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Outline

e Blind Source Separation:

— Solving the “cocktalil party problem”
e Applications

— Speech separation and clarity

— Image processing

— EEG/ERP

— fMRI

— other applications




Blind Source Separation
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Herault & Jutten ("Space or time adaptive signal processing
by neural network models*, Neural Nets for Computing
Meeting, Snowbird, Utah, 1986):

Comon (1994):

Bell & Sejnowski (1995):
Amari et al. (1996):
Cardoso (1996):

Applications of ICA to biomedical signals
— EEG/ERP analysis (Makeig, Bell, Jung & Sejnowski, 1996.
— fMRI analysis (McKeown, Jung et al. 1998)
— ECG analysis (Cardoso 1998).




ICA Theory — Cost Functions

Family of BSS algorithms
Information theory (Infomax)
Bayesian probability theory (Maximum likelihood estimation)
Negentropy maximization
Nonlinear PCA

Statistical signal processing (cumulant maximization, JADE)

A unifying Information-theoretic framework for ICA (Lee et al. 1999)
e Pearlmutter & Parra showed InfoMax, ML estimation are equivalent.
* Lee et al. showed negentropy has the equivalent property to
InfoMax.
e Girolami1 & Fyfe showed nonlinear PCA can be viewed from
information-theoretic principle.




Independent Component Analysis

ICA Is a method to recover a version, § X U
of the original sources by multiplying ") o )
the data by a unmixing matrix, oNA /S oW/ o
U= WXx, O . O

_ _ G O 9

where X Is our observed signals, a O 0 20

linear mixtures of sources,

X= As.
WA  after learning:
While PCA simply decorrelates the _\ _
" - -4.09) 0.13 0.09 -0.07 -0.01
outputs (using an orthogonal matrix 07 20 000 009 006

W), ICA attempts to make the outputs | 0.02 -0.02 -0.06 -0.08 [-2.20

- - - - 0.02 0.03 0.00 | 1.97] 0.02
statistically independent, while 0.07 0.14 [-3.50 0.01 0.04

placing no constraints on the matrix W —




ICA vs PCA

Principal component analysis

PCA
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Statistical Independence

Statistical Independence:
N
fs(s) = 1] fs:(ss)
1=1

Or the mutual information:

fs(s)
HzNzl fsz'(si)

I(si,sj)——-E[ln ] =0, for Vi # j

The problem of blind separation is to find W such that the
linear transformation u = Wx = WAs reestablishes the con-
dition of statistical independence.



Entropy

H(X) ==, p()log(p(x))

Dice: 1/6
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ICA learning rule

How to make the outputs statistically independent?

Minimize their redundancy or mutual information.

Entropy: H(X) == p(x)log(p(x))

XxeX

Joint entropy HX,Y)== > p(x,y)log(p(x,Y))

(X,y)eXxY

Mutual Information /(y,.y,) = H(,) + H(/.) - HY.,Y.)

Minimizing /(y,,y,) > Maximizing H(y,V>)
v

=0 if the two variables ICA learning rule
are independent

OH(Y,, Y, )\t
AW = 172 W'W
oW ——

Natural aradient (Ama%lz)




Independent Component Analysis

S X U
§ v} "}
OoNA o NW/ O
L " ()
& o &
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ICA i1s a method to recover a version, of the
original sources by multiplying the data by a
unmixing matrix,

u = Wx
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InfoMax (Bell & Sejnowski, 1995)

To make the u; independent, we need to operate on non-
linear transformed output variables, y = g(u), such as

_ 1
147U

y ,  u= Wx + Wy
‘The non-linear function provides all the higher-order statis-
tics necessary to establish independence.

(a)

=

\
L.
~—~
>
e
o

x i .
wﬂm w 14

From Bell & Sejnowski Neural Compu. 1995.



ICA learning rule

The learning rule:

OH(Y)
W

WIW = [1+ gu”|w,

AW
where ¢; = (8/0u;) In(dy;/Ou;).

For super-Gaussian,
¢; = 1 — 2y;(for logistic nolinearity).

For sub- and/or super-Gaussian,

b; = + tanh(w;) — u; kurtosis < O
© 7 ) —tanh(w;) —u; kurtosis > 0



e Remove the mean

X =X - <xX~>.

* ‘Sphere’ the data by
diagonalizing its
covariance matrix,

X = 2<xxT>"12(x-<x>).

Update W according to
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Kurtosis, Super- and Sub-

& Gaussian

Kurtosis: a measure of how peaked or flat

of a probability distribution is.
furt (X7 = [{X I-Lz'dl 3 A *
4
)

—Furtasziz =0
Gaussian Dis. Kurtosis =0

urtogiz=0
Sub-Gaussian: kurtosis < 0 /’\(*
m&

- 1




ICA Training Process

= Remove the mean
X =X -<xX>

= ‘Sphere’ the data by
diagonalizing Its
covariance maitrix,
X = <XXT>12(X-<x>).

= Update W according to

0H(y)

T
8WWW

AW
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ICA Applications

e Speech enhancement (noisy speech
recognition)
e |[mage processing

e Biomedical signal processing (EEG,
ERP, fMRI, MEG)




Example: Speech Separation




Speech Enhancement & Recognition

Recording

Time (sec)

Separated Signals

Time (sec)




Speech Enhancement & Recognition

Separation of Two Speech Signals
Improves speech recognition
rate after separation
Algorithm works for various
sounds 1n different environments.

Park and Lee (1999):
W/o sep. With sep.

15 dB 87.8%  90.8%

10 dB 68.9%  87.9%

5dB 37.0%  79.9%




ICA Applications

e Speech enhancement (noisy speech
recognition)
e |[mage processing

e Biomedical signal processing (EEG,
ERP, fMRI, MEG)
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Image De-noising

orginal







ICA Applications

e Speech enhancement (noisy speech
recognition)
e |[mage processing

e Biomedical signal processing (EEG,
ERP, fMRI, MEG)
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2. Inverse solution is not unique

Forward Solution

Model head Mode! data

A single pattern of neural
activity will produce a
unique scalp map

Inverse Problem

Resired madel solution Recorded data

BUT ...A single scalp map
could have been produced
by an infinite number of
patterns of neural activity




3. EEG data are mixtures of source signals
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|ICA/EEG Assumptions

e Mixing Is linear at electrodes
e Propagation delays are negligible

e Component time courses are
Independent

e Number of components < number
of channels.




ICA decomposition

EEG Scalp Channels

unmixing

activations scalp maps
U=WX w

35
From Jung et al., Clinical Neurophysiology, 2000.



Independent components of
i EEG/ERP
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Frequently Asked Questions

e What Is temporal and spatial ICA?

For EEG, we are looking at temporally
Independent brain activities arising from
different brain networks.

For fMRI, the independence is considered over
voxels because of brain modularity. I.e.,
Simplistically, "Different places do different
things."




Frequently Asked Questions (cont.)

e How much data is enough data?

There i1s no fixed limit to the number of
points needed for a "good" ICA solution
- and In fact no fixed way to judge
whether an ICA solution is "good" or

not.




Frequently Asked Questions (cont.)

e How should the activations be scaled?
U=WX, X=W-1*U

The strength of source activity Is distributed
between the columns of W-1 and the rows of U.

e Can ICA separate ‘correlated’ source
activities?




Practical Issues with ICA of EEG/ERP

1. Apply ICA to averaged ERPs
e How many time points are needed for training?

Suggestion: At least several times number of
variables in the unmixing matrix.

e Which EEG processes may express their
Independence Iin the ERP training data?

Suggestion: Decompose the concatenated
collection of ERP averages in respond to the
experimental stimulus and task conditions.

 ICA decomposition of averaged ERPs must be
interpreted with caution.

SCCN/UCSD




Practical Issues with ICA of EEG/ERP

2. Apply ICA to continuous EEG data

e Are components spatially stationary through
time?
Suggestion: Perform separate decompositions
of subsets of the recorded data, each
consisting of periods during which the sources
may be stationary.

SCCN/UCSD




Practical Issues with ICA of EEG/ERP

3. Apply ICA to unaveraged event-related EEG

ONGOING EEG

amplifier > o eyt Il AL R A

/E_" ) %t_..




Experiment

o o [ | 0 @

Task: Fixate cross while covertly attending to green box. Press
button when circle is flashed in green box.

Subject: 28 normal control, 14 autistic and 8 cerebellar lesion subjects.

Session: 30 72-s task blocks, including 120 targets and 480 nontargets
In each of the 5 locations.

43



ERP Image

Single-trial ERPs at C=z=
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Sorted trial number
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Analysis of Single-trial ERPs

ICA applied to —~600 (single-subject, 31-
channel, 1-s) concatenated single-trial
response epochs timelocked to detected
target stimuli

v

31 independent components having:
e fixed spatial projections to the scalp
e temporally independent time courses
of activation

40l




Component 1 Component 2

leftmost rightmost

gw/d\ MM IR ,,mm

‘ ‘ ‘ ‘ ‘ ‘ 1] 900 0 300 0 900 O 00 0 800
Time (msec)
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Single-dipole BESA Modeling

Component 1 Component 2

RU=6.74»[-5-12.8ns] ata: ] RU=1.37:[-5-13.8ns]




|CA-based Artifact Correction

Independent Componets

\‘“=‘\ 20
w 0o ICH

Arifact—corrected EEG
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activations  scalp maps
u=WX W
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Split Single Trials based on EOG

EOG1 |-

T
Eoc2 e
L

FCse

[ PEAY aM..anhM
=500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000

Heavily

. Clean trials Contaminated so
contaminated



Averages of Least, Moderately and Heavily Contaminated Trials
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From Jung et al., Clinical Neurophysiology, 2000.



Independent Muscle Components

N



Stimulus-locked

|C7 activations IC14 activations
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Response-locked

|C2 activations |C8 activations
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Non-phase locked

|C5 activations |C23 activations
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Characteristics of Independent Component:

e Concurrent Activity

e Maximally Temporally Independent
e Overlapping Maps and Spectra

e Dipolar Scalp Maps

e Functionally Independent

e Between-Subject Regularity




Do the activities of
maximally independent
EEG domains interact ?

58



vo EBEG . channels

Cortex

Power ﬁ

Scalp channel power changes/coherence

- source confounds!
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MANY EEG channels

//TS—C?\\
O
/C)QD S o7 g
D Telals

Cortex (\) U

Separate out
Independent EEG
Components

Measure their

Event-Related Coherences

ICA Component coherence—source dynamics!

60



Does every subject have
the same or comparable
components while they
perform the same tasks?

62



Component Stability: Cross-subject
clustering analysis of ICA components
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Between-Subject Regularity

Left mu
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Source Localization

e EEG data collected from any point on the
scalp typically includes activity projected by
volume conduction from multiple EEG
processes Iin different cortical regions. This

has made it difficult to localize the sources of
the EEG signals.

By separating the data into maximally
Independent domains of partial synchrony,
ICA identifies scalp maps associated with
synchronous field activity in compact
domains, separating the question of source
/adentification from that of source /004//’2&{/’0/7.?7
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From Makeig etial., PLoS, 2004.




Source Localization
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Balancing Caution with Enthusiasm

Although results of applying ICA to EEG
and ERP data have shown great promise and
given new Insights into event-related brain
dynamics, the analysis method Is still in its

Infancy.

The plausibility and reliability of its results
should In each case be validated using
convergent evidence, typically behavioral
and/or other physiological measurements,
before interpreting its functional significance.

70




Summary

ICA separates high-density EEG (or MEG) data into

sources
signals.

of distinct information in the multidimensional

ICA reveals WHAT EEG (and artifact) processes are
active in the data, building spatial filters that allow:
(1) their separate activities to be assessed and

monitor

ed,

(2) their separate projections to the scalp sensors to

be map
from ot

ned and inverted with little or no interference
ner sources.

(3) t

to be In

ne interactions between multiple brain networks
vestigated. I



Magnetic Resonance Imaging
(MRI and/or functional MRI)

1.

MRI is an imaging technique
used to produce high quality
images of the inside of the
human body.

It 1s based on the magnetic
susceptibilities of oxygenated
hemoglobin (HbO2) and
deoxygenated hemoglobin
(HbR) to track the blood-flow
changes related to neuronal
activity, which 1s referred to as

blood-oxygen-level-dependent
(BOLD) contrast. 72



fMRI/BOLD Signal Complexity

Ex EX Exp Exp
Cnt

=) Mean Signal

40-s
Time courses of 10 randomly selected voxels

W

PR SR A, R SR AXINGTX
S e PR

0 2 4
Time (min)

73
McKeown et al., Human Brain Mapping, 1998



ICA Applied to fMRI Data

Task-related

Machine Noise

Measured
Signal

Arousal

Physiologic
Pulsations

McKeown et al., Human Brain Map., 1998




Analysis of Event-related
fMRI Data

Model-based methods Data-driven methods

> Require a priori knowledge of - Reqmre_ MNNEL SPREeiime
the time course of the assumptions
hemodynamic response » Explore time courses and

> Assume homogeneity across spatial distribution of the data
different brain regions Reveal unforeseen

o activations (time-varying, site-
> Allow tests of statistical depen dent)( ying
significance within an assumed P : _
data+noise model. Provide no noise model for
statistical testing.




ICA Applied to fMRI Data

Component Mixing Meas_ured
Maps > fMRI Signals
#1 I-' = N .-:-

— .. ; = t=2
) ) " . mixing matrix e @
M

0 L y |..=.:. o
..j . ':ﬂ--' t=n
n z .
C MC =X
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Independent fMRI Components

Consistently Transiently Abrupt head
task-related task-related movement
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Stability of ICA Component Maps

Time courses Map Voxel Values
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Simulated Activation Slice 1 Slice 2
[ LI — ' = Signal ® Signal
Selected voxel time__ ./ Added Subtracted

course

Relative Task
SenSitiVity ---With simulated

activation
— Without

3
ICA Time (min)
Vs

Correlation

Simulated task

Actual task

II‘ J\/‘

(Simulation) ! A

Active voxels by
correlation
(Ir] >0.197, n = 195)




Conclusions

e |CA has proven successful in many
data-analysis applications.

e Great care must be taken to examine
the validity of the assumptions that are
used by ICA to derive a decomposition
of the observed signals and/or to
evaluate the reliability and functional
significance of the resulting
components.




