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Introduction 
 

This document provides step-by-step guidelines for those who want to use FMRLAB, a Matlab 
toolbox for fMRI data analysis using independent component analysis (ICA) available under the GNU 

public license from http://sccn.ucsd.edu/frmlab/. This document first describes the procedures for 
installing the toolbox and then illustrates the procedure for using FMRLAB to analyze fMRI time 
series using a hands-on example. The example dataset used in this tutorial is also available at  
http://www.sccn.ucsd.edu/fmrlab/example/. 

 
Theory and Background. For background information about ICA and its application to fMRI data 
analysis, please refer to the references available at http://www.sccn.ucsd.edu/fmrlab/. FMRLAB has a 
counterpart, EEGLAB, for analyzing EEG or MEG data using ICA. It also can be freely downloaded 

from http://www.sccn.ucsd.edu/eeglab/. Some of the visualization functions FMRLAB uses to display 
ICA results are adapted from functions contained in SPM99, a Matlab-based program for brain 
imaging visualization and analysis which can be downloaded from http://www.fil.ion.ucl.ac.uk/spm/. 
 

Requirements. FMRLAB runs under core MATLAB (The Math Works, Inc., Natick, MA), version 
5.3 or higher. Currently, the (faster) binary version of our infomax ICA routine ‘runica()’ (run from 
within Matlab using ‘binica()’) has only been compiled under Linux (and FreeBSD). On the 
visualization side, the SPM99 display functions (e.g., max intensity projection or MIP, 2-D slice 

overlay, and 3-D rendering) run only under Linux. For other platforms, please refer to SPM99 website 
and download the proper version of related functions (see list in Appendix). FMRLAB requires at least 
256 MB of RAM (more is better) and a Pentium III (or IV) CPU.  
 

Processing Time. The amount of processing required by FMRLAB is relatively modest. For example, 
applied to a conventional fMRI dataset, FMRLAB requires less than 10 minutes to preprocess and run 
ICA training using a laptop running Linux with 1.6 GHz Pentium IV CPU and 1GB memory.   
 

Image formats. The image format used in FMRLAB is generic raw (.img) without header and footer. 
Thus, the experimenter needs to enter the image acquisition parameters (e.g. image height and width, 
number of slices, FOV, slice thickness, TR, etc) as well as the experimental paradigm (e.g., total 
number of scans, stimulation onset asynchrony (SOA), etc). FMRLAB provides an editor allowing 

users to enter this information. To convert fMR images to the FMRLAB format, the FMRLAB 
distribution includes some MATLAB routines to convert images from different systems (Siemens 
Symphony, Siemens Magnetom, GE Signa 1.5/2.0 T and Bruker MedSpec S300 3T).  Please refer to 
http://www.sccn.ucsd.edu/fmrlab/  for further details. To display the results of regions of activity 
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(ROAs) using MIP, 2-D slice overlay, or 3-D rendering, the data need to be converted to ANALYZE 
format (Biomedical Imaging Resource, Mayo Foundation) used by SPM. FMRLAB is equipped with a 
build-in converter function for this purpose.  
 

FMRLAB Manual. This document gives a quick-start to FMRLAB only. It gives step-by-step 
instructions as to how to install the toolbox and get some hands-on experience with its use. Some 
available FMRLAB functions are not covered in this tutorial. For the details of these and other 
FRMLAB functions, please refer to the FMRLAB manual, which can also be downloaded from 

http://sccn.ucsd.edu/fmrlab/.  

 

1.  FMRLAB Installation 
 

1.1  Download FMRLAB 
 
The FMRLAB toolbox for fMRI data analysis using ICA can be downloaded at: 
http://www.sccn.ucsd.edu/fmrlab/ as a file named fmrlab.tgz. Under Microsoft Explorer, click the 

right mouse button and select “Save link as … .” Under Netscape, press SHIFT + left mouse button to 
download the toolbox .tgz file and save it to disk.  
 

1.2  Unzip and install FMRLAB 
 
Copy the FMRLAB .tgz file into an FMRLAB directory, for example, “/home/ourlab/matlab/fmrlab”. 
Use “tar xvfz fmrlab.tgz” to unzip and untar the file. This will save all the necessary files for running 
FMRLAB in the fmrlab directory.  

 

1.3  Add the FMRLAB path to the Matlab environment 
 
Open the file startup.m using a text editor. Add the line “path( path, FMRLAB_DIR);” to the end of 

file. Replace FMRLAB_DIR here with the actual pathname of the FMRLAB directory (in our  
example, ‘/home/ourlab/matlab/fmrlab/’)  
 

1.4  Edit the FMRLAB settings file, ‘icadefs.m,’ to set ICA defaults 
 
Open the file icadefs.m using a text editor. On line 8, replace ICADIR by your FMRLAB directory 
path (for example ‘/home/ lab/matlab/fmrlab’). On line 17, set ICABINARY to 
‘FMRLAB_DIR/ ica_linux’, using the pathname of your FMRLAB_DIR directory (in our example, 
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‘/home/ourlab/matlab/fmrlab/ica_linux’). 
 

1.5 Download the FMRLAB example data set 
 

The example data set used in this tutorial can be downloaded from: 
http://www.sccn.ucsd.edu/fmrlab/example/. This data set contains two files, 2dseq_r1 and 2dseq_str. 
The first is the file of functional images. The second contains the corresponding structural images. The 
functional images were acquired during a 5-minute experiment in which the subject was shown brief 

8-Hz flickering-checkerboard stimulation lasting 0.5 s every 30 seconds (SOA). (See Duann et al., 
2002 for details).  
 
The image acquisition parameters for the functional images were: 

?? Image dimensions = 64 x 64 x 5 
?? FOV = 250 mm x 250 mm 
?? Slice thickness = 7 mm 
?? TR = 0.5 sec 

?? Total number of scans = 610 (600 time points) 
?? Dummy scans = 10 
 

The structural scans were T1-weighted images with the same slice positions, number of slices and 

FOV as the functional scans. However, they were acquired at 256 x 256 resolution to provide more 
structural details than the functional scans.  
 
For this data set, the structural image acquisition parameters were: 

?? Image dimensions = 256 x 256 x 5 
?? FOV = 250 mm x 250 mm 
?? Slice thickness = 7 mm 

 

2. Functional Image Preprocessing and ICA Decomposition 
 
Next we demonstrate, step-by-step, how to use FMRLAB to analyze the example fMRI data set. 
 

2.1 Start FMRLAB 
 
From the  MATLAB command line, type fmrlab. If the environmental variables have been set properly, 
we recommend starting FMRLAB from the directory where the example image data are located. 
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2.2 Quitting FMRLAB 
 
To exit from FMRLAB, select the FMRLAB menu item “Dataset > Quit”. This will clean the 

workspace, close any figures created by FMRLAB, and clear all the FMRLAB variables, including the 
FMRLAB global variable structure, FMRI. 

 

2.3 Create an FMRLAB dataset 
 
The procedure for creating an FMRLAB dataset is: (1) Select a functional image file. (2) Enter the 
image acquisition parameters for the functional scans. (3) Enter the image information for the 
structural scans. Select Dataset > Create Dataset from the FMRLAB menu. A Select Image File 

window will pop up (as below) allowing you to select the file containing the functional scans. 

 

Move the mouse cursor to 2dseq_r1 (the functional scan file for the sample data set) and click the 
Open button at the bottom of the figure. Next, a Functional Image Information window will pop up 
(as below) allowing you to enter the image acquisition parameters for the functional scans. Fill all the 
fields with the values given above (see Section 1.5).  

 
After filling in the  correct values in all the fields , press the OK button at the  bottom of the window.  
Next, the Structural Image Information window will pop up (as below) to allow you to enter the 
necessary structural image parameters.  
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Press the (top center) continuation button [… ], a File Selection dialog will be brought up for user to 
select file from the list, then it will fill in the filename as well as the pathname automatically. Refer to 

the structural image acquisition parameters (Section 1.5 above) and enter the correct values in the 
other fields of this window. Keep the Flip Image checkbox checked. This will flip the images to the 
neurology standard (“right is right”). If the sequence of structural images begins with the slice closest 
to the top of the head, check the Re-sort Image  checkbox. This will convert the images to begin with 

bottom slice (as per the requirements of SPM99) for spatial normalization and visualization. The 
completed window should look like that shown below.  
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2.4 Save the FMRLAB dataset 
 

To save the dataset you have just created, select Dataset > Save Dataset from the FMRLAB menu. A 
file selection window will pop up allowing you to input the output filename. Be sure to append the 
extension .fmr to the output dataset file. Then, click the “Save” button to save the dataset to disk. 
 

2.5 Remove initial ‘dummy’ scans  
 
The number of dummy scans was specified during the create-dataset procedure (see 2.3 above). To 
remove those scans from the fMRI time series, select Process > Remove Dummies from the menu. 

 

2.6 Perform slice timing adjustment 
 
To adjust the  slice timing (using interpolation to make the acquisition times for the slices as 

synchronous as possible), select Process > Slice Timing . A Slice Timing Window will pop up (as 
below) allowing you to specify the sequence in which the functional slices were acquired. There are 
four possible selections: Interleaved, Ascending , Descending and User Defined. The default is 
Interleaved.  

 
 

To use User Defined mode, enter the actual slice sequence, for example, “2 4 6 8 10 1 3 5 7 9,” into 
the text entry field of the Slice Timing Window. Then press OK to start the slice timing adjustment 
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process. During this process, a progress-bar window will pop up to indicate its progress. When the 
timing adjustment process is done, FMRLAB will close both the Slice Timing Window and the 
progress bar. 
 

 
 

2.7 Remove Off-Brain Voxels 
 
To remove off-brain voxels from the ICA training data, select Process > Extract Brain from the menu. 
The Extract Brain Voxels window will pop up. Before you start the  voxel removal process, press the 

Preview button (bottom right) to load the functional images. 
 

 

 
The images will be displayed in the top row of the window. The bottom row shows the results of using 

the (not-yet specified) voxel intensity threshold. The figure below shows the Extract Brain Voxels 
window after the functional images are loaded. The whole functional images are displayed in the first 
row. Because the threshold (appearing in the text entry field at the bottom of this window) is 0, the 
thresholded images shown in the bottom row are identical to the whole (top) images. 
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Set the voxel-removal intensity threshold by simply keying in a value, say, 500, in the text entry field, 
or use the slider bar to the left of the editing field. To evaluate the results of the voxel selection 
threshold, compare the images in bottom and top rows. Once you have selected a suitable threshold, 
press OK to accept it and to remove the rejected voxels from the functional images. 

 

 

 
2.8 Decompose the data with ICA 
 

Select Process > ICA Training in the menu to perform the ICA training. First, FMRLAB will pop up 
a window allowing you to tune several training parameters (PCA number, annealing angle, extended 
mode and maximum number of training steps). Enter 100 for Principal component dimensions to 
retain to reduce the dimensionality of the training dataset (here) from 600 to 100. (Note : Some papers 
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have recently appeared in which the number of principal dimensions retained for ICA training was as 
low as 4!  Because of the complexity of brain hemodynamics, this is highly unrealistic and will not 
use ICA to best advantage. We recommend using as many dimensions as practical, given your RAM 
limits, etc.). All other training parameters may be left at the displayed default values. Press OK when 

ICA setup is complete.  
 

 
 

Once the ICA training begins, the MATLAB command line window (as below) will show the ICA 
training steps  as well as the changes in the learning rate, weight values and annealing angle (this is the 
angle of deviation from the previous weight update to the most recent. For efficient training, this 
should be near 90 degrees). The process will converge when the change in weight values is less than 

the specified stopping point (default: 0.000001). If the process does not converge in this sense, it will 
be stopped after the specified maximum number of training steps. 
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3. Visualizing Results of ICA Decomposition 
 

3.1 Visualize component regions of activity (ROAs)  
 

ICA decomposes the entire BOLD data into maximally spatially independent components. FMRLAB 
provides a function allowing the user to browse through the component region of activity (ROA) maps 
to determine which components are of interest for further analysis and which should be rejected as 
artifacts. Select Visualize > Component ROAs > On Functional Images from the FMRLAB menu 

to open the component map browser. As shown in the figure below, the activation (u = W * x where W 
is the ICA unmixing matrix and x is the (times,voxels) matrix of observed fMRI BOLD signals) is first 
convert to z values (standard deviations of the  voxel weight distribution) and color coded (see the 
color bar at lower right) to form the colored map we call the component Region of Activity (ROA). 

Above the color bar, there are two editing fields that allow you to enter z-value thresholds The upper 
threshold gives the upper bound of the color coding (avoiding the skewing influence of extreme 
weight values). The lower threshold is the lower color bound of the displayed ROA. Setting this to 0 
will fill the entire functional images with (mostly non-significant near-0) color values. 

 

 
 



 14 

At the bottom of the Component Map Browser there are buttons to specify the next component 
number to review, to mark or unmark the current component either for selection (as a component of 
interest) or rejection (as a BOLD artifact), plus several time course display options (lower right).  

 

 
 

To increase or decrease the component number by 1, simply click mouse button on the arrow [<] or [>] 

buttons. To move to a specific component number, type the component number in the text entry field 
to the right of the [>] button and press keyboard ENTER. Use the Mark and Unmark  buttons to 
select components for further analysis or for rejection. To remove a component from the Select list, 
first browse to the component by selecting the component from the Select list (by clicking and holding 
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on the pull-down list box), then press the Unmark button. Follow the same procedure for unmarking a 
component marked for rejection. 

 
The Component Map Browser can display component time courses in different ways (e.g., as 

back-projected component time courses, as ROA raw-mean time courses , and as BOLD images). For 
details, please refer to the FMRLAB manual (see http://sccn.ucsd.edu/fmrlab/). The figure above 
displays both the back-projected component time course (in blue) and the ROA whole-signal mean 
time course (in red) for component 16 from the decomposition of example fMRI dataset. To compare 

these two time courses, the FMRLAB graphic also gives the percentage of the whole-signal mean time 
course variance accounted for (p.v.a.f) by the back-projected component time course (66.73%). 
 

 
 

The FMRLAB BOLD-image display function, boldimage(), is adapted from the erpimage() function 

of EEGLAB (Arnaud Delorme, Tzyy-Ping Jung and Scott Makeig, see 
http://www.sccn.ucsd.edu/eeglab/ ). The boldimage() function converts the (1-D) time course 
associated with an fMRI ICA component to a 2-D image by segmenting the time course into 
experimental trials or epochs , then color coding the BOLD epoch time course, finally stacking the 
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color-coded epoch time courses in acquisition order to form a color-coded 2-D BOLD image. Clicking 
on the Time text selection box and selecting the Component + BOLD  item, a text entry window 
asking for the experiment epoch length and SOA will appear (as shown in the figure above). When 
these values are specified (followed by pressing OK), the BOLD image of the component time course 

will be displayed as the right lower panel below.  
 

 
 

3.2 Visualize component maps on structural images 
 

FMRLAB provides a function to overlay component ROA maps on the structural images. If you input 
structural images, you can also overlay the component ROAs on top of them by selecting Visualize > 
Component ROAs > On Structural Images from the FMRLAB menu. An example is shown in the 
figure below. The display features are the same as for mapping ROAs on the functional images (3.1 

above). Although the user can also use this func tion to browse the component ROAs, the structural 
images must be available. Also, the structural maps appear much more slowly  than maps on the 
functional images since the ROAs must be  interpolated to fit the image dimensions of the structural 
scans. To save time, we recommend first mapping component ROAs on functional images, then 
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creating and saving ROA maps on structural images only for selected components of interest. 
 

 
 

3.3  Find dominant components by maximum z value  
 

Another FRMLAB component search method selects, for every voxel, the component having the 
maximum (z-value) weight at that voxel. The assigned component participates most strongly in 
generating the BOLD signal at the specific voxel. This component may also have the highest  
correlation coeffic ient between the back-projected component time course and the whole voxel time 

course, though this need not always be the case. Color-coding the dominant component for each voxel 
allows the user to graphically select voxel regions dominated by a single component. To bring up this 
search image, select Visualize > Dominant Component > by Max Z.  
 

First, a ROAMAP Display window will pop up (as below) allowing you to input the lower-bound z 
value to use in the display. Entering a higher threshold will make the resulting figure simpler (with less 
“chickenpox” noise).  
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After the lower-bound threshold is set, a second ROAMAP Display window pops up to ask you if you 
want to show all components (option 1), or just the components selected as of interest in the 
component browser (option 2). You can also choose (option 3) to show all components except those on 

the “reject” list. 
 

 
 

After the proper parameters are assigned, FMRLAB will calculate the z value of each voxel weights 
according to the activation (ui,j = Wi,k  * xk,j, where i is the component number, j is the voxel index, 
and k is the time point of the fMRI time series) of each component , and will assign to every voxel a 
maximal z value (shown in the left panel of the figure below). To every voxel, the function will also 

assign a component having the maximum z value (as in the right panel below). We may call this 
component the “defining component” of the voxel.  
 

 
 
Clicking on one of the thumbnail slice images of this map (on right, above) will pop up an enlarged 
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slice image in another window (as below), allowing the user to select a voxel of interest. Normally, we 
click on a voxel in a color-connected region, for example, as shown by the white arrow below) since 
most relevant hemodynamic processes for cognitive research may be those that affect the BOLD 
signals of geometrically connected voxel regions rather than of isolated voxels. After the voxel 

component of interest is selected, the pop-up window will be closed. On the command line FMRLAB 
will indicate the number of the component selected. 
 

 
 
FMRLAB then computes the Region of Activity (ROA) of the component by searching across all 

voxels and finding those whose z-normalized component weights are higher than the default threshold. 
The function then determines the mean whole-BOLD-signal time course for the voxels in the ROA. 
We call this the ROA raw-mean time course. In the left panel of the figure  below, the black trace 
shows the ROA raw-mean time course, and the red trace the back-projected time course of the defining 

component. The blue and green traces show the back-projected component time courses of the 2nd and 
3rd components accounting most strongly for the ROA raw-mean time course variance.  
 
The right panel shows the user the ROA of the specified defining component and the four components 

that account maximally for the variance of the ROA raw-mean time course. This panel also gives the 
pvaf for these four components.  For example, below the pvaf of the defining component (IC16) is 
66.7%. The second-largest pvaf (IC 47) is 22.0%. the third (IC8) , 16.7% and the fourth (IC85) , 10%. 
Note that the ROA raw-mean time course pvaf by the sum of these four independent components is 

88.2% (shown under the ROA map). Note: Since spatially independent components need not have 
orthogonal time courses, the pvaf of the backprojected sum of two or more components is not usually 
the same as the sum of the individual pvaf’s of the individual component backprojections.  
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3.4  Find dominant components by PVAF 
 
Another way to find dominant components is by ranking components by pvaf by assigning to every 
pixel the component maximally accounting for the variance of its raw time course. Select Visualize > 

Dominant Component > By PVAF from the menu. The system will first br ing up a window allowing 
you to select the ICA components you want to consider in constructing the map. There are three 
options: Entering 1 will use all components in the analysis . If 2, only the browser-selected components 
will be considered. Entering 3 will cause the function to consider all components except those on the 

component-browser “Reject” list.  
 

 
 

The two figures below show a maximal pvaf map (left) and a maximal z-value map (right). In the 
z-value map color shows the indices of the most highly weighted components. Here, dark red 
corresponds to the first (and largest) component, dark blue to the 100th (and smallest) component. 
These maps show some patches of connected voxels that are dominated by the same ICA component. 

These are often areas (and components) of functional interest. 
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Clicking on a thumbnail slice image in the maximal-component map (on the right above) will pop up 
the map of the selected slice map in a new window (as below), allowing the user to select voxel 
component of interest. In the  figure below, user moves the cursor and clicks the left mouse button on a 
voxel of interest (at the tip of the white arrow).  

 

 

 
When a voxel of interest is selected, FMRLAB will plot the region of activity (ROA) of the selected 
maximal-pvaf component. The function will then derive the raw-mean BOLD-signal time course for 
voxels in the ROA, and will calculate the pvaf of the mean component time course of the 

back-projected ROA voxels, producing figures like those below. 
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3.5  Export selected components 
 
To display results obtained by ICA and compare them with other components from the same or 
different subjects, FMRLAB must convert the ROA map to standard coordinates and display the result 

in standard plots (such as 2-D slice-overlay and 3-D brain-rendering). For this purpose, FMRLAB uses 
some functions from SPM99 (see http://www.fil.ion.ucl.ac.uk/spm).  
 
First, FMRLAB needs to export the ROA maps and save them in standard ANALYZE format. The 

function Visualize > Export Result is made for this. Selecting Visualize > Export Result will export 
the ROA maps of components in the selected-component list from the component browser (see Section 
3.1 for how to create this list). The Matlab command line window will record the progress of 
component saving (as below).  

 

 



 23 

If the structural brain images exist, the export function will also export these images. Note: Including 
the structural images will allow FMRLAB to spatially normalize the resulting ROA maps to the 
standard Talairach space. Without structural images, FMRLAB will not be able to perform the spatial 
normalization or visualize the data in MIP, 2-D slice-overlay, or 3-D rendered displays. 

 

3.6  Spatially normalize the component maps 
 
The spatial normalization used in FMRLAB is adapted from that provided in SPM99. The process 

requires structural images with higher spatial resolution than normal functional scans. The structural 
images provide more anatomic details for (a) accurately estimating the Talaraich transformation 
parameters, and (b) applying these parameters to the resulting ROA maps. Thus, in the Select 
Structural Image  window (the left side of the figure below) select str_0001.img, the standard 

filename used by FMRLAB for the first exported structural image in ANALYZE format. Then, in the 
Select ROA Images window (right side below) select all those ANALYZE-format ROA maps of 
interest (having names like roa_005.img meaning ROA map of component 55), as well as the 
structural image itself. FMRLAB will determine the Talaraich transformation parameters from the 

structural images, and will apply those parameters to spatially normalize the ROA maps. The structural 
brain images will also be normalized for visualization purposes. The resulting spa tially normalized 
files will have names like nstr_0001.img (normalized structural slice number 1) and nroa_0055.img 
(normalized ROA map 55).  

 

 
 

3.7  Produce a maximal intensity projection (MIP) display 
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By selecting Visualize > MIP Display and picking the desired spatially-normalized ROA map (be sure 
to select one that has been normalized), a maximum-intensity projection (MIP) display will be created 
(as below). 

 
 

3.8  Produce a 2-D slice-overlay display 
 
Selecting Visualize > 2D Display will pop up two file-selection windows (as below). The first (left) 
allows you to select the spatially -normalized ROA map to display. The second (right) allows you to 
select the template on which you want to overlay the ROA map.  
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FMRLAB provides two options for this template. One is the smoothed standard brain template 
provided in SPM99 (“T1.img.”) The second is the spatially normalized individual brain structural 

image exported by FMRLAB, normally “nstr_0001.img.” The individual subject’s  structural image 
provides more detail about the brain structures associated with a component than the smoothed 
standard brain template. However, the individual brain template can only be used if the subject’s  
structural images are available and are used in the spatial normalization process.  

 
After the ROA map file and the plot template are specified, three more parameters must be specified 
for the 2-D slice-overlay display. The first is the slice orientation to display. This can be either (1) axial, 
(2) sagittal, or (3) coronal. The z-value range gives the lower and upper bounds for thresholding the 

ROA z-values. For example, entering [2 10] will ignore voxels  with small z values between 2 and –2, 
and will not differentiate between z values greater than 10 (or between those with 2 values less than 
-10). 
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Positive z values will be assigned to warm (red | orange | yellow) colors and the negative z values 
cold colors (green | blue | indigo). The third parameter (above) identifies the range of slice 
coordinate (in mm, in Talairach space) to display. It can be given by a 1-D vector (such as [2 3.5 
5 … ]), or in Matlab [start:gap:end] format. Example: Entering [–26:2:20] with axial orientation, 

tells FMRLAB to display slices from z-axis position –26 mm to +20 mm with a 2-mm gap. A 
typical 2-D slice-overlay display is shown below.  
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3.9  Produce a 3-D head-model rendered display 
 
3-D rendering is probably the most popular and well-accepted format for displaying fMRI results. 
FMRLAB uses the 3-D template provided with SPM99 to overlay the region of activity (ROA) map 

onto the SPM’99 3-D template brain. The ROA maps must first be spatially normalized to standard 
Talairach coordinates using the spatial normalization function (see Section 3.6 above). 
 
When the normalized ROA maps have been created, select Visualize > 3-D Display to start the 3-D 

rendering. First, the Pick a File Window will pop up (below, left), allowing you to specify the ROA 
map to display (normally a file named, again, something like “nroa_005.img”). When ready, click the 
Open button to close the file selection window and bring up the 3-D Rendering window (right below). 
The top parameter input is the lower-bound z-value threshold, which is used to ignore insignificant 

voxels in the ROA map. The second entry specifies the translucency of the color display. Translucency 
allows the viewer to “see through” the brain to activations within the outer brain surface. Typical 
values for translucency are 0.25, 0.5, 0.75, 1 or NaN. The lower the value, the more opaque the brain 
template. To display without translucency, use [NaN] (Matlab for “not a number”). The third option 

allows the user to specify which 3-D brain template to use. Possible values are 1 (SPM96 template), 2 
(subject-average template) or 3 (single-subject template). 

 

  

 

After these inputs are complete, press OK to begin the 3-D rendering, which will produce a figure like 
that below. 
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For other functions in the FMRLAB toolbox, see the FMRLAB manual. We hope that you will enjoy 
exploring the complexity of BOLD data sets using FMRLAB, and that in so doing, you may make 
exciting discoveries about what hemodynamics may tell us about how human brain dynamics support  
experience and behavior. 

 
 
 

Jeng-Ren Duann 

 
Scott Makeig 

 
La Jolla 9/2002 
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Appendix – Function List of FMRLAB 
 

A. 1  Main Files: 
fmrlab.m main function of FMRLAB toolbox 

fmrlab.mat MAT file to keep necessary parameters for FMRLAB toolbox 
license.txt GNU license 

boldimage.m image the intertrial dynamics of BOLD signal 

clear_fmri_global.m clear FMRI data structure from the working environment 

clear_workspace.m clean up the workspace by closing all the opened windows by FMRLAB 

dilation.m perform dilation on input image (used in extract_brain_ui()) 

erosion.m perform erosion on input image (used in extract_brain_ui()) 
execute_ica.m execute ICA with GUI for users to specify parameters 

export_result.m export region of activity (ROA) maps to ANALYZE format for further 

visualization 

extract_brain_by_edit.m set threshold value for removing off-brain voxels by key in value in edit box 
extract_brain_ui.m GUI for user to remove the off-brain voxels 

extract_brain_ui.mat MAT file to keep the necessary fields for extract_brain_ui() 

fmri_bpfilter.m perform ideal high/band/low-pass filter on fMRI time courses 
get_status.m get current status of FMRI data structure 

ica_linux main program of binary ICA 

jr_color.m specify the colormap used to display the functional ROAs 

jr_normalization.m 3D normalize ROA map to standard brain template 

jr_render.m 3D rendering of ROA map on 3D standard brain template provided by 
SPM99 

load_dataset.m load FMRI data structure up to the working space 
make_blobs.m read spatially normalized ICA ROA map and convert it to the data structure 

used to in 3D rendering processes 

map_on_fmri.m component browser by overlaying ROA onto 2D slices of functional images 
with interactive  graphic user interface 

map_on_struc.m component browser by overlaying ROA onto 2D slices of structural images 

with interactive graphic user interface 
modify_param.m modify necessary parameters for data analysis and visualization 

modify_struc_info.m modify parameters of structural images 

progressbar.m progress bar showing the progress of the running program 

pvafmap_ui.m display percentage variance accounted for (pvaf) map with graphic user 
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interface 

read_analyze_hdr.m read header file of images saved in ANALYZE format 
read_structure.m read structural images according to the specified parameter 

remove_dummy.m remove dummy scans from the fMRI time series data 

reselect_fmri.m select new fMRI data set with the same parameters 
rm_slice.m remove noisy slices from fMRI data 

roamap_ui.m display ROA maps with graphic user interface 

roaproj_ui.m ROA back-projection to fine the back_projected ICA time courses and mean 
time  course of the ROA voxels and calculate the PVAF for a specified 

component 
roatc_ui.m find the mean time course of the ROA voxels 

save_dataset.m save FMRI data structure as .fmr file in disk 

set_fmri_global.m construct FMRI data structure as global variable in current workspace for 

further analysis 
set_fmri_global_ui.m set_fmri_global() with interactive graphic user interface 

set_struc_info.m select structural images into FMRI data structure and set the necessary 
parameters 

show_2d.m call show_actslice() and display normalized ICA ROA maps onto normalized 
2D structural image of individual subjects or 2D brain template in a 
slice-by-slice manner 

show_3d.m display normalized ICA ROA maps onto the rendered 3D brain templates 

provided by SPM99 

show_actslice.m overlay the activation map onto the structural image. Both structural images 
and activation map should be normalized to the standard brain space 
(Talairach space) with SPM 

show_mip.m display normalized ICA ROA maps on mip template provided by SPM99 
show_parameters.m show parameters of image acquisition and analysis in main window 

slice_timing.m adjust image inhomogeneity due to different acquisition timing for each slice 

slice_timing_ui.m graphic user interface of slice_timing() 
slice_timing_ui.mat necessary information needed for slice_timing_ui() 

spatial_smooth.m spatially smooth image slices to remove the spiky noise due to slignal lose in 
image acquisition 

temporal_smooth.m temporally smooth fMRI time courses with 3 time-point averaging 
tightsubplot.m compact version of subplot() 
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A.2  Functions from ICA Toolbox 
binica.m Matlab function to interface stannd alone binary version ICA (excutable by C) 

binica.sc script file to keep initial values for ICA training 
cbar.m showing color bar 

eegfilt.m (high|band|low)-pass filter fMRI time courses using two-way least-square FIR 
filtering (Signal Processing Toolbox needed) 

floatread.m read floating-point binary data from a file 
floatwrite.m write floating-point binary data into a file 

icadefs.m define ICA defaults 

sbplot.m create axes in arbitrary subplot grid positions and sizes 
scale.m scales an image such that its lowest value attains newMin and its highest value attains 

newMax 

textsc.m print text at the specified location in Matlab figure 

 

A.3  Functions from SPM’99 Toolbox 
mip.mat template file for maximal intensity projection (MIP) display 

render_single_subj.mat 3D rendered brain template from single subject to render the resulting 

ROA maps 

render_smooth_average.mat 3D rendered brain template from smoothed averaged brain to render the 
resulting ROA maps 

render_spm96.map 3D rendered brain template from SPM96 to render the resulting ROA 

maps 

spm_affsub3.m highest level subroutine involved in affine transformations 

spm_atranspa.m Multiplies the transpose of a matrix by itself - a compiled routine 
spm_atrnaspa.mexlx mex file for spm_atranspa() in Linux. 

spm_chi2_plot.m display a plot showing convergence of an optimization routine 

spm_conv_vol.m convolves a mapped volume with a three dimensional separable function 
spm_conv_vol.mexlx mex file for spm_conv_vol() in Linux 

spm_create_image.m create an image file 

spm_dctmtx.m creates basis functions for Discrete Cosine Transform 

spm_figure.m setup and callback functions for Graphics window 

spm_get.m user interface for filename selection 

spm_get_space.m get or set the best guess for the space of the image 
spm_global.m returns the global mean for a memory mapped volume image 

spm_global.mexlx mex file for spm_global() in Linux 
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spm_hread.m reads a header of ANALYZE formatted image 

spm_hwrite.m write a header of ANALYZE formatted image 
spm_list_files.m lists files and directories 

spm_list_files.mexlx mex file for spm_list_files() in Linux 

spm.m Statistical Parametric Mapping (startup function) 
spm_matrix.m returns an affine transformation matrix 

spm_platform.m platform specific configuration parameters for SPM 

spm_project.m forms maximium intensity projections 
spm_project.mexlx mex file for spm_project() in Linux 

spm_sample_vol.m returns voxel values from a memory mapped image 

spm_sample_vol.mexlx mex file for spm_sample_vol() in Linux 
spm_slice_vol.m returns a slice through a memory mapped image 

spm_slice_vol.mexlx mex file for spm_slice_vol() in Linux 

spm_smooth.m 3 dimensional convolution of an image 
spm_str_manip.m miscellaneous string manipulation options 

spm_type.m translates data type specifiers between SPM & Matlab representations 

spm_unlink.m routine for silently deleting files on disk 

spm_unlink.mexlx mex file for spm_unlink() in Linux 

spm_vol_ecat7.m get header information etc. for ECAT 7 images 

spm_vol.m get header information etc for images 
spm_vol_minc.m get header information etc. for MINC images 

spm_write_plane.m write a transverse plane of image data 

spm_write_sn.m write out normalized images 
T1.hdr header file of SPM99 T1 template images 

T1.img image file of SPM99 T1 template images 
 

A.4  Function from Supplement of SPM’99 Toolbox 
slice_overlay.m overlay functional map onto structural images in standard Talairach coordinates 

 
 

 


