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Abstract

B Recent developments towards event-related functional
magnetic resonance imaging has greatly extended the range
of experimental designs. If the events occur in rapid
succession, the corresponding time-locked responses overlap
significantly and need to be deconvolved in order to separate
the contributions of different events. Here we present a
deconvolution approach, which is especially aimed at the
analysis of fMRI data where sequence- or context-related
responses are expected. For this purpose, we make the
assumption of a hemodynamic response function (HDR) with
constant yet not predefined shape but with possibly variable
amplitudes. This approach reduces the number of variables to
be estimated but still keeps the solutions flexible with respect
to the shape. Consequently, statistical efficiency is improved.

INTRODUCTION

Event-related functional magnetic resonance imaging
(ErfMRI) (Rosen, Buckner, & Dale, 1998; Dale & Buck-
ner, 1997; Josephs, Turner, & Friston, 1997) has greatly
extended the range of questions that can be addressed
by functional MRIL In contrast to the traditional block-
design fMRI experiments, with ErfMRI fully randomized
orders of events may be used. This not only facilitates
the integration of fMRI with electrophysiological mea-
surements, such as those using event-related potentials
(ERPs), but also avoids potential confounds like habitua-
tion or strategy effects.

Advanced fMRI studies usually apply interstimulus
intervals (ISI) in the range of a few seconds or
below. Taking into account that the hemodynamic
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Temporal variations of the HDR strength are directly indicated
by the amplitudes derived by the algorithm. Both the
estimation efficiency and statistical inference are further
supported by an improved estimation of the noise covariance.
Using synthesized data sets, both differently shaped HDRs and
varying amplitude factors were correctly identified. The gain in
statistical sensitivity led to improved ratios of false- and true-
positive detection rates for synthetic activations in these data.
In an event-related fMRI experiment with a human subject,
different HDR amplitudes could be derived corresponding to
stimulation at different visual stimulus contrasts. Finally, in a
visual spatial attention experiment we obtained different fMRI
response amplitudes depending on the sequences of attention
conditions. W

response (HDR) elicited by an event extends over
10-15 sec (Boynton, Engel, Glover, & Heeger, 1996)
subsequent HDRs will overlap significantly in this type
of experiments. Therefore, simple event-related aver-
aging often will not be sufficient to extract the ErfMRI
response. First ideas to get rid of this overlap were
proposed by Hansen (1983), Woldorff (1993), and
Ganis, Kutas, Schendan, and Dale (1997) for the
analysis of ERPs.

A general framework for estimating evoked HDRs
using the general linear model (GLM) or multiple linear
regression was outlined in Josephs et al. (1997). In this
paper, we propose the use of basis functions with
continuous support that allowed for distributed sam-
pling of the data over peri-stimulus time. A special case
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of this analysis obtains when the basis set corresponds
to nonoverlapping time bins that correspond to dis-
crete sampling of points following stimulus onset. In
this instance, the basis function approach reduces to a
finite impulse response function estimation. This ap-
proach has been subsequently proposed by Dale
(1999) and Burrock and Dale (in press) and is a useful
parameterization in the sense that the parameter esti-
mates conform to the underlying HDR function. The
number of basis functions or number of time bins
considered can sometimes lead to overfitting of the
model or inefficient parameter estimates. In this in-
stance, constraints are required. Josephs et al. (1997)
and Friston et al. (1998) have proposed the use of a
small set of basis functions (two or three). The para-
meter estimates or coefficients of these basis functions
are unbiased estimators of the underlying HDR pro-
jected onto the subspace of the basis set. However,
unless the assumed basis functions span the entire
space of possible response functions, the resulting
response function estimates may be systematically dis-
torted.

In this paper, we take a similar approach but enforce
more natural constraints that may be useful in specific
experimental situations. Put simply, we constrain the
shape of the HDR to be the same for a particular class of
stimuli or tasks but allow its amplitude to vary among
different trial types within that class. To implement this
constraint we have to estimate the amplitudes of the
different trial types and a common shape for the HDR.
This parameter estimation problem precludes a conven-
tional least squares approach and requires an iterative
parameter reestimation scheme that is described below.

In the following we first give a brief overview over the
GLM approach according to Dale (1999) and Burock and
Dale (in press) giving the basic formula both for the
HDR estimate and for the corresponding errors. The
original equations will be modified by introducing the
weighting factors (WFs) in the context of the general
equations. From these equations it follows immediately
that estimating the HDR and the set of WFs at the same
time leads to nonlinear equations that cannot be solved
directly. We therefore developed a nonlinear steepest
descent procedure that iteratively optimizes the HDR
and the set of WFs with the goal of minimizing the
residual error. We will also describe an improvement to
the Burock and Dale procedure to estimate the tempor-
al correlations of the raw fMRI data needed to set up the
covariance matrix, which is part of the GLM model.

In order to check the new algorithm we performed
simulations on synthesized data sets. The results prove
both the general feasibility and the statistical efficiency
of the new algorithm. Finally, two experimental exam-
ples are presented with the goal of demonstrating
practical applications of the new method. They also
should give an idea of how to decide whether the new
procedure may be applied to a certain experiment.

MATHEMATICAL BACKGROUND
Detrending of MRI Data

Measurement related systematic shifts (‘trends’) are
removed by an automatic trend removal procedure as
follows:

In each run (i.e., each time period of continual MR
data acquisition), comprising Nv measurements, a win-
dow of Nr/2 samples is shifted over the Nr samples,
starting and ending with the window centered around
the first and last sample respectively. For the first and
last Nr/4 samples the window is truncated, resulting in a
few less samples per window in this situation. For each
of the windows over the run, a modified median value is
calculated as the mean of the 45- and 55-percentile
values. The median is subtracted from the original
sample yvielding the trend-corrected value. As compared
to an ordinary polynomial regression the procedure
presented here is more robust against outliers and more
flexible with respect to the temporal characteristic of the
trend. Examples are given in Figure 1.

General Framework of the Linear Model Allowing
for Amplitude Variations

Assuming a linear time invariant model as suggested by
Boynton et al. (1996), Dale and Buckner, (1997), Dale
(1999) and others, the fMRI signal y(¢) observed during
stimulation is given by

y(@) =d(6)*h(1) +n(t) (1)

where d () is a sequence of time-shifted delta functions
indicating the onset of the subsequent stimuli, 72(%) is a
Gaussian process specifying the measurement noise,
and h(?) is the underlying HDR. For experiments with
different event types this equation may be generalized to

y(0) =3 di(0)*hi(0) + n(0) 2)

with N, specifying the number of different event types
and d;(?) and h;(t) representing the pulse train and HDR
respectively for event type 7. In order to allow for
individual HDR amplitudes the pulse trains d;() may be
replaced by modified versions with nonuniform WFs,
ie.,

y(0) = 30 Xy hi(r) + n(t) (3)

where x;(f) is defined as

xi(t) = ZJL w; e (1) (4)

with the constraint

di(t) = Z/\ZI ei,j(f) (4a)

]

According to Equation (4) the pulse sequences of
each event type 7 is subdivided into Nw,; groups of
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Figure 1. Trend removal in raw fMRI data. Comparison of trends derived by median method (gray line) and first-order (A), second-order (B) and
third-order (C) polynomial (black line). The example shown in trace B was chosen in order to show that the trend removal is robust with respect to

outliers.

events with individual weights w;; and a corresponding
pulse train e, ;(?) indicating the events where w, ; applies.
Equation (2) is now a special case of Equations (3) and
(4) with all w;; set to unity.

Taking into account that the fMRI signal is sampled
discontinuously according to the scanner repetition time
(TR) the equations have to be rewritten in terms of a
discrete-time model (see Dale, 1999). Based on an HDR
of limited duration (Typgr), the model for the fMRI signal
is given as

y :lel +X2h2 +... +XNcth +n (5)

where y is the vector of Nip fMRI samples and X; is the
stimulus convolution matrix (SCM) representing the
convolution of the event sequence with the individual
HDR vectors b; (dimension Nh, sampling interval for b;
assumed to be TR) and the noise vector # (dimension
Nip). Note that in contrast to Burock and Dale (in press)
the event sequence is no longer a binary stimulus
sequence but instead reflects the real-valued WF (see
Equations (3) and (4)), which are thus embedded in the
SCM. In case of short ISIs more than one event may occur
during one TR period. The WFs of all corresponding
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events are then added and attributed to the correspond-
ing position in the SCM. The initial values for all WFs are
set to one, thus leading to the ordinary maximum
likelihood estimate (MLE).

Assuming HDR models with a nonzero mean value the
average overall y values observed over a run would also
be expected to yield a nonzero average as well. The
preceding trend correction would have subtracted this
average. Therefore, in order to allow for HDRs with a
nonzero average a global offset vector o is added
resulting in the following equation.

y :lel +X2h2 —+ ... +XNcth +o0+mn (6)

Concatenating all the individual SCMs plus the column
of ones resulting from o to just one design matrix X and
also concatenating the b; vectors plus the offset value to
just one b this equation may be reduced to (see Dale,

1999)
y=Xb+n (7)

X is of dimension Ntp by N where Nb = NNb + 1
specifies the length of b, i.e., the total number of HDR
coefficients to be estimated. In addition, the Nw
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weighting coefficients have to be derived from the data,
with Nw defined as

Nw = E 5;1wa (7a)

Estimation of HDR Curves

Starting with all WF set to one, an unbiased MLE for b is
provided by (see Dale, 1999; Hamilton, 1994)

b= (x"c,'x) 'x"C,'y (8)

assuming a zero mean Gaussian noise with covariance
matrix X,, = 0,,°C,, that may vary over voxels. In the
following, however, we assume a simplified form (%,, =
0,°C, ie., a spatially varying variance with a fixed
covariance structure) based on the observation of
Burock and Dale (in press) that the overall performance
of the estimation is not severely degraded using a global
C matrix as compared to a local one. C is not known a
priori and has thus to be estimated from the data, as
outlined below.

The estimation covariance matrix is defined as (see
Hamilton, 1994)

¥, =E(ey-e}) =si- xTcix)™! )

where the estimation error is defined as

e;=h-—h (9a)

The statistical evaluation by means of an F test was
described by Burock and Dale (in press), Dale (1999),
Friston et al. (1998) (see also Hamilton, 1994).

IMPROVED ESTIMATION OF NOISE
COVARIANCE

According to Burock and Dale (in press) the covariance C
may be estimated by first deriving an intermediate esti-
mate (according to Equation (8)) for b assuming a trivial
covariance (i.e., C = I, the unit matrix), then estimating
the empirical autocorrelation from the residual errors
averaged over all voxels of the brain volume and finally fit
the parameters of the following model (Zarahn, Aguirre,
& D’Esposito, 1997; Weisskoff et al., 1993):

1 n=0
K(n)=1< (1—N)p" 0<|n| <R (10)
0 ] > R

With TR = 2 sec we set R to 20 as a trade-off between
computational effort and accuracy.

It should be stressed that the covariance structure of
the residuals differs from the underlying noise process.

This is because the design matrix induces model specific
correlations in the residuals that are not present in the
original noise process. To test for potential effects on
statistical inference, Burock and Dale (in press) used
this covariance model to estimate the structure of
synthetic as well as actual fMRI noise data. They ob-
served that the false-positive rates of the HDR F test
were appropriately controlled (as opposed to the results
derived under the assumption of white noise). These
results indicate that the model is a reasonable approx-
imation leading to a significant improvement of the
HDR estimation.

In contrast to Burock and Dale (in press), in our
implementation approach A and p are fit directly with
a nonlinear steepest gradient optimization procedure
rather then taking the logarithm of K(») and estimating
the two parameters running an ordinary least square fit.
This modification leads to a better estimate because it is
not restricted to positive correlation values and at the
same time leads to greater robustness with respect to
noise.

C is derived from the modeled autocorrelation func-
tion by building a Toeplitz-type matrix from shifted
versions of the autocorrelation.

ASSESSMENT OF AMPLITUDE
VARIATIONS — JOINT NONLINEAR
OPTIMIZATION OF WF AND HDR

In order to allow for variable HDR amplitudes, the
design matrix is no longer restricted to zeros and
integers (indicating the occurrence of stimuli), but
instead the design matrix may be modified with the goal
of optimizing the linear model with respect to the WF as
described in Equations (3), (4) and (4a). From the
combination of Equations (3) and (4) it follows imme-
diately that a combined estimation of the HDRs and the
WEF leads to a nonlinear equation that can no longer be
solved directly by a MLE approach. An iterative least
squares procedure may be applied to solve this problem.
This involves using the linear estimator of the HDR given
the current estimates of the WFs and then using the
same estimator to estimate the WFs given the current
estimates of the HDR. This procedure has shown to
converge rapidly in case of simple models (for instance
one HDR, three WFs) with low temporal overlap of
subsequent HDRs. However, with more complex models
and severe overlap as discussed here, the performance is
poor and another algorithm is needed to speed up the
convergence. Therefore, we developed a nonlinear stee-
pest descent iterative optimization scheme as outlined
in the following.

Starting from the initial X matrix and the correspond-
ing MLE estimate as an initial guess for b the WF and b
are optimized by applying a modified steepest descent
algorithm as proposed by Powell (see Press, Flannery,
Teukolsky, & Vetterling, 1988). The optimization is
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guided by the criterion of minimizing the residual error
s,°, which is

s =ly-xb|? (11)

The following steps are repeated recursively until the
error criterion stops the iteration:

(A) Determine the direction of steepest descent at
intermediate solution WF; (i.e., the vector carrying the
set of WFs) based on b;. At the first loop, the WFs are
all set to one and b; is set to b as discussed before.

For this purpose, each of the WFs is modified
independently by a certain step. With each modification
the resulting MLE estimate for vector b; is derived and
from that the current residual error s,”.

(B) WF; is modified along the steepest descent
direction by subsequent steps until the three latest WF;
vectors cover the interval where the intermediate
minimum residual error is located. Usually this condition
is met after two to four steps. With each step, the step
size is doubled.

(C) In order to find the WF; with smallest residual
error along the current gradient, a second-order
polynomial is fit to the residual errors obtained during
the last three steps. The WEF; corresponding to the
minimum error is derived as the coordinate vector of
the minimum of the polynomial.

(D) For each of the intermediate WF;, the correspond-
ing b; is estimated applying the MLE algorithm. The
residual error mentioned in (A) and (C) is evaluated
based on this updated b; vector.

(E) Keep this intermediate optimum vector WEF;,
reduce step size by a factor of 2, and go back to (A).

The sum of the WFs per event type is always set to Nw;
(number of WF/event type) in order to reduce the
degrees of freedom and at the same time to prevent
the iteration from running into instability. In addition,
the values for the WFs are restricted to the interval [0,2].
The optimization is stopped if either the number of
iterations has reached a preset maximum or if the
decrement between subsequent iterations or the varia-
tion of the parameters stays below another predefined
limits over two subsequent loops. In order to avoid local
extrema the solution subspace is scanned with respect to
the residual error by a Monte Carlo method once the
algorithm has found a minimum. At the same time, the
determinant of the Hessian matrix of second partial
derivatives provides a test for uniqueness of the solution.

In the subsequent text, the extended approach will be
called weighted MLE (WMLE).

Error of HDR and WF estimate

Given a normal distribution for the non-linear estimates
(see Experiments section for a corresponding test) the

80 Journal of Cognitive Neuroscience

covariance of the non-linear HDR estimates can be
derived by Equation (9) (covariance for the linear HDR
estimate). Conversely, the MLE formalism as specified
above can be applied for a maximum likelihood estima-
tion of for WF; given the actual HDR estimates. This
means that the b; vector defining the HDR is included as
a set of constants in the SCM and WF; finally estimated
according to Equation (8). With this inverse MLE
scheme, Equation (9) now specifies the approximated
error covariance for the WF estimates.

SIMULATIONS

The main goal of the simulations was to test with well-
defined data (i.e., known time course of activation and
known noise structure) if (i) the WMLE procedure
would be able to deconvolve different HDRs even in
case of severe overlap and rapid stimulation paradigms
and (ii) to prove that WFs can be reliably extracted. In
two of the three simulation studies, we also derived the
MLE estimates based on separate HDRs (instead of one
HDR plus separate WFs) for comparison.

TR was always assumed to be 2 sec. The number Nb of
samples per HDR was set to 9 corresponding to a 16-sec
duration (starting at stimulus onset) based on a sam-
pling interval of 2 sec for the HDR. The possibility of
defining the HDR with sampling intervals other than the
TR will not be addressed here.

Simulation I: One HDR With Three Different WFs

This simulation served to prove that the nonlinear
optimization would extract correct WFs from a data set
with HDRs exhibiting varying amplitudes. In addition,
the improvement WMLE provides in terms of estimation
error was to be compared to the MLE scheme.

Materials and Methods

A synthesized fMRI data set was generated assuming a
balanced randomized sequence of 1182 HDR, which
were identical in shape but modulated by three different
WFs (0.6, 0.9, 1.5). The resulting data sequence was
overlayed on a synthetical noise data set generated by a
colored noise process (temporal correlation according
to Equation 10) with model parameters A = 0.75 and p
= 0.88 as specified by Burock and Dale (in press). The
ISIs were jittered over an interval of 800 to 1200 msec in
order to improve the estimation efficiency as outlined by
Dale (1999) The HDR shape was defined to resemble
usually observed empirical response functions (Dale &
Buckner, 1997; Boynton et al., 1996). Simulations were
repeated for 300 data sets of 1300 samples each with
independently generated noise. Three different settings
were applied according to the signal-to-noise ratio (SNR)
set to 2.0, 0.9 and 0.2 respectively. SNR was defined as

SNR = Xb |* / || y — Xb ||*
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Figure 2. Results of HDR estimation of synthetic data with HDR of fixed shape and three different amplitudes. Conventional MLE versus WMLE
method at different SNRs. Results derived from 300 repetitions (separate data sets). Solid line: average estimated HDR and WF (marked by rhombs).
Dashed line: true HDR and WF used for signal generation. Shaded region: empirical standard deviation. Dotted lines: theoretical estimation error as

derived from Equation (9), centered around true HDR.

Results

The WMLE estimates for the HDRs as well as the
three estimated WFs are plotted in Figure 2 together
with the original time course assumed for the HDR
during signal generation. For all three SNR values the
estimated HDR resembles the original one within a
small range representing the empirical estimation
error, which in turn closely resembles the estimation
error according to Equation (9) (see Figure 2). In
addition, the MLE estimates are also plotted based on
a model with three different HDRs. Comparing the
two results, the reduced HDR error range of the
WMLE model is clear. The average standard devia-
tions of the two MLE and WMLE estimates are listed
in Table 1.

Simulation II: Test of Statistical Efficiency

In order to evaluate the gain of WMLE over MLE in terms
of statistical efficiency we evaluated the statistical detec-
tion rates in a data set with artificial activations overlayed
on noise.

Materials and Methods

The pool of synthesized data sets from simulation I was
modified to SNRs of 0.057, 0.128, 0.228 and 0.513. In
addition, another 3000 time courses were generated
containing colored noise only (of same variance), i.e.,
without any superimposed response function. In order
to evaluate the statistical efficiency we applied both
estimation schemes (one HDR plus three WFs using
WMLE as opposed to three separate HDRs using MLE) to
the whole data set. Applying the F test to all 300 and
3000 estimates according to Burock and Dale (in press)

Table 1. Empirical Estimation Error Variance Derived from
Estimations in Simulation I for Different Signal-to-Noise Ratios.
Average Overall Samples of Estimated HDR and WF, Respec-
tively

SNR = 2.0 SNR = 0.9 SNR = 0.2
MLE: HDR 0.696 0.693 0.695
WMLE: HDR 0.273 0.272 0.256
WMLE: WF 0.009 0.022 0.082
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we determined the true-positive and false-positive rate,
respectively (assuming the null hypothesis), and thus
estimated the receiver operating characteristic (ROC;
see Xiong, Gao, Lancaster, & Fox, 1996). These tests
were performed for all four SNRs.

Results

The results in terms of ROC curves are plotted in Figure
3 for both estimation schemes calculated for significance
levels a in the range of 0.0001 < a < 0.02. The WMLE
procedure always yielded better performance in terms of
statistical efficiency. The relative enhancement increased
with SNR. From the ROC curve, it can be derived that
the gain in statistical efficiency was especially strong at
small values of a.

Simulation III: Combined Estimation of Short
Term HDR Overlapped by a Sustained HDR

In experiment II (see below) we tested if the estimations
of both the HDR and the correct WFs would empirically
yield reliable results even in case of severely overlapping
HDR of different shape. The present data set aimed at
simulating such an experiment and evaluating the perfor-
mance of the WMLE approach with known HDRs and WFs.

Materials and Methods

Another 100 data sets were generated according to the
procedure applied for simulation I, however, with two
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different HDR shapes. One of them (“HDR1”) represents
a response with a very early onset and a decay at about 6
sec whereas the second (‘HDR2") was characterized by a
response onset at about 3 sec but an extended duration of
about 16 sec, thus reflecting a type of sustained activation.
This experiment aimed at exploring whether both the
MLE and the WMLE algorithm would be able to extract
both a sustained and a phasic activation even in an
experiment in which a serious temporal overlap of the
two HDRs might occur. The different HDRs were con-
volved with a stimulation sequence consisting of 216
frames each comprising an initial HDR2 stimulus followed
by 10 HDRI1 stimuli with ISIs jittered over a range of 800—
4000 msec (approximately Poisson-distributed, mean
1000 msec). The interval between HDR2 and the first
HDR1 was 4 sec in 80% of the frames and 1 sec in 20%. In
order to check the ability of the algorithm to correctly
extract WFs under these conditions we attributed two
different WFs (0.7 and 1.3) equally distributed to the
subsequent HDR2 in a balanced order. The study was
run for three different SNRs (1.3, 3.6, 7.1).

Results

Both the usual short-term HDR as well as the extended
version were correctly extracted from the simulated data
set within an error range predicted by Equation (9). In
addition, the WF derived with the WMLE met the
theoretical values, see Figure 4. This means that even
in case of an extreme temporal overlap the two HDR
characteristics can be distinguished well and amplitude
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Figure 4. Estimation result derived with WMLE method from 100 artificial data sets comprising a superposition of two HDR with different temporal
shapes. HDR1 was included with two different WFs as indicated by the second column. Results derived from 100 repetitions (separate data sets).
Solid line: average estimated HDR and WF (marked by rhombs). Shaded region: empirical standard deviation. Dashed line: true HDR and WF used
for signal generation. Dotted lines: theoretical estimation error as derived from Equation (9), centered around true HDR.

modulations can be determined given appropriately
randomized ISIs.

Discussion of Simulations

In simulation I it was shown that even in case of severely
overlapping response functions (ISI about 1 sec, HDR
duration about 10 sec) the new WMLE procedure is able
to extract both the HDRs and also the WFs reliably
within the error range predicted by the corresponding
MLE theory. It is worth mentioning that similar results
were observed with a variety of synthetic HDR shapes
tested. As predicted from the MLE formalism the error
range increases with decreasing SNR, however, without
leading to unreasonable results thus empirically proving
the stability of the nonlinear optimization. As outlined
by Dale (1999) (see also Burock, Buckner, Woldorff,
Rosen, & Dale, 1998; Woldorff, 1993) jittering the ISIs is
a prerequisite for an efficient deconvolution procedure.
This fact is of paramount importance if subsequent
HDRs of different shapes are severely overlapping as
specified in simulation III. As can be seen from Figure 4

the sustained HDR starting at the beginning of each
frame overlaps with almost all of the subsequent HDRs
of the frames. Without jittering the ISI between all
subsequent events, neither the different HDRs nor the
corresponding WFs would have been extractable.

The development of the WMLE algorithm was in-
itiated by the goal of effectively monitoring fMRI activa-
tions in experiments where a constant-shape HDR with
fluctuating amplitudes can be assumed. As a side effect,
the statistical efficiency is improved due to the reduced
number of variables to be estimated. This theoretical
consideration was proven in simulation II. Experiments
where only slight activations are expected, therefore,
might benefit from the improved statistical sensitivity of
the WMLE algorithm provided the experiments meet the
requirements needed to apply the WMLE algorithm.

The artificial data used in these simulations had a noise
distribution that was modeled to closely match the noise
structure observed with real fMRI data (see Burock &
Dale, in press; Zarahn et al., 1997). The WMLE algorithm
applying this model may lead to overoptimistic conclu-
sions, because with real data this model may be less
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appropriate and thus cause less stable results. The
following fMRI experiments aimed at further validation.

EXPERIMENTS

In this section we present two fMRI experiments de-
monstrating the additional information and the im-
proved performance provided by the WMLE approach
in situations when HDR of constant shape but variable
amplitudes may be assumed.

Experiment 1: Visual ErfMRI at Three Different
Visual Contrast Ratios

This experiment was included in order to check the
estimated WF by some physiological plausibility. As
known from ERP experiments (see for instance Petry,
Donovan, Moore, Dixon, & Riggs, 1982) and also from
fMRI studies (see Goodyear & Menon, 1998) a mono-
tonic relation between cortical activation and physical
properties would be expected in this kind of experi-
ment. Accordingly, the WF should reflect this relation-
ship. In addition, the modulation of the WF should
mimic the main amplitude variations of the MLE esti-
mate based on three different HDRs.

A further goal of this experiment was to test empiri-
cally if despite the nonlinear optimization the distribu-
tion of the WMLE-HDR estimates would match the
normal distribution assumed for the MLE estimates.

Materials and Methods

One subject underwent a visual perception fMRI experi-
ment applying stimuli of identical shapes but of three
different contrast ratios. Stimuli consisted of a black and
white spatially smoothed (Gabor profile) checkerboard
(size of stimulus 18.6° x 14.0°, grid spacing 1.6°) that
was globally modulated according to a sine wave profile
(largest contrast in central stimulus decreasing to zero at
the borders). These were presented for 100 msec at the
center of the field of view using a visual presentation
system in which the images were projected onto a back
projection screen in front of the subject. A fixation cross
was superimposed on the center of the stimulus. The
subjects’ task was to monitor and count infrequent
changes of the fixation cross (‘+’ turning into ‘x’).
The stimuli were presented at three different contrast
ratios (low = 36%, medium = 78%, high = 100% at the
center of the stimulus). Also, a null event (‘no stim’)
according to the definition of Burock et al. (1998) was
added in order to be able to compare the MLE and the
WMLE estimates of the HDRs to those derived via
selective averaging and subsequent subtraction (these
results not reported here). The first-order sequence of
these four event types was fully counterbalanced. A total
of 1182 stimuli were presented with the ISI jittered over
the range 1000 to 2000 msec.
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fMRI signals were acquired during visual stimulation
from one subject with a General Electric 1.5-T Signa LX
neuro-optimized scanner running an echo-planar gradi-
ent echo sequence (TR = 2 sec, TE = 40 msec, flip angle
90°). A standard head coil was used to pick up the rf
signal. Slice thickness was 7 mm (1 mm gap) with an in-
slice resolution of 3.125 x 3.125 mm (64 x 64 matrix).
The slices were oriented perpendicular to the calcarine
fissure. A total of 1300 (split into 10 runs of equal length)
images were acquired. Before further analysis the data
were slice-time corrected and spatially filtered applying
a 3-D Gaussian filter with a 6 mm full width half
maximum (FWHM).

As specified in simulation I we applied two different
approaches to estimate the HDR: (i) Individual HDRs for
each of the three different stimulus contrasts (i.e., the
regular MLE estimate) and (ii) one common HDR but
three different WFs (i.e., the WMLE estimate). These
estimates were derived from voxels located within the
center of activation as identified by the F test (with
Bonferroni correction) applied to the MLE estimates.

With respect to statistical inference the normality
assumption of the WMLE-HDR estimates for fMRI noise
data was evaluated as follows: 3000 contiguous voxels
were selected from a 3-D rectangular area covering the
central sulcus (which is located clearly outside the
activated regions according to the MLE procedure).
The raw data observed in these voxels were analyzed
using both the MLE and WMLE algorithm, assuming just
one HDR for both procedures and three WFs for the
WMLE-HDR. The event sequence applied here was not
synchronized with the original one. The empirical dis-
tribution of the MLE and WMLE estimates were normal-
ized with respect to the standard deviation and then
subjected to a two sample Kolmogorov—Smirnov test
(KST).

Results

The statistical evaluation of the MLE estimate yielded an
activation cluster with the center located in V1 close to
the midline but also extending to more lateral struc-
tures, see Figure 5. From both regions representative
voxels were randomly selected for further analysis with
the WMLE procedure. The resulting WMLE-HDR and WF
estimates are plotted in Figure 5 together with the three
MLE-HDR estimates. Again, a comparison of the two
estimation techniques clearly shows the reduced estima-
tion error for the WMLE approach. In addition, the WFs
increase monotonically with the contrast. The same
tendency can also be derived from the three separate
MLE estimates, but at the cost of a larger estimation
variance. As marked in Figure 5, the ratio of peak
amplitudes (defined as the maximum of a second-order
polynomial fitted to the three largest HDR samples) of
the MLE- and WMLE-HDRs are close to the WF and thus
illustrate the relation between MLE and WMLE.
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Figure 5. WMLE estimate of an fMRI experiment with visual stimulation with Gabor pattern presented at three different contrast ratios. Results
shown for four voxels. First column: significant activation (P < .001 after Bonferroni correction) displayed according to transaxial (upper left),
sagittal (upper right), and coronal (lower left) slice. The locations of the four voxels are indicated corresponding to the results displayed in rows 1—
4. The indices of WF correspond to contrast ratios of the stimuli (0, 1, 2 = 36%, 78%, 100%). Solid line: estimated HDR and WF (also marked by
rhombs). The crosses overlayed on the WF rhombs indicate the MLE-HDR amplitudes normalized with respect to WMLE-HDR peak amplitude.
Shaded region: estimation error as derived from Equation (9), centered around estimated HDR.

Regarding the distributional properties of the WMLE
estimates, the KST did not reject the hypothesis of equal
distributions at a level of P < .05 at all samples of the
estimated HDR.

Discussion of Experiment |

Keeping in mind the earlier reports on the relation
between sensory stimulus variations and neural activ-
ity, the assumption of a fixed HDR shape with varying
WFs was justified. In this sense the WMLE approach is
empirically validated according to the following obser-
vations (see Figure 5): (i) The WFs closely resemble
the overall amplitude variations of the three HDR
estimated by the classical MLE approach, and (ii) the
WF monotonically increase with the contrast ratio.
Also, the result that similar WF gradients were ob-
served in different voxels (even in those separated by
more than the FWHM of the 3-D filter) of the
activated area provides further evidence that the

analysis reflects physiological modulations rather than
chance effects.

From the result of the KST it can be concluded that
the normalized distribution of the WMLE estimates is
identical to the one observed for the MLE estimates
(which is supposed to be normal). This means that the
nonlinear procedure does not significantly affect the
distribution of the estimated HDR. We conclude, that
WF estimates are also normally distributed, taking into
account that in the last step of the WMLE algorithm the
WFs are derived by application of the linear MLE.

Experiment II: Sequential Effects in Visual Spatial
Attention

Event-related brain potentials (ERPs) have revealed var-
ious sequence effects in the neural responses to at-
tended or unattended stimuli, e.g., the amplitude of
the early sensory components (P1, N1) elicited by a
stimulus at the attended location varies depending on
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the direction of attention with respect to the preceding
stimulus (Woldorff & Hillyard, 1991; Luck, Heinze, Man-
gun, & Hillyard, 1990). An important question, then, is
whether similar sequence effects can be observed for the
HDR in a spatial attention paradigm. In the following
fMRI study, a spatial cue was followed by a sequence of
bilateral visual stimulus arrays, and the subject had to
discriminate a target item from surrounding distractor
items at the attended location. The deconvolution ap-
proach described above was used (i) to assess possible
shape differences of the overlapping HDRs related to
the cue and items, and (ii) to detect amplitude variations
of the HDRs with respect to the sequence of the
direction of attention as indicated by the cue, i.e., LL
(attention left followed by attention left) or RR versus LR
or RL.

Materials and Methods

Six subjects were included in the study. Images were
acquired using a General Electric 1.5-T Signal LX neuro-
optimized scanner. After structural scanning (IR-pre-
pared EPI) functional images were acquired in nine
runs lasting 8.5 min each (TR: 2 sec, TE: 40 msec, flip
angle: 90°, matrix: 64 x 64 voxels, 2.8125 x 2.8125 x 3
mm, 14 slices oriented vertical to the calcarine fissure).
Rf signals were picked up with a 5-in. surface coil
placed under the occipital part of the head. A high-
resolution structural scan was acquired in a separate
session applying a 3-D SPGR sequence (124 slices/1.5
mm thickness, 256 x 256 matrix/FOV 25 cm). Using
SPM 99 (Wellcome Department of Cognitive Neurology,
UK) the raw fMRI data were movement and slice-time
corrected, matched into Talairach space (Talairach &
Tournoux, 1988), resampled to a 2 X 2 X 2 mm matrix,
and finally spatially filtered with a 3-D Gaussian filter (6
mm FWHM).

A symbolic cue indicating right, left, or neutral was
presented for 500 msec followed by a pause of 500
(20%) or 3500 msec (80% of trials). Subjects were asked
to covertly shift their attention to the side indicated by a
cue. Then, a sequence of 10 bilateral stimuli (‘item’)
appeared in the upper visual field (eccentricity 8°, 1°
above horizontal meridian, 1.2 x 1.2 degrees extent,
duration 200 msec, ISI 800-4000 msec, mean 1000 msec,
Poisson-distributed). Stimuli on both sides consisted of
3 x 3 arrays of crosses superimposed on a background
checkerboard that was locally and globally smoothed.
The central element in the array was a T that could be
displayed upright or inverted (50/50%).

The subjects had to discriminate whether the T in the
middle of the attended stimulus was upright or inverted
and to press one of two buttons. During the neutral
condition, they were told not to shift attention but to
detect the appearance of each bilateral stimulus without
discrimination. Potential eye movements were moni-
tored by means of a home-made control system with a
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fiber optic device using infrared light (resolution ap-
proximately 1°). During each run 24 blocks of the three
conditions (plus six blocks of the fixation condition)
were presented in a counterbalanced order lasting 18
sec each.

Using the MLE algorithm six different HDRs were
attributed to the event types CL, CR, CN, IL, IR, IN,
where C = cue, I = item, L = attention directed to the
left hemifield, R = attention directed to the right hemi-
field, and N = neutral condition). Attention-specific
clusters of significant voxels were determined running
an F test (Bonferroni corrected) (see Burock & Dale, in
press) for the left minus right difference cue HDR.
Significant activations were found in the fusiform gyrus,
as originally reported by Heinze et al. (1994) in this sort
of lateralised attention task for upper-field bilateral
stimuli. We focused on this area in order to trace
attention-related sequence effects (as discussed above).
For this purpose, a few representative voxels located in
the activated part of the right fusiform gyrus were
selected. From the corresponding data sets, HDRs and
WFs according to the WMLE procedure were estimated;
however, in this case only two different HDR shapes
(cue and item) were assumed. For both HDRs, indivi-
dual sets of WFs were derived for the responses occur-
ring at the LL, RL, NL, RR, LR, NR, and xN (x representing
an arbitrary predecessor) sequence of attention condi-
tions. Regarding the 10 items following each cue a
common WF was used, i.e., no temporal variations
within a run were accounted for here.

Results

In the following we show the results observed in a
representative voxel from the right hemisphere of a
representative subject.

In the left part of Figure 6 the HDRs and their corre-
sponding standard deviation ranges as estimated with
WMLE are shown (i) for the cue and (ii) for the item. On
the right side, the WF as derived for the different se-
quences are displayed (including confidence regions).

WFs were generally smaller for cues and items at
ipsilateral than at contralateral condition. In the atten-
tion left condition (i.e., contralateral) the WF according
to a RL sequence was much larger as compared to LL.
Applying a ¢ test to the WF we looked for intraindividual
statistically significant differences between the same-
same cue WF and the same-different cue WF. For the
voxel shown here the difference was significant at a level
of p < .01. Throughout all voxels of the significant
cluster this difference was significant at least at a level
of p < .05. In addition, the NL sequence showed a
difference compared to LL (not shown in the figure)
almost as large as RL. The corresponding item related
WFs exhibited a similar tendency in some voxels without
reaching any level of significance. Only minor differences
were encountered for other sequence-related activity,
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Figure 6. WMLE estimate of an HDR and WF for a visual spatial attention fMRI experiment. The HDRs for the cue and the item differ due to the
different numbers of occurrences. Upper left: cluster of voxel (P < .05 after Bonferroni correction) exhibiting significant difference specifically on
attention direction. First column: separate item- and cue-related HDR estimated by WMLE. Solid line: estimated HDR. Shaded region: estimation
error as derived from Equation (9), centered around true HDR. Second column: separate WFs derived for same-same and same—different sequence
of attention direction. Solid line: connecting two estimated WFs, i.e., indicating difference between different sequences. Shaded region: estimation

error as derived from Equation (9), centered around estimated WEF.

none of these showing a stable pattern over all voxels
included.

Discussion of Experiment Il

Luck et al. (1990) reported that ERP components
observed during a visual spatial attention task decreased
if two subsequent targets occurred in the same hemi-
field. Based on behavioral measures Ward, Duncan, and
Shapiro (1996) put this effect in a more general concept
and showed that substantial interference may occur
between sequence and mental processing of subse-
quent visual objects. Accordingly, we made the assump-
tion of (i) separate HDR shapes for cue and item and
(i) separate WFs for different sequences of attention
directions.

As shown in Figure 6 the WMLE algorithm extracted
different HDRs for cues and items. Also, under the
contralateral condition (i.e., attention to the left hemi-
field) a clear-cut modulation (¢ test, p < .01) of the
sequence-related WF was observed for the cue-related
HDR but not for the items. The significant difference

between WF determined for a same-same sequence as
compared to same—different resembles the abovemen-
tioned findings of Luck et al. (1990). No clear-cut results
were found for the HDRs estimated for those cues
drawing attention to the ipsilateral field of view. In
addition, no significant effects were observed with the
item related amplitude. This statement, however, only
holds for the small data set reported here, in this
paradigm: one common WF for all 10 items following
the cue. It cannot be excluded that temporal fluctua-
tions within the run are hidden by this way of analysis
(see Hopfinger et al., 2000). A detailed analysis with
respect to the temporal structure of the within-run items
could uncover those effects.

GENERAL DISCUSSION

In the present paper we describe a special version of the
general approach to extract HDR functions from raw
fMRI data based on the assumption that the HDRs follow
a linear superposition model. With respect to the more
general approach of Dale (1999), which requires the
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estimation of a large number of variables in case of
multiple different HDRs, the goal of the present study
was to find a modified version that is more parsimonious
with respect to the number of these variables.

With appropriate simulations we have tested the new
approach regarding its capability of reliably extracting
different HDRs and associated WFs. In addition, the gain
in statistical efficiency was demonstrated. Experimental
data from two fMRI studies were analyzed in order to
test the algorithm under controlled physiological condi-
tions and secondly to provide a good example of the
application in the context of cognitive experiments.

A general way to reduce the complexity is to impose
constraints restricting the application to certain special
cases. For instance, the approach of Josephs et al. (1997)
and Friston et al. (1998) restricts the HDR to linear
combinations of a small number (two or three) of basis
functions thereby providing an efficient way of defining
(and thus estimating) the HDR. However, this formalism
is limited to data sets that can be adequately described
by assuming this restricted range of HDR shapes. In
order to overcome this limitation at least for some
experiments we formulated a different, less restrictive
constraint requiring the HDR to be constant in shape for
a class of events (although not being restricted to a
predefined class of forms) and allowing for nonstatio-
narity of the amplitudes. This approach is principally
suited to physiological experiments where sequence or
context effects are likely to modulate the amplitudes of
neural responses. In addition to the experimental ex-
amples given before in this paper, other experiments
similar to the oddball paradigm may be candidates for
WMLE.

In order to bring further down the false positive rate
in statistical inference we accounted for temporally
correlated noise by including the noise covariance in
the estimation scheme (Zarahn et al., 1997) as proposed
by Burock and Dale (in press). These authors have
demonstrated that statistical efficiency significantly ben-
efits from a proper estimation of the individual statistical
noise structure. Therefore, we slightly modified their
estimation procedure and made it more robust. In
addition, our algorithm accounts for both positive and
negative correlations.

As a consequence of the parsimonious number of
variables, the estimation error is reduced and thus the
statistical sensitivity is improved (see simulation study in
this paper), provided the assumption of a stationary
noise structure is true. However, taking into account the
considerable computational effort added by the non-
linear optimization this advantage can not always be
exploited for practical reasons. For instance, for experi-
ment I it takes about 1 min/voxel on a SUN SPARCsta-
tion 5 computer to estimate the HDRs and the WFs with
the WMLE algorithm. Therefore, for routine applications
a reasonable trade-off might be first to define a cortical
area by means of a conventional fMRI analysis and then
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focus the advanced analysis on this reduced number of
voxels.

Comparing the different linear approaches addressed
here, the specific fields of application are mainly defined
by physiological and experimental considerations. If no
evidence at all is available regarding the time course and
variation of the HDR the general unbiased estimation
approach of Dale (1999) and Burock and Dale (in press)
will be most appropriate as it does not require any
restriction regarding the HDR time course (except to
be of finite duration) and thus avoids missing or mis-
characterizing activations due to an oversimplification. If
stronger assumptions regarding a certain shape and
onset of the HDR is a priori reasonable, more efficient
estimates may be achieved by expressing the HDR
functions as a linear combination of a few basis func-
tions, as described in Josephs et al. (1997), Friston et al.
(1998), and Dale (1999).

Finally, if context or sequence effects are likely to
modulate the amplitude of neural response, the new
algorithm presented in this paper will be useful to
improve the estimation and trace the temporal variation.
In any case, the final decision regarding the choice of
analysis has to be made along plausibility considerations
because the shape and variability of the real HDR cannot
be predicted in absolute terms.

CONCLUSION

We have described an extension to the framework of
linear estimation of event-related HDR functions aimed
at accounting for sequence effects by introducing WFs
that modulate the estimated HDR. The new algorithm
comes out with a reduced estimation error due to the
smaller number of variables thus leading to an enhanced
statistical efficiency. Analyzing both synthesized data sets
and real fMRI data has demonstrated that (i) the algo-
rithm yields reasonable results even with short ISI given
an appropriate jittering, and (ii) sequences of HDRs with
strongly differing duration and a correspondingly severe
overlap can be disentangled with respect to varying
HDRs and WFs.

The new algorithm is thus suitable for the evaluation
of arbitrary experiments dealing with time-varying neural
activations.
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