3rd EEGLAB Workshop Singapore

Mining Event-Related Brain Dynamics - II

Scott Makeig smakeig@ucsd.edu

STCcI-PRC99-19 Hubble Space Telescope Key Team & NA

Scott Makeig Event-Related Brain Dynamics II

Makeig TINS 2002

Organized field activities are coherent, spatially organized phenomena in the electrical 'space' of the cortex.

Scott Makeig Event-Related Brain Dynamics II

EEG

AB

2006

Modeling Event-Related Brain Dynamics

- 1. Un-mix cortical (and artifact) source contributions to the scalp electrodes using independent component analysis (ICA).
- 2. Visualize the activities of independent component (IC) sources across single trials using ERP-image plotting.
- 3. Model the event-related dynamics of the IC sources using time/frequency analysis (ERSP, ITC, ERC, etc.)
- 4. Localize the separated IC sources using inverse source estimation.
- 5. Compare similarities in IC dynamics and locations across subjects using IC cluster analysis.
- 6. Assess the reliability of differences between IC activities timelocked to conditions, groups, and/or sessions of a study.

Event-Related Brain Dynamics II

Event-Related Brain Dynamics II

Event-Related Spectral Perturbation (ERSP)

EEG

What produces event-related potential averages (ERPs)?

Inter-trial Coherence (ITC) ("phase-locking factor")

= the consistency, at each latency relative to a set of timelocking events, of the **local phase** of a physiological process across a set of event-related epochs.

Simulated data trials

Phase-locking creates the ERP

Scott Makeig Event-Related Brain Dynamics II

Phase-locking creates the ERP

Scott Makeig Event-Related Brain Dynamics II

Phase-locking creates the ERP

Scott Makeig Event-Related Brain Dynamics II

Simulation - Phase locking creates ERPs

EEG

EEG

Makeig et al., Science 2002

Scott Makeig Event-Related Brain Dynamics II

S. Enghoff

No single measure captures the event-related brain dynamics

- ERP ← Is a given ERP feature a 'true' ERP, or 'phase resetting', or both (ITC) !? Does it coincide with an EEG power increase or decrease (ERSP) ?
- **ITC** ← No amplitude effects (ERSP & ERP)!
- ERSP ← Does not show phase statistics (ITC). Is a given power increase also in the ERP, or not?
- But, are these measures enough?? No!
- For one they are again (blind) trial averages!

Event-Related Brain Dynamic State Space

EEG

Makeig et al., TICS 2004

ICA asks the question, "What dis Independent as occur Component either within the brain or outside it?" Analysis

ICA asks the question, "What distinct EEG processes occur in the data – either within the brain or outside it?"

Blind EEG Source Separation by ICA

Largest 30 Independent Components (1 subject)

Simultaneously active dipolar independent components

Julie Onton & S. Makeig (in press)

^{IC9} Single Session - Two Maximally Independent Central Alpha Processes

IC11

Scott Makeig Event-Related Brain Dynamics II

independent components can be ranctionally independent

IC Stability I

Data

- 14 subjects performing a memory task
- 71 electrodes
- > 300,000 data points per dataset

Decomposition

• 23 ICA algorithms, plus PCA and Promax

Analysis

• Localized all components with a single equivalent dipole model.

• Sorted components by residual variance of the dipole model w.r.t the component map.

Decomposition Quality Across Algorithms

Event-Related Brain Dynamics II

Blinks

jade 15.7%

tica 15.6%

Lateral eye movements

EEG

Right Mu components

jade 1.3%

tica 0.6%

jade 1.0%

tica 1.4%

Left hemisphere Mu component

Frontal midline theta

jade 3.3%

tica 4.0%

Effects of PCA dimension reduction

Effects of PCA Dimension Reduction on Dipolarity of the ICA Decomposition

Does EEG always originate in the same cortical locations?

Equivalent-dipole density

Scott Makeig Event-Related Brain Dynamics II

Onton et al., '05

Equivalent-dipole density

EEG

Scott Makeig Event-Related Brain Dynamics II

Onton et al., '05

IC coherence

A contradiction in terms?

Event-Related Coherence (ERC)

• Significant consistency of local phase difference between two concurrent physiological waveforms.

TWO SIMULATED THETA PROCESSES

EVENT-RELATED COHERENCE

Scott Makeig Event-Related Brain Dynamics II

Scalp channel coherence → source confounds!

ICA Component coherence -> source dynamics!

Visual Selective Attention Task

15 subjects

Four component clusters with brief theta bursts event-locked to the speeded button press

Scott Makeig Event-Related Brain Dynamics II

Scott Makeig Event-Related Brain Dynamics II

Makeig et al., PLOS 2004

Scott Makeig Event-Related Brain Dynamics II

Makeig et al., PLOS 2004

I searched my memory for ...???

Scott MakeigYutaka K, Ryoi T, Teruko U, Hisao N, Kimitaka K, Event-Related Brain DyTaketoshilO. *Nature* **412**, 546-549 (2001)

Scott MakeigYutaka K, Ryoi T, Teruko U, Hisao N, Kimitaka K, Event-Related Brain DyraketoshilO. Nature 412, 546-549 (2001)

Scott Makeig Event-Related Brain Dynamics II

Trial-to-trial variability

Vive la difference!

Frontal Midline Theta Process

Scott Makeig Event-Related Brain Dynamics II

Reach Task

Cortical

Field Dynamics

- of Active Cognition
- One LED is lit at a time (in random order)
- Subject reaches to touch LED with stiff right index finger, then returns to rest
- Two resting conditions (hand in lap, hand upright)
- Touches rarely successful w/o visual guidance
- 256-channel active electrode EEG (@ 256 Hz)
- 4-channel infrared joint tracking (60 Hz
- EEG and position tracking sync'd in the EEG record

Scott Makeig Event-Related Brain Dynamics II

Makeig, Poizner et al.

Reach Task

- Subject sits in the dark facing a pegboard
- Three LEDs protrude from board (L | M | R)
- One LED is lit at a time (in random order)
- Subject reaches to touch LED with stiff right index finger, then returns to rest
- Two resting conditions (hand in lap, hand upright)
- Touches rarely successful w/o visual guidance
- 256-channel active electrode EEG (@ 256 Hz)
- 4-channel infrared joint tracking (60 Hz)
- EEG and position tracking sync'd in the EEG record

Scott Makeig Event-Related Brain Dynamics II

Makeig, Poizner et al.

Symmetrically Located ICs In/Near the 'Parietal Reach Region'

EEG

Scott Makeig Event-Related Brain Dynamics II

Makeig, Poizner et al.

Event-Related Brain Dynamics II

Poizner et al.

