (a) The composition of simulation data. (b) Example of 

simulated single trials. (c) Calculating the estimation error of standard average 

ERP and ReSync ERP as compared to the ground truth ERP. (d) Comparing the 

performance of standard average ERP and ReSync ERP. 

 

To evaluate the performance of ReSync in the simulation data, I used a very simple 

notion: the difference between ReSync ERP and the ground truth ERP should be smaller 

than the difference between standard average ERP and the ground truth ERP – if not, it 

does not make sense to ReSync the ERP (namely, to correct the jitter). The difference 

is calculated as the sum squared error between the ground truth ERP (half-sin) and 

estimated ERPs. Here the estimated ERP has two versions: standard average ERP and 

ReSync ERP. I denote these two versions of error function as err(avgERP) and 

err(rsERP). If err(rsERP) < err(avgERP), correcting the jitter is better than not 

correcting it (vice versa). Reader might ask how it is possible that correcting the jitter 

leads to a worse estimate of the ground truth ERP? This is because when the SNR is 

too low, the correction could become arbitrary (due to arbitrarily estimating the latency 

jitter) which may lead to a worse estimation than simple averaging. 

Apart from SNR, another factor that is worth to consider is the degree of latency 

variability. Intuitively, if latency variability is small, the data is less needed to be jitter-

corrected, thus the correction by ReSync will more likely to perform worse than 

standard average ERP. Therefore, I added latency variability as another dimension to 

examine the performance of ReSync. The evaluation of ReSync’s performance under 

different features/quality of data is for user to evaluate the necessity of using ReSync. 

However, different from SNR, the latency variability is not a quantity that can be 
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directly translated from simulation to real data. In the simulation data, the latency 

variability is an arbitrary scale. The value of latency variability (e.g., SD) only makes 

sense when the component feature is considered. For example, in the simulation data, I 

can make the half-sin ERP component (Fig 9) as spanning 100 ms (map to around 10 

Hz) or spanning 500 ms (map to around 2 Hz). The same value of latency variability 

for these two situations would differentially affect the performance of jitter correction. 

More specifically, a sharp component (with a high dominant frequency) with a fairly 

large latency jitter would make it necessary to correct its jitter, but a blunt component 

(with a low dominant frequency) with the same amount of jitter may not need to be 

corrected. This non-universality issue does not only exist between simulation data and 

real ERP data, but also exist between different types of ERP components (e.g., early 

and late components where early is usually sharp and late is usually blunt). Therefore, 

there needs to be a universal characterization of the degree of latency variability that is 

referable in real data application, preferably, a normalized measure such as Pearson 

correlation coefficient. 

To address this issue, I proposed a measure called relative latency variability (RLV) that 

can be universally referenced. RLV is defined as the standard deviation of latency 

variability divided by the dominant wave period of the jittering ERP component. The 

dominant wave period is just the reciprocal of the dominant frequency (see above for 

how to determine it). Under this definition, the relative latency variability essentially 

reflects the degree of variability with respect to the width of the component, which is a 

unit-less value. After exploring the performance of ReSync also as a function of RLV 
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in terms of whether the jitter-corrected ERP is closer to the ground truth ERP than is 

standard average ERP, user can simply calculate the RLV (which is automatically done 

in ReSync toolbox) and see whether their data should be jitter-corrected.     

To wrap up, I will apply ReSync on the simulation data under various levels of SNR 

and RLV to draw the parameter sweeping map indicating under what parameter regions 

ReSync ERP is better, i.e., err(rsERP) < err(avgERP), and under what parameter regions 

standard average ERP is better, i.e., err(rsERP) > err(avgERP). Figure 9d shows the 

results of the binary map generated from 200 realizations. A clear boundary can be seen 

from Fig 9d, which is in line with intuition: when SNR is small, the latency estimation 

suffers from imprecision issue, thus standard average ERP wins; when RLV is small, 

there is less need to correct the jitter, doing so will likely to introduce error, thus 

standard average ERP also wins. The yellow region in Fig 9d is where the ReSync ERP 

is better which corresponding to high SNR and RLV. In the ReSync toolbox, the yellow 

region is defined as the intersection between the of plane SNR > 0.3 and the plane of 

SNR > 0.3 + 6×(0.175-RLV). 
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Figure 10. Example of single trial ERP data with different values of SNR and 

RLV. The values of SNR and RLV for each data panel are indicated by the dots 

on panel e. The blue dash line in panel e marks the boundary across which 

ReSync ERP is either better or worse than standard average ERP (see Fig 9d). 

 

It thus important to know, where do the real data usually fall on the SNR-RLV map (Fig 

9d)? To provide a straightforward perception, I exemplified several sets of single trial 

data from a face recognition task (Rellecke et al., 2012) that falls onto different 

positions of the SNR-RLV map (Fig 10). The actual data feature very well reflects the 

parameter values (lower SNR, messier data, higher SNR, clearer data). These sporadic 

examples demonstrated that there exist real EEG datasets that fall into the condition 

where jitter correction is recommended. To more systematically evaluate the scenario, 

I examined two datasets for all participants and different experimental conditions 

(dataset will be shared upon request). Dataset 1 (Delorme, Rousselet, Mace, & Fabre-

Thorpe, 2004) is a visual categorization task where there were two conditions: target 

and distractor stimuli (14 participants). Dataset 2 (Rellecke et al., 2012) is a face 
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recognition task where there were three conditions: happy, neutral and angry face 

stimuli (29 participants). I examined the SNR and RLV for both early and late 

components. The electrodes and time windows that capture the prominent feature of 

early and late components were determined based on grand average ERPs and were 

indicated in Fig 11a,d (individualized feature extraction may also be implemented, see 

Discussion). Fig 11 showed that in dataset 1, most participant fall into the area where 

ReSync corrected ERP is better than standard average ERP (the boundary is indicated 

by the blue dash line), for both early and late components. Dataset 2, however, showed 

features that mostly fall onto the boundary, indicating this dataset may not necessarily 

substantially benefit from ReSync correction. 

 

 

Figure 11. Distribution of SNR-RLV values of examined early and later ERP 

components for all participants from two datasets. 
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4.2 How does jitter correction affect statistical comparisons of ERPs? 

One of the most important issues in ERP research is comparing ERP amplitudes 

between different conditions or groups (hereafter referred to as conditions). It is 

conceivable that latency jitter can substantially confound ERP amplitude effects 

(Ouyang, Sommer, & Zhou, 2016; K. B. Walhovd, H. Rosquist, & A. M. J. P. Fjell, 

2008; Yu et al., 2017). One scenario is that jitters diminish ERP amplitudes as well as 

their between-condition difference. Another (opposite) scenario is that different degrees 

of jitter between conditions can produce spurious amplitude effect. In reality, both 

scenarios can be present, which complicates interpretation of neural effects. With that 

said, the outcome of ERP jitter correction by ReSync, in terms of weather it increases 

or reduces the between-condition ERP amplitude effects, is not one-directional. 

However, it is worthwhile to jitter-correct ERP (if the data quality falls into the yellow 

region in Fig 9d) to examine what the ERP effects would be like after the confounding 

jitter effects are effectively corrected. 

To illustrate this issue, I applied ReSync to dataset 1 in which most participants show 

data feature falling into the yellow region (Fig 11). In this dataset, there exists amplitude 

effects in both early and later time windows (Delorme et al., 2004). In the experiment, 

the participants were simply required to categorize pictures that contain animal (target) 

or not (distractor). There were significant early ERP amplitude effects in occipital area 

and late ERP amplitude effect in parietal area (Delorme et al., 2004). ReSync was 

applied in both early and late time window (see time window determination in Fig 11). 
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As shown in Fig 12, the application of ReSync in this dataset yielded stronger amplitude 

effect in early time window, but no substantial change in later time window, as 

compared to standard ERP analysis. This probably reflects that the latency jitter is more 

similar between conditions in the early time window, ReSync thus restores stronger 

amplitude effect after correcting the jitter; and the degree of latency jitter may differ 

more in the late component (with weaker amplitude being associated with larger jitter).    

 

5.5 

 

Figure 12. Change of amplitude effects between conditions before and after 

jitter correction. (a,b) For early ERP component. (c,d) For late ERP 

component. The t values are from simple t tests on the amplitude difference 

within the highlighted time windows. 

5. Discussion 

In this article, I have provided an overview of the long-standing latency asynchrony 

issue in brain research that has been relying on trial-averaged ERPs as a tool for 
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depicting the dynamic brain responses, and the latest developments in methodology in 

addressing the limitations of trial-averaging approach. It is worth noting that the latency 

asynchrony issue is by no means a negligible technical limitation compromising data 

fidelity. Instead, it distorts neural representations in terms of (but not confined to) 

timing, behavioral effect, functional role, and anatomical feature (Bodmer, Muckschel, 

Roessner, & Beste, 2018; Miller, Ulrich, & Schwarz, 2009; Yang et al., 2017; D. D. 

Zhang, Ding, Wang, Qi, & Luo, 2015). With the advancement in signal processing 

techniques and theoretical modelling, the limitation that latency asynchrony imposes 

on brain response characterization is being progressively addressed. I have presented a 

method, ReSync, that can be used to remedy the standard ERP by correcting jitter-

caused distortion. ReSync is an easy-to-implement tool equipped with solid theoretical 

basis, and produces results with identical format to standard ERP, thus facilitating all 

subsequent analyses. The improvement of ERP dynamic waveform by ReSync may 

contribute to future research on complex brain cognitive dynamics. Many open issues 

still remain, below I discussed some of them. 

When/why should I use ReSync and how would ReSync benefit my research? 

This article focuses on presenting the theoretical and methodological framework of the 

method ReSync. Its utility and potentials remain to be further revealed by future 

applications. In principle, ERPs should always be jitter-corrected. The question is 

whether the correction is correct. Jitter correction methods may arbitrarily or over 

‘correct’ the ERP, resulting an estimation of neural response pattern that is worse than 

standard average ERP (although blurred by jitter). This issue is related to many factors, 
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such as whether the jitter is substantially present in the data or not, or whether the timing 

can be reliably obtained or not. A systematic investigation of this issue based on 

simulation data is necessary. More importantly, the simulation studies should be 

reference-able in real data analyses. In this regard, I identified two key signal features 

that may crucially determine the necessity of jitter correction: signal-to-noise ratio and 

degree of latency variability. The two factors have been quantified as universally 

reference-able measures, SNR and RLV (see Method). In general, if SNR and RLV are 

low, it is less needed to correct the jitter as the correction method would more likely to 

produce error, vice versa. Based on simulation, I drew a parameter sweeping map of 

SNR and RLV showing a definite boundary across which ReSync-ed ERP is either 

better or worse than standard average ERP (Fig 9d). This parameter map could serve as 

a reference for real data application as both SNR and RLV are unit-less and can be 

directly calculated in real EEG data. I exemplified two datasets in terms of where the 

individual ERP components fall onto the parameter map. The results showed that a 

significant number of participants (especially the firs dataset) fall onto the region where 

jitter corrected is recommended. 

Using the SNR-RLV map is a very straightforward way to make an initial judgement 

on whether it is worthwhile to apply ReSync to correct the ERP. Due to the nature of 

some experimental investigation (e.g., looking at very subtle neurocognitive process, 

or neural response activity in natural scenes), the SNR-RLV value may fall far out of 

the recommended region (Fig 9d). In those situations, standard ERP is simpler, safer, 

and better, unless a more advanced jitter-correction approach is demonstrated to be 
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better in handling noise in the future. It has to be also noted here that, when judging 

whether ReSync is worthwhile by calculating SNR and RLV and mapping to the SNR-

RLV map, it is suggested to select the prominent electrode(s) (where the activation is 

strongest), for example, parietal areas (Cz, CPz, Pz, depending on the specific dataset) 

for P3 component, occipital areas (e.g., PO7/8, O1/2) for early P1/N1 complex. Once 

the most prominent electrode(s) is designated for best representing the component of 

interest, ReSync will work on estimating its single trial latencies from there, and all the 

other electrodes on the entire scalp will be jitter-corrected based on the estimated 

latency variability from only the prominent electrode(s). Procedure and scripts can be 

found in the toolbox manual.     

Individually specific application of ReSync 

A straightforward application of ReSync is to determine the electrode(s) and time 

window(s) of where the components need to be jitter-corrected. The determination of 

the parameters can be based on the pattern of grand average ERP, and then be 

universally applied to each individual. This may be a sub-optimal procedure, 

considering the existence of substantial individual differences in ERP pattern. For 

example, one participant may have a P3 complex covering from around 200 ms to 500 

ms, another covers 300 ms to 800 ms, yet another may simply show a flat P3 (low SNR). 

Same thing applies on scalp distribution: some participants’ P3s center at Cz, others’ 

center at CPz or Pz. Therefore, individualized determination of ReSync parameter is, 

in principle, desirable. However, individualized parameter determination also faces 

several issues. First, it may be difficult to determine the idiosyncratic cases where the 
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ERP components are poorly shown (e.g., flat P3). One option is to simply skip 

ReSyncing those idiosyncratic individuals (e.g., with low SNR, see the evaluation 

section above), which has to be done for all conditions for that participant (if ReSyncing 

is only done in one condition, this may create spurious between-condition effects). 

Second, individualized parameter setting is laborious and hard to automatized, which 

compromises reproduction. Development in this line is highly desirable. 

Going to the source 

The ReSync algorithm is essentially for processing a time series with embedded event 

markers and re-synchronizing the event-elicited components from event to event (trial 

to trial), with respect to the event onset. With that being said, the method can be directly 

applied to neural source activities that are derived from source reconstruction 

algorithms. At the sensor level, the time series that is fed to Resync is the EEG trace 

from a single electrode (or average from a few electrode). Similarly, for applications on 

source level, the time series is just the neural source activity that are constructed from 

source algorithms. For example, one can apply ICA to the scalp EEG and obtain source 

activity traces as many as the electrodes. Each source trace can be treated as an 

‘electrode’ to be fed into ReSync for jitter correction of the source ERP. Similarly, time 

window should be specified, which can be guided by the pattern of source ERP. One 

potential advantage of source-level analysis is that the reconstructed source activity 

may be more specific in capturing some functionally distinct neural activities, such as, 

P3, N400, or early perceptual components, that are somehow better isolated from neural 

noise or other activities than that in sensors. And ReSyncing the source activities is a 
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step that further improves the representation of neural response activities in the brain. 

The instruction on how to apply ReSync on a general time series (e.g., source activity) 

is provided in the online manual.  

Summary 

In this paper I presented an easy-to-use, very straightforward method for correcting the 

latency jitter in ERP data – a problem that theoretically exists in all ERP datasets. I 

reviewed the major previous methods that directly or indirectly dealt with the ERP 

latency jitter issue, and presented the novelties and uniqueness of the ReSync method, 

followed by validations and evaluations in both simulated and empirical EEG data. The 

novelties and uniqueness can be concisely summarized below: 1) ReSync produces a 

jitter-corrected version of ERP data that are in exact the same format as standard ERP, 

thus allowing for application of all existing ERP analysis methods and paradigms to the 

jitter-corrected version. 2) ReSync evaluates the two key parameters in ERP data, 

namely SNR and RLV, to help determine whether the data quality and feature are 

suitable for the ReSync-based jitter correction or not. The judgement can be very 

straightforwardly made by locating the SNR-RLV to the parameter map indicating 

whether ReSyncing is better than standard ERP or not. The indicator is provided in the 

toolbox. 3) ReSync automatically determines the dominant frequency in the single trial 

ERPs, thus allowing for a more precise capturing of the phase-locked component 

(event-evoked component) and determination of its single trial latencies by effectively 

excluding the distraction of high frequency noise component. It is hoped that the 

ReSync jitter-correction toolbox can contribute to the brain research in the aspect of 
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characterizing the neural response patterns.       
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