DIPFIT: localizing dipoles

DIPFIT: localizing dipoles

- Motivation
- Ingredients
 - Source model
 - Volume conductor model
 - Analytical (spherical model)
 - Numerical (realistic model)
- Comparison EEG and MEG
 - Inverse modeling
 - Single and multiple dipole fitting
 - Distributed source models

DIPFIT: localizing dipoles

- Motivation
- Ingredients
 - Source model
 - Volume conductor model
 - Analytical (spherical model)
 - Numerical (realistic model)
- Comparison EEG and MEG
 - Inverse modeling
 - Single and multiple dipole fitting
 - Distributed source models

Motivation

- Why fit dipoles?
- Why measure EEG?
- Why do ICA?
- Get extra information about brain processes
 - Time course of activity-> EEG
 - Location of activity
 ---> fMRI

Difference between EEG and fMRI

- EEG measures post-synaptic potentials
 - related to neuronal input
- fMRI measures BOLD
 - related to energy consumption

- Different characteristics in the time domain
- Different generators
- Timecourse and location

Why EEG: extra information

- Timecourse
 - ERSP
 - ERP
- Topography
 - Scalp distribution
 - Underlying generators

Source modelling

Overview

- Motivation
- Ingredients
 - Source model
 - Volume conductor model
 - Analytical (spherical model)
 - Numerical (realistic model)
- Comparison EEG and MEG
 - Inverse modeling
 - Single and multiple dipole fitting
 - Distributed source models

Neuronal currents

Symmetry, orientation and activation

radial symmetric

random oriented

asynchronously activated

synchronously activated parallel oriented

Swartz Center for Computa Neuros

Motivation for current dipoles

Neurophysiological motivation

Equivalent current dipoles

Motivation for current dipoles

- Neurophysiological motivation
- Physical/mathematical motivation
 - Any current distribution can be written as a multipole expansion
 - First term: monopole (must be zero)
 - Second term: dipole
 - Higher order terms: quadrupole, octupole

Motivation for current dipoles

- Neurophysiological motivation
- Physical/mathematical motivation
 - Any current distribution can be written as a multipole expansion
 - First term: monopole (must be zero)
 - Second term: dipole
 - Higher order terms: quadrupole, octupole
- Convenience
 - dipoles can be used as building block in distributed source models

Overview

- Motivation and background
- Forward modeling
 - Source model
 - Volume conductor model
 - Analytical (spherical model)
 - Numerical (realistic model)
 - Comparison EEG and MEG
- Inverse modeling
 - Single and multiple dipole fitting
 - Distributed source models
 - Spatial filtering

Volume conductor

- electrical properties of tissue
- geometrical description
- spherical model
- realistic shaped model

Volume conductor

- Advantages spherical model
 - mathematically accurate
 - reasonably accurate
 - computationally fast
 - easy to use
- Disadvantages spherical model
 - inacurate, esp. in some regions
 - difficult alignment with anatomy

Volume conductor

- Advantages realistic model
 - accurate solution for EEG
- Disadvantages realistic model
 - more work
 - individual anatomical MRI required
 - computationally slow(er)
 - numerically instable
 - difficult in interindividual comparison

 \rightarrow The pragmatic solution is to use a standard

realistic headmodel for EEG

Realistic volume conductor

- Computational methods for volume conduction problem that allow realistic geometries
 - Boundary Element Method (BEM)
 - Finite Element Method (FEM)
- Geometrical description
 - triangles
 - tetraeders/voxels

Volume conductor: BEM

- Boundary Element Method
 - description of geometry by compartments
 - each compartment is
 - homogenous
 - isotropic
 - important tissues
 - skin
 - skull
 - brain
 - (CSF)
 - triangulated surfaces as boundarie
 - surfaces should be closed

Volume conductor: FEM

- Tesselation of 3D volume in tetraeders
- Large number of elements
- Each tetraeder can have its own conductivity
- FEM is most accurate numerical method
- Computationally expensive
- Accurate conductivities are not (well) known

Overview

- Motivation and background
- Forward modeling
 - Source model
 - Volume conductor model
 - Analytical (spherical model)
 - Numerical (realistic model)
 - Comparison EEG and MEG
- Inverse modeling
 - Single and multiple dipole fitting
 - Distributed source models
 - Spatial filtering

EEG volume conduction

Robert Oostenveld – DIPFIT: localizing dipoles – EEGLAB workshop Singapore 2006

EEG volume conduction

- Potential difference between electrodes corresponds to current flowing through skin
- Only tiny fraction of current passes through skull
- Therefore the model should describe skull and skin as accurately as possible
- Problems with skull
 - Not visible in anatomical MRI
 - Thickness varies
 - Conductivity is not homogeneous
- Complex geometry at base of skull

Electric current → magnetic field

MEG volume conduction

- Measures sum of fields associated with
 - Primary currents
 - Secondary currents !!!

MEG volume conduction

- Only tiny fraction of current passes through the poorly conductive skull
- Therefore skull and skin can be neglected in the MEG model
- Local conductivity around dipole important
 - geometry

~~~~M//

conductivity







# Differences between EEG and MEG

- scalp distribution more blurred due to volume conductor in EEG
- MEG is insensitive to radial sources
- EEG sees more, making source characterization more difficult
- EEG more noisy in itself (electrode-skin impedance)
- MEG more sensitive to environmental noise





# Differences between EEG and MEG

- EEG potential differences, requires choice of reference electrode
- MEG sensors are measured independent
   of each other
- MEG can use simple but accurate volume conduction model
  - multiple non-concentric sphere model, i.e. each sensor has its own local sphere fitted to the head
- position of brain relative to MEG sensors
  - may vary within a long session
  - is different between sessions





# Overview

- Motivation
- Forward modeling
  - Source model
  - Volume conductor model
    - Analytical (spherical model)
    - Numerical (realistic model)
- Comparison EEG and MEG
- Inverse modeling
  - Single and multiple dipole fitting
  - Distributed source models

#### -----



#### Source modelling

#### forward problem



## Inverse methods

- Single and multiple dipole models
  - Minimize error between model and measured potential/field
- Distributed dipole models
  - Perfect fit of model to the measured potential/field
  - Minimize additional constraint on sources
  - LORETA (smoothness)
  - Minimum Norm (L2)
  - Minimum Current (L1)
- Spatial filtering
  - Scan whole brain with single dipole and compute
    - the filter output at every location
  - MUSIC
  - Beamforming (e.g. LCMV, SAM, DICS)





# Overview

- Motivation and background
- Forward modeling
  - Source model
  - Volume conductor model
    - Analytical (spherical model)
    - Numerical (realistic model)
  - Comparison EEG and MEG
- Inverse modeling
  - Single and multiple dipole fitting
  - Distributed source models
  - Spatial filtering







# Single or multiple dipole models

- Manipulate source parameters to minimize error between measured and model data
  - Location of each source
  - Orientation of each source
  - Strength of each source
- Orientation and strength together correspond to the "dipole moment" and can be estimated linearly
  - Position is estimated non-linearly
  - Source parameter estimation





#### Parameter estimation







#### Parameter estimation: model

forward model volume conductor source

measured potential

model for the data select "optimal" model

$$\Psi_i = \Psi(r_i) = \Psi(r_i; \zeta)$$

$$V_i = V(r_i) + \text{Noise}$$
  
 $V_i = \Psi(r_i; \zeta) + \text{Noise}$ 

$$\min_{\zeta} \left\{ \sum_{i=1}^{N} \left( \Psi_i(r_i; \zeta) - V_i \right)^2 \right\}$$



#### Select optimal model





# Dipole scanning: grid search

- define grid with allowed dipole locations
- compute optimal dipole moment for each location
- compute value of goal-function
- plot value of goal-function on grid

- number of evaluations:
  - single dipole, 1 cm grid:
  - single dipole,  $\frac{1}{2}$  cm grid:
  - two dipoles, 1cm grid:

~4 000 ~32 000 ~16 000 000





# Dipole *fitting*: nonlinear search

- start with an initial guess
- evaluate the local derivative of goal-function
- "walk down hill" to the most optimal solution





number of evaluations: ~100







# Overview

- Motivation and background
- Forward modeling
  - Source model
  - Volume conductor model
    - Analytical (spherical model)
    - Numerical (realistic model)
  - Comparison EEG and MEG
- Inverse modeling
  - Single and multiple dipole fitting
  - Distributed source models
  - Spatial filtering







# Distributed source model

- Position of the source is not estimated as such
  - Pre-defined grid (3D volume or on cortical sheet)
- Strength is estimated
  - In principle easy to solve, however...
  - More "unknowns" (parameters) than "knowns" (measurements)
  - Infinite number of solutions can explain the data perfectly
    - Additional constraints required
    - Linear estimation problem

# -----





#### Distributed source model

• Linear estimation

$$\vec{\Psi} = q_1 \vec{\Psi}_1 + q_2 \vec{\Psi}_2 + \dots = \begin{bmatrix} \Psi_{1,1} & \Psi_{2,1} & \cdots \\ \Psi_{1,2} & \Psi_{2,2} & \cdots \\ \vdots & \vdots & \ddots \\ \Psi_{1,N} & \Psi_{2,N} & \cdots \end{bmatrix} \cdot \begin{bmatrix} q_1 \\ q_2 \\ \vdots \end{bmatrix} = \mathbf{L} \cdot \vec{q}$$

 $\vec{q} = \mathbf{L}^{-1} \cdot \vec{\Psi}$ 



#### Distributed source model

$$V = L \cdot q + Noise$$

$$\min_{q} \{ ||V - L \cdot q ||^2 \} = 0 !!$$

• Regularized linear estimation:  

$$\min_{q} \{ ||V - L \cdot q||^{2} + \lambda^{2} \cdot ||D \cdot q||^{2} \}$$

#### Constrained linear estimation:

$$\min_{q} \{q^T \cdot W \cdot q\} \text{ while } \|V - L \cdot q\|^2 = 0$$



# Summary 1

- Forward modelling
  - Required for the interpretation of scalp topographies
  - Interpretation of scalp topography is "source estimation"
- Mathematical techniques are available that aid in interpreting scalp topographies -> inverse modeling





# Summary 2

- Inverse modeling
  - Model assumption for volume conductor
  - Model assumption for source (I.e. dipole)
  - Additional assumptions on source
    - Single point-like source
  - Multiple point-like sources
    - Distributed source
    - Different mathematical solutions
      - Dipole fitting (linear and nonlinear)
- Linear estimation (regularized)













Robert Oostenveld – DIPFIT: localizing dipoles – EEGLAB workshop Singapore 2006