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HE AMYGDALA OF PATIENTS WITH PARKINSON’S DISEASE IS

ILENT IN RESPONSE TO FEARFUL FACIAL EXPRESSIONS
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bstract—We previously found that patients with Parkin-
on’s disease (PD) were impaired with respect to recognition
f fear and disgust in facial expressions. To investigate the
eural mechanisms that underlie this impairment, we re-
orded visual event-related potentials (ERPs) in response to
he viewing of fearful facial expressions. Ten normal elderly
olunteers and nine patients with PD were studied. Fearful,
urprised, and neutral facial expressions were presented ran-
omly for 500 ms each, with a probability of 0.1, 0.1, and 0.8,
espectively. The locations of the components of the ERPs
ere analyzed using a scalp–skull–brain/dipole tracing
ethod. The ERPs elicited in response to the facial stimuli

onsisted of a negative peak (N1), two positive peaks, and a
ubsequent slow negative shift. For N1, the equivalent cur-
ent dipoles were concentrated in the fusiform gyrus, right
uperior temporal gyrus, parahippocampal gyrus, cingulate
ortex, and cerebellum, in normal subjects. In response to
he fearful stimulus, dipoles were also generated from the
mygdala in seven out of 10 normal subjects. In contrast, in
atients with PD, N1 was centered bilaterally in the angular
yrus and supramarginal gyrus, and there was no neuronal
ctivity in the amygdala. After N1, dipoles moved toward the
rontal region in normal subjects, whereas they remained in
he parietal lobes in patients with PD. These results suggest
hat neither the amygdala nor the temporal visual-associated
ortices are involved in responding to fearful expressions in
atients with PD. Corticostriatal connections may be variably
ffected by a lack of dopamine or by pathological changes in
he amygdala. Thus, somatosensory recruitment may over-
ome the mild cognitive emotional deficits that are present in
atients with PD owing to a dysfunction of the amygdala.
2005 IBRO. Published by Elsevier Ltd. All rights reserved.

ey words: event-related potentials, face recognition, amyg-
ala, dipole tracing method, Parkinson’s disease.
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elated potential; fMRI, functional magnetic resonance imaging; MEG,
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arkinson’s disease; PET, positron emission tomography; RT, reac-
s
ion time; SSB, scalp-skull-brain; STAI, state trait anxiety inventory;
-D, three-dimensional.
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523
n social interactions, comprehension of the emotional
tates of others is essential for understanding behavior
nd avoiding unnecessary conflict. Facial expressions are
entral to communicating emotion, and interpreting facial
xpression is crucial for effective social interaction. In pri-
ates, including humans, the amygdala is important for

he expression of appropriate social behavior and particu-
arly for interpreting non-verbal communication such as
acial expression.

Several recent neuropsychological studies have re-
orted deficits that affect the recognition of specific emo-
ions. Patients with selective lesions of the amygdala
Adolphs et al., 1994, 1995, 1999a) show severely im-
aired recognition of facial expressions of fear. People with
untington’s disease (Sprengelmeyer et al., 1996) are
articularly poor at recognizing facial expressions of dis-
ust. In the case of Parkinson’s disease (PD), the findings
re less clear. While some studies have reported that
atients with PD exhibit deficits in comparing emotional
acial expressions (Jacobs et al., 1995), others have found
o impairment of emotion recognition (Adolphs et al.,
998). In a previous study, we found that patients with PD
howed deficits in recognizing fear and disgust in photo-
raphs and video recordings of facial expressions, but
ecognition of emotion in written verbal stimuli was appar-
ntly normal in the same patients (Kan et al., 2002). This
bservation was supported by Sprengelmeyer et al.
2003), who reported that medicated and unmedicated
atients with PD exhibited impaired recognition of facial
xpressions. Functional neuroimaging has revealed that
oth the amygdala and striatum or insula are involved in
rocessing expressions of fear and disgust (Morris et al.,
996; Phillips et al., 1997; Krolak-Salmon et al., 2003). As

here is evidence that the amygdala and striatum do not
unction normally in patients with PD (Mattila et al., 1999;
uchi et al., 1999), it is possible that the disturbance of
motional recognition in patients with PD can be attributed
o pathological changes in these regions of the brain.

In this study, we hypothesized that dysfunction of the
mygdala in patients with PD changes the neural sub-
trates that are normally used to recognize emotion. To

nvestigate the neural mechanisms that are involved in
ecognizing facial expressions in patients with PD, we
ecorded visual event-related potentials (ERPs) related to
he recognition of fearful expressions, and determined the
ocation of the equivalent current dipoles (ECDs). We es-
imated the location of the source of the ECDs by means of
he scalp–skull–brain/dipole tracing (SSB/DT) method.
he SSB/DT method can approximate the distribution of

urface potentials of human electroencephalograms

ved.
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EEGs) to the position and vector dipole moment of an
CD, estimated by minimizing the mean squared error of

he dipole potentials that are recorded from the surface
lectrodes (He et al., 1987; Nishijo et al., 1994, 1996;
ayashi et al., 1995; Homma et al., 1994). The SSB/DT
ethod has been used to reliably evaluate neural activity

n deep locations, such as the limbic system (Masaoka and
omma, 2000; Masaoka et al., 2003).

EXPERIMENTAL PROCEDURES

ubjects

en elderly healthy normal volunteers (range of age: 49–71 years;
edian: 63.5; all male) and nine patients with PD (range of age:
1–79 years; median: 72; seven males, two females) participated

n the study. All patients were treated with medications that are
ppropriate for patients with PD. The severity of parkinsonian
ymptoms in all cases was equivalent to 2 or 3 on the Hoehn–Yahr
cale (Hoehn and Yahr, 1967). As anxiety causes activation of the
mygdala (Masaoka and Homma, 2000), the state of anxiety of
ach patient was measured before each experiment using Spiel-
erger’s state trait anxiety inventory (STAI; Spielberger, 1983).
TAI consists of two anxiety scales, state anxiety, and trait anxi-
ty. Informed consent was obtained from each participant, and the
xperimental procedures were approved by the Ethics Committee
f Showa University School of Medicine.

xperimental paradigm

e used a three-stimulus oddball paradigm. Facial expressions
ere performed by professional male and female actors, and were

he same as those that were used in our previous study (Kan et al.,
002). We used three different facial expressions, namely, fearful,
urprised, and neutral (see below). The fearful face was defined
s the target stimulus, the surprised face as a rare non-target, and
he neutral face as a frequent non-target.

xperimental setup

igitized color photographs of faces edited to a height of 10 cm
nd a width of 13 cm were displayed on a 15-inch TFT-LCD
onitor that was placed at a distance of approximately 80 cm in

ront of the eyes of the subject. Fearful, surprised, and neutral
acial expressions were presented for 500 ms, with a probability of
.1, 0.1, and 0.8 in random order, respectively, at intervals of 1500
s. The order of stimulus presentation was controlled by a per-

onal computer (Compaq Presario Desktops; Hewlett-Packard
evelopment Company, L.P., CA, USA). Subjects were instructed

o keep their eyes open and to fix their gaze on the monitor screen.
ach subject was asked to press a button with his or her right

ndex finger as soon as a target stimulus appeared on the monitor.
ach subject completed four to six experimental sessions, each of
hich consisted of the presentation of 150 stimuli. Three random
equences were used to create the order of stimulus presentation
ithin each session.

ata acquisition

EGs were recorded using 19 Ag/AgCl electrodes that were fixed
o the scalp according to the International 10/20 system, and a
eference electrode was attached to the right earlobe. Electrode
mpedances were held below 5 k� throughout the recording.
otentials were amplified and bandpass-filtered (0.53–120.00 Hz)
y the EEG recorder (EEG-1100; Nihon Kohden Corporation,
okyo, Japan), and data were stored on an EEG analyzer (DAE-
100; Nihon Kohden Corporation). The data were sampled at
-ms intervals (sampling rate, 500 Hz) and thereafter were stored

n magnetic optical disks for off-line analysis. P
To construct an SSB/DT model of the head on which the ECD
ata could be overlaid, we obtained T1-weighted magnetic reso-
ance imaging (MRI) recordings using a 1.5 Tesla system (MAG-
ETOM Impact Expert; Siemens-Asahi Medical Technologies,
okyo, Japan) in the DICOM3 format from each subject, and then
econstructed wire-frame models for the shape of the scalp, skull,
nd brain of each subject.

ata analysis

or the off-line analysis of data, waveforms were averaged after
ejecting the trials containing signals that were compromised by
linking or excessive eye movement (�50 �V). We also excluded
rials in which the subject failed to perform the task correctly. The
emaining trials that were contaminated with other artifacts, such
s slow potential shifts caused by sweating, were carefully elimi-
ated from the final average. The time window for averaging was
rom 100 ms before to 900 ms after the presentation of each visual
timulus. Reaction time (RT) was defined as the interval between
he presentation of the target stimulus and the pressing of the
esponse button by the subject. Consequently, there were three
veraged waveforms for each subject corresponding to the three
timuli (target, frequent non-target, rare non-target).

The zero baseline for measuring the ERPs was obtained by
veraging the amplitudes of the first 100 ms of the whole analysis
indow for each channel. As will be described in the Results,

hree peaks (two positive and one negative) were identified in the
RPs. The peak latency and amplitude of each wave were mea-
ured in the average waveform for each stimulus. Average peak
mplitudes during the 50-ms period on either side of the peak (for
xample, from 350 to 450 ms for P400) were calculated with
espect to the pre-stimulus baseline for each stimulus for each
ubject. The data were analyzed using a three-way analysis of
ariance (ANOVA) with repeated measures [group (normal or
atients: between-subjects factor)�stimulus (target, frequent non-
arget or rare non-target: within-subjects factors)�electrode (with-
n-subjects factors)]. Similarly, a separate ANOVA was conducted
or the six temporal electrodes (P3, T5, O1 vs. P4, T6, O2).
tatistical significance was set at P�0.05.

To determine the location of the stereotaxic coordinates of the
urrent source generators of the ERPs, ERP data were analyzed
ccording to the methods of Masaoka and Homma (2000) and
asaoka et al. (2003) with a Brain Space Navigator (BS-navi;

apan Graphics, Tokyo, Japan), using the realistic three-layer
ead model (SSB) for each subject, and assuming standard con-
uctivity (0.33 S/m for skin and brain, 0.0041 S/m for bone). Using
boundary element method, the SSB/DT can calculate potential

istributions generated by one or two assumed dipoles on the
urface of the head. The actual potential distributions recorded
rom the 19 scalp electrodes (Vobs) were compared with the
alculated potential distribution (Vcal) for one or two ECDs and the
ocations and vector moments of one or two dipoles were changed
ithin the three-dimensional (3-D) head model until the squared
ifference between the Vobs and the Vcal was minimal (one-
ipole estimation or two dipole estimation, respectively). We
hose the two dipole estimation in this study. We evaluated only
ipoles for which root-mean-square quality of fit (dipolarity) ex-
eeded 98%, because only dipolarity values greater than 98%
ndicate agreement between the estimated dipoles and the ob-
erved potential (Homma et al., 1994).

Differences in the percentage of incorrect responses, RT, and
he anxiety score between patients with PD and normal subjects
ere analyzed using the Mann-Whitney U statistic. �2 Tests with
ates’ adjustment were used to compare the appearance of di-
oles between normal subjects and patients with PD. In all cases,

�0.05 was considered statistically significant.
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RESULTS

ask performance

he normal subjects responded correctly to 98.5�1.24%
f the stimuli, whereas the patients with PD responded to
8.9�0.65%. As is evident from the percentage of correct
esponses and RTs (Table 1), normal subjects and pa-
ients with PD performed the task equally well (Mann-

hitney U test, P�0.05). The mean STAI scores for anx-
ety were 40.2�5.9 in normal subjects and 42.3�11.2 in
atients with PD. The mean scores for state anxiety were
0.9�8.6 in normal subjects and 37.6�8.4 in patients with
D. There were no significant differences between the
nxiety scores of patients with PD and those of normal
ubjects.

RPs

ypical ERPs for one normal subject and one patient with
D for the three stimuli [target (fearful face), rare non-

arget (surprised face), and frequent non-target (neutral
ace)] are shown in Figs. 1 and 2, respectively. Three
omponents of the ERPs elicited by each stimulus were
dentified, namely, a negative peak (N1), two positive
eaks (P1 and P2), and a slow negative shift. The latency
nd amplitude of P1 and N1 appeared to be similar, re-
ardless of the stimuli. The general morphology of the
aveform was similar in normal subjects and patients with

able 1. Task performance by normal subjects and patients with Park

Age
(y.o.) Sex RT (sec

ormal subjects (N 	 10)
No. 1 55 M 0.539
No. 2 53 M 0.727
No. 3 49 M 0.584
No. 4 67 M 0.730
No. 5 63 M 0.626
No. 6 61 M 0.691
No. 7 71 M 0.830
No. 8 64 M 0.789
No. 9 66 M 0.594
No. 10 64 M 0.671
Mean 0.68�0

atients of Parkinson disease
(N	9)

No. 1 51 M 0.900
No. 2 77 M 0.966
No. 3 76 F 0.937
No. 4 68 F 0.707
No. 5 72 M 0.576
No. 6 60 M 0.532
No. 7 70 M 0.772
No. 8 79 M 0.663
No. 9 73 M 0.576
Mean 0.74�0

The number of trials excluded from the final average divided by the
ace, rare non-target	surprised face. M, male; F, female.
D. N1 and P1 were present predominantly at occipito- m
emporal sites on the scalp (O1, O2, T5, and T6). The
opographical map of the N1 peak in Figs. 3A and 4A (the
ame as those shown in Figs. 1A and 2A) also indicated
ccipitotemporal negativity (Figs. 3B and 4B). The mean

atency of these components (measured at O1) is pre-
ented in Table 2. The latency of N1 was within a range of
50–550 ms, although the range varied among different
ubjects. Consequently, we estimated the location of the
CDs for each component of the waveform for each sub-

ect, rather than using an overall averaged waveform of all
ubjects.

The mean amplitudes of P1, N1, and P2 were analyzed
eparately using three-way ANOVA (group�stimulus�
lectrode). The main effects were not significant in the
omponents of P1 or N1. There was a significant interac-
ion of group�stimulus in both P1 and N1 [P1,
(2,54)	3.918, P�0.05; N1, F(2,54)	6.606, P�0.01],
hich indicated a stimulus-specific amplitude increase in
atients with PD. P2 was maximal at O1. The mean value
f the average amplitude of P2 measured at O1 was
.2�2.5 �V (target), 1.9�1.8 �V (frequent non-target),
nd 3.7�2.2 �V (rare non-target) in normal subjects,
hereas it was 6.7�4.3, 7.2�4.7, and 6.5�4.0 �V, re-
pectively, in patients with PD. There was a significant
ain effect of group [F(1,72)	12.802, P�0.05]. The am-
litudes of the P2 voltages in patients with PD were larger
han in the normal subjects. There was neither a significant

isease

Correct
response (%)

Rejection ratio* (%)

Frequent
non-target

Rare
target

Rare
non-target

99.6 3.2 1.9 1.9
99.8 27.4 1.6 8.3
99.6 48.4 3.2 16.7
98.0 37.5 11.4 28.8
97.6 38.0 12.0 28.6
99.7 1.6 2.0 3.2
98.3 45.1 10.1 17.9
95.9 29.0 7.3 13.2
98.0 17.7 13.4 20.5
98.2 24.3 6.7 7.1
98.5�1.24

99.7 15.7 2.6 7.4
98.8 24.1 29.1 8.2
99.0 22.5 21.8 23.6
97.8 21.6 13.7 14.7
99.6 12.3 6.2 3.5
98.9 18.3 4.2 24.4
99.3 10.9 6.4 4.4
99.0 23.0 15.9 5.3
98.0 27.0 8.9 10.2
98.9�0.65

ber of frequent non-target stimulus	neutral face, rare target	fearful
inson’s d

onds)

.09

.17

total num
ain effect nor a significant interaction among group, stim-
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lus, and electrode in the separate ANOVA for the six
emporal electrodes (P3, T5, O1 vs. P4, T6, O2). No sig-
ificant laterality of the mean amplitude was present in
ither group.

ource generators of ERPs

e failed to find any significant ECDs for P1 in any of the
ubjects. The ECDs that were estimated for N1 in re-
ponse to the fearful facial expression were generated
rom the bilateral amygdala (total of nine dipoles in seven

ig. 1. Examples of ERPs recorded from a normal subject (No. 2).
lectrode. The ERP had three components: a negative peak (N1), two
ace); (B) frequent non-target (neutral face); (C) rare non-target (surpris
acial emotions.
ut of 10 normal persons), but there were no such dipoles i
n the amygdala in nine patients with PD (Fig. 5; Table 3).
n a �2 test comparing zero out of nine persons and seven
ut of 10 persons, this finding was statistically significant
�2	9.98, df	1, P�0.01). One dipole was also generated
rom the right amygdala in response to a surprised facial
xpression in both the normal and PD groups, which was
ot statistically significant (�2	0.01).

Except for those in the amygdala, the ECDs that
ere estimated for N1 in response to target stimuli were
istributed mainly within the left fusiform gyrus, right

ions on the left indicate the position on the scalp of each recording
eaks (P1 and P2), and a subsequent negative shift. (A) Target (fearful
. The latency and amplitude of P1 and N1 were similar for the different
Abbreviat
positive p
ed face)
nferior temporal gyrus, bilateral superior temporal
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yrus, and cerebellum, in normal subjects. In response
o non-target stimuli (both neutral and surprised facial
xpressions), the ECD were also distributed in the bilat-
ral fusiform gyrus, parahippocampal gyrus, cingulate
ortex, retrosplenial cortex, and right precuneus, as well
s in the right inferior temporal gyrus and bilateral su-
erior temporal gyrus. In patients with PD, the ECDs
istributed in regions similar to those of normal subjects
ere less abundant, and most of the dipoles were

ocated in the parietooccipital cortex, particularly in the

ig. 2. Examples of ERPs recorded from a patient with PD (No. 5). (A)
surprised face). The general morphology of the waveform was similar,
upramarginal and angular gyrus. f
In normal subjects, the ECDs that were estimated for
2 in response to fearful facial expressions were diversi-
ed in the right inferior temporal gyrus, bilateral angular
yrus, left orbitofrontal gyrus, right middle frontal gyrus,
nd left retrosplenial cortex (Fig. 6, Table 4). The ECDs for
2 in response to non-target stimuli were distributed more
idely than those in response to the target stimulus, being

ocated in the bilateral inferior temporal gyrus, left superior
emporal gyrus, parahippocampal gyrus, right superior lob-
le, right precuneus, left orbitofrontal gyrus, and left middle

earful face); (B) frequent non-target (neutral face); (C) rare non-target
the peak amplitude was larger than in the normal subject (see Fig. 1).
Target (f
rontal gyrus. In contrast, in patients with PD, the dipoles
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or P2 were concentrated around the bilateral intraparietal
ulci, and were found in the cingulate cortex, retrosplenial
ortex, and thalamus (Fig. 6B).

In normal subjects, the ECDs for N1 were mainly con-
entrated in the bilateral temporal lobes, and then migrated
oward the frontal region. In contrast, in patients with PD,
he ECDs for N1 were centered in the bilateral parietal
obes and subsequently migrated upward.

DISCUSSION

he most important observation in this study was that the
RPs elicited in response to fearful facial expressions
ere generated within the parietal somatosensory cortex

n patients with PD, whereas the equivalent ECDs in nor-
al subjects were located in the amygdala and visual

emporal cortex. These findings support our hypothesis
hat dysfunction of the amygdala in patients with PD
auses a change in the neural substrates that are normally

ig. 3. Examples of topographical maps at component N1 of the ER
hown in Fig. 1A. (A) ERPs. The peak latency of N1 was 395 ms afte
eak of the N1 displayed in Fig. 3A. Negativity was located in the occ
sed to recognize emotion. m
pplication of DT to ERPs

RPs are one of several physiological measures of activity
n the CNS that can be used in cognitive studies. The
pplication of DT to scalp-recorded EEG data can provide
emporal resolution of neural activity in milliseconds, re-
ulting in improved spatial resolution for non-invasive stud-

es of the in vivo functioning of the human brain. Several
T methods have been used to determine the topograph-

cal location of neural activity, including brain electric
ource analysis (Scherg and Picton, 1991; Scherg, 1992),

ow resolution brain electromagnetic topography (Pascual-
arqui et al., 1994, 1999), and SSB/DT modeling (He et
l., 1987; Nishijo et al., 1994, 1996; Hayashi et al., 1995;
omma et al., 1994). In the SSB/DT method that we
eveloped, the head model consists of three compart-
ents of uniform conductance that correspond to the

calp, skull, and brain. The accuracy of the calculations
nvolved in the application of these models depends pri-

ponse to the target stimulus recorded from the same normal subject
resentation of the target stimulus. (B) 3-D topographical maps at the
oral region.
Ps in res
arily on the ratios of the conductivities of the three com-
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artments that correspond to the scalp, skull, and brain
Homma et al., 1994, 1995). It has been reported that the
bsolute mean deviation of actual dipoles (generated arti-
cially at known coordinates in the monkey brain) from
stimated dipoles (calculated from the surface potential
istributions) was within 3.0–9.0 mm (Nishijo et al., 1994).
e found previously that the location of the dipoles esti-
ated by SSB/DT corresponded to the location of intrace-

ebral depth electrodes, which were able to record epileptic
pikes simultaneously (Homma et al., 2001). While no
etailed comparative study has been made of the afore-
entioned SSB/DT methods techniques, our technique
as been shown to be useful in the investigation of activity

n the amygdala and other areas of the limbic system
Masaoka and Homma, 2000; Masaoka et al., 2003).

omparison of components N1 and N170

tudies of ERPs recorded from the scalp (Bentin et al.,

ig. 4. Examples of topographical maps at component N1 of the ERP
hown in Fig. 2A. (A) ERPs. Peak latency of the N1 was 252 ms afte
eak of N1 displayed in Fig. 4A.
996; Eimer, 2000a,b) or by means of magnetoencepha- w
ography (MEG; Watanabe et al., 1999; Halgren et al.,
000; Liu et al., 2000) have identified a posteriolateral
egative peak at a latency of approximately 170 ms, which
as been termed N170. N170 was reportedly elicited by
acial stimuli, but not by other (control) stimuli, and was
enerated within the fusiform gyrus. This observation was
onsistent with the results of a functional MRI (fMRI) study
arried out by Kanwisher et al. (1997). The latencies of
ace-specific potentials in EEGs recorded from the scalp
ere prolonged in comparison to simultaneous MEG re-
ordings (Watanabe et al., 1999). A face-sensitive, sur-
ace-negative potential that peaked approximately 200 ms
fter the presentation of the stimulus was also recorded
rom the bilateral fusiform and inferior temporal gyri in a
tudy of intracranial ERPs, in medicated epileptic patients
Allison et al., 1999). However, N170 is apparently not
ffected by the familiarity of the face or repeated exposure
o the stimulus, which suggests that N170 is associated

onse to the target stimulus recorded from the same patient with PD
resentation of the target stimulus. (B) 3-D topographical maps at the
s in resp
ith the precategorical structural encoding of faces, rather
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han with the subsequent processes involved in face rec-
gnition or identification (Eimer, 2000a). Several studies
ave addressed the differences between the cerebral
echanisms that subserve facial identification and those

hat are involved in recognizing facial emotion using ERP
ecordings (Münte et al., 1998; Bobes et al., 2000; Cam-
anella et al., 2002; Eimer and Holmes, 2002), positron
mission tomography (PET), and fMRI (Sergent et al.,
994; Puce et al., 1995; Phillips et al., 1998; Narumoto et
l., 2001). In this study, we identified three components of
he ERPs evoked in the emotion-recognition task, namely,
negative wave (N1), two positive waves (P1 and P2), and
subsequent negative shift. These potentials were distrib-
ted bilaterally within the occipitotemporal region of the
calp. The ECDs estimated for N1 in normal subjects were

ocated in the fusiform gyrus, parahippocampal gyrus, in-
erior and superior temporal gyri, and amygdala. We sus-
ect that the N1 component of ERPs, as described in this
tudy, is a wave that is distinct from N170 and may include
esponses to other visual or emotional processes.

The latency of N1 recorded from O1 was within the
ange 250–550 ms, although there were large interindi-
idual differences in this range. In a previous study, the
omponents of emotion-modulated ERPs were observed

n the range 250–600 ms (Münte et al., 1998) and individ-
al differences in latency were greater than the latency of
170 reported by Watanabe et al. (1999). The extremely
trong correlation between RT and N1 latency might be
ttributable to some unidentified problem within the stim-
lus delivery system, in that most of the variations in both
arameters were due to variations between the supposed
nd actual stimulus presentation time. However, this does
ot explain why latencies were consistently much shorter

n some subjects than in others. Another explanation for
he differences among individuals with respect to the N1
atency is age. Age-related slowing of access to domain-
pecific memory representations and response decisions
as been noted in previous studies (Pfütze et al., 2002;
akakura et al., 2003). Finally, prolongation of the RT and

he N1 latency may reflect impairment of visual acuity or
ttention, which is more prominent in elderly people; el-
erly individuals, of course, were participants in this study.

he source generators of ECDs

n patients with PD, the locations of the ECDs for N1
iffered markedly from those in normal subjects. Specifi-
ally, in patients with PD, the dipoles were concentrated
ilaterally in the parietal cortex along the intraparietal sul-
us, including the supramarginal gyrus, angular gyrus, and
uperior parietal lobule; there was no involvement of the
mygdala in any of the PD patients in response to fearful
acial expressions. As high levels of anxiety produce acti-
ation in the amygdala (Masaoka and Homma, 2000), it is
ossible that, in our study, the observed differences in
ctivation of the amygdala in normal subjects and in pa-
ients with PD were owing to differences in the degree of
nxiety in each group. However, this is unlikely to be the
ase, because the anxiety scores were not significantly
able 2. Peak latencies of waveform and reaction timea

Stimulation
P1
(ms)

N1
(ms)

P2
(ms)

RT
(seconds)

ormal subjects
No. 1 N 204 251 460

F 197 243 460 0.54
S 203 243 460

No. 3 N 213 278 360
F 200 278 356 0.58
S 227 282 369

No. 9 N 199 278 396
F 201 270 388 0.59
S 201 271 410

No. 5 N 226 278 412
F 213 282 478 0.63
S 213 282 482

No. 10 N 282 370 510
F 282 385 504 0.67
S 282 378 504

No. 6 N 300 395 482
F 326 404 482 0.69
S 321 404 478

No. 2 N 456 512 599
F 460 521 582 0.72
S 456 521 582

No. 4 N 469 521 595
F 469 530 604 0.73
S 473 530 599

No. 8 N 482 538 617
F 473 530 638 0.79
S 482 543 617

No. 7 N 465 547 630
F 473 543 656 0.83
S 472 551 664

D patients
No. 6 N 221 274 365

F 217 278 478 0.53
S 226 291 473

No. 5 N 191 247 330
F 195 252 352 0.58
S 191 217 360

No. 9 N 188 221 330
F 191 227 330 0.58
S 191 224 321

No. 8 N 334 399 508
F 302 384 530 0.66
S 280 367 530

No. 4 N 204 247 321
F 204 252 330 0.70
S 191 243 326

No. 7 N 326 395 569
F 333 395 578 0.77
S 326 404 560

No. 1 N 321 417 508
F 313 399 525 0.90
S 330 417 517

No. 3 N 326 412 582
F 360 404 582 0.93
S 330 430 473

No. 2 N 447 512 595
F 452 512 578 0.97
S 456 512 573
ifferent in normal subjects, as compared with PD patients.
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he results suggest that a dysfunction of amygdala is
resent in PD, which is consistent with previous studies
Mattila et al., 1999; Ouchi et al., 1999).

Our results also raise the question of why the area
long the intraparietal sulcus was activated during emo-

ional cognition in patients with PD. It is well known that the
arietal lobe is involved in receiving visual information; a
entral stream of projections to the inferotemporal cortex
lays a major role in the perceptual identification of ob-

ects, while a dorsal stream that leads into the posterior
arietal region mediates the required sensorimotor trans-

ormations for visually guided actions (Ungerleider and
ishkin, 1982; Goodale and Milner, 1992). However, this

ig. 5. Location of dipoles estimated for component N1 on images acq
can. (A) Normal subject (No. 6, 350–450 ms after the onset of a stim
hat the estimated dipoles were located in the left parahippocampal g
hereas the same dipoles were located in the bilateral supramargina

able 3. Location and number of the ECDs for N1a

Temporal lobe

Fusi ITG MTG STG ParaHC

L R L R L R L R L R

on-target stimuli (neutral and surprised face)
Normal 12 10 0 5 0 3 4 14 10 10
PD 5 10 9 4 3 11 11 12 4 21

arget stimulus (fearful face)
Normal 9 0 0 4 0 3 2 5 0 3
PD 6 4 7 8 8 7 1 2 4 3

	left, R	right
A, amygdala; AG, angular gyrus; Cbll, cerebellum; Fusi, fusiform gyr

yrus; precune, precuneus; retro, retrosplenial cortex; SMG, supramarginal gy
odel does not explain emotional cognition. The superior
emporal sulcus region has reciprocal connections with the
mygdala, which, in turn, is reciprocally connected to or-
itofrontal cortex (Amaral et al., 1992). This three-part
ystem has been proposed as the basis of social cognition
Adolphs, 1999b). Supramarginal lesions in the right hemi-
phere have led to deficits in recognizing, labeling, and
uilding conceptual knowledge about facial expressions
Adolphs et al., 2000). Temporal and limbic-related corti-
es are involved in retrieving emotional information,
hereas somatosensory-related cortices permit the recall-

ng of knowledge about emotion (Adolphs et al., 2003). Our
esults suggest that the parietal somatosensory cortex is

RI. Dipoles were superimposed stereotaxically on each subject’s MRI
) PD patient (No. 2, 460–560 ms after the onset of a stimulus). Note
ht amygdala, and left superior temporal gyrus in the normal subject,
ular gyrus in the patient with PD.

Parietal lobe Others

SMG AG Precune Cinglate Retro Cbll

L R L R L R L R L R L R

0 0 3 1 2 10 6 2 4 2 11 15
15 24 21 5 2 5 3 9 4 4 22 23

0 0 0 1 0 4 1 1 0 3 7 5
9 3 19 15 1 5 1 1 6 1 6 5

arahippocampal; ITG, inferior temporal gyrus; MTG, middle temporal
uired by M
ulus). (B
A

L R

0 1
0 1

4 5
0 0

us; HC, p

rus, STG, superior temporal gyrus; T, thalamus.



p
w
c
t
n
d
o

l
w
m

r
(
l
f
I
s
c
r
m
l
w

F
s
5
n the intrap
s

T

N

T

L
a

p
p

N. Yoshimura et al. / Neuroscience 131 (2005) 523–534532
referentially recruited for emotional recognition in patients
ith PD, because both the amygdala and orbitofrontal
ortex show relatively less response to facial expressions
han is the case in normal subjects. Mild deficits in recog-
ition of fear and disgust in facial expressions, due to
ysfunction of the amygdala in patients with PD, may be
vercome by enhanced recruitment of the parietal cortex.

In this study, the value obtained by subtracting the
atency of N1 from RT was significantly greater in patients
ith PD than in normal subjects. In addition to slowing of
ovement, slowing of cognitive processing—which is not

ig. 6. Location of dipoles estimated for component P2 and the sub
uperimposed stereotaxically on each subject’s MRI scan. (A) Normal
, 300–400 ms after the onset of a stimulus). Note that estimated dip
ormal subject, whereas the same dipoles were concentrated around
uperior parietal lobule in the patient with PD.

able 4. Location and number of the ECDs for P2 and the following n

Temporal lobe Parietal lobe

ITG STG ParaHC SMG AG SPL P

L R L R L R L R L R L R L

on-target stimuli (neutral and surprised face)
Normal 7 8 4 1 7 9 0 0 2 2 2 8 2
PD 8 3 1 3 5 13 6 15 31 27 7 10 6

arget stimulus (fearful face)
Normal 0 3 1 0 0 1 0 0 2 3 2 1 0
PD 1 1 2 0 4 0 1 6 5 6 2 2 0

	left, R	right
AG, angular gyrus; Cbll, cerebellum; IFG, inferior frontal gyrus; ITG
araHC, parahippocampal gyrus; PoG, postcentral gyrus; precune, pr

arietal lobule; STG, superior temporal gyrus; T, thalamus.
estricted to the motor domain—can occur in PD
Sawamoto et al., 2002). We suspect that the relatively
onger RT of patients with PD after recognition of a fearful
acial expression includes a change in emotional cognition.
n such patients, the ECDs calculated from P2 and the
ubsequent negative shift were generated in the parietal
ortex along the intraparietal sulci, cingulate cortex, and
etrosplenial cortex; the same dipoles in normal subjects
igrated from the temporal and parietal lobes to the frontal

obe. Perception of static facial expressions—as compared
ith dynamic emotional perception—activated a motor,

negative shift in the ERP on images acquired by MRI. Dipoles were
No. 4, 550–650 ms after the onset of a stimulus). (B) PD patient (No.
e located in the left straight and orbital gyrus, cingulate cortex in the
arietal sulcus and were also observed within the cingulate cortex and

a

Frontal lobe Others

ecune OrG IFG MFG Cinglate Retro T Cbll

R L R L R L R L R L R L R L R

4 8 0 3 1 10 1 7 2 3 6 2 0 4 2
2 3 4 2 1 6 0 3 5 7 4 6 5 5 15

0 4 0 1 0 1 3 1 0 2 0 0 0 0 2
3 0 1 0 1 0 0 3 6 3 8 1 3 2 11

temproral gyrus; MFG, middle frontal gyrus; OrG, orbitofrontal gyrus;
retro, retrosplenial cortex; SMG, supramarginal gyrus; SPL, superior
sequent
subject (
oles wer
egativity

oG Pr

R L

2 0
1 4

0 0
0 3

, inferior
ecuneus;
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refrontal, and parietal cortical network, which is involved
n motor imagery (Kilts et al., 2003). The migration of the
CDs also raises the possibility that different mental strat-
gies are involved in emotional processing in normal sub-

ects and in patients with PD. Patients with mild symptoms
f PD have been reported to perform cognitive tasks as
ccurately as normal subjects, although the pattern of
ctivation (as measured by PET) in normal subjects dif-
ered from that of patients with PD (Owen and Doyon,
999; Dagher et al., 2001). Similarly, corticostriatal con-
ections may be variably affected by a lack of dopamine or
y pathological changes in the amygdala during the rec-
gnition of facial expressions in patients with PD.

CONCLUSIONS

his study revealed that normal subjects and patients with
D use different neural substrates to recognize emotion in

acial expressions. The ECDs for component N1 of the
RPs evoked by fearful facial expressions were located in

he parietal-associated cortex, in patients with PD. In nor-
al subjects, the dipoles for the same stimulus were gen-
rated in the fusiform gyrus, amygdala, parahippocampal
yrus, and superior temporal gyrus, and then moved to the

eft orbitofrontal gyrus and middle frontal gyrus. The mild
eficits in the recognition of fear in facial expressions
xhibited by patients with PD may be attributable to visual

nformation, related to facial emotion being analyzed, using
eural pathways that differ from those subserving this
unction in normal subjects.
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