
ORIGINAL ARTICLES

Redundancy of Independent Component Analysis in Four
Common Types of Childhood Epileptic Seizure
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Summary: Independent component analysis (ICA) has recently
been applied to epileptic seizure in the EEG. In this paper, the
authors show how the fundamental axioms required for ICA to be
valid are broken. Four common cases of childhood seizure are
presented and assessed for stationarity and an eigenvalue analysis is
applied. In all cases, for the stationary sections of data the eigen-
value analysis yields results that imply the signals are coming from
a source-rich environment, thus yielding ICA inappropriate when
applied to the four common types of childhood seizure. The results
suggest that it is not appropriate to apply ICA or source localization
from independent components in these four common cases of
epilepsy, because the spurious independent components determined
by ICA could lead to a spurious localization of the epilepsy. If
surgery were to follow, it could result in the incorrect treatment of
a healthy localized region of the brain.
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Atypical EEG consists of roughly 16 to 25 electrical
recordings from sensors at different locations on the

scalp. Each recording represents a complicated linear mixture
of signals (Nunez and Katzelnelson, 1981) responsible for
various brain activities that a consultant has to interpret. In
the case of epilepsy, it is particularly hard to locate the origins
of the epileptiform discharges that occur in the onset of an
epileptic attack. The signal processing technique of linear
independent component analysis (ICA) (Cardoso, 1989;
Comon, 1989) holds promise for such a decomposition to be
realized. A single publication (Kobayashi et al., 1999) ap-

plied linear ICA to isolate epileptiform discharges of a partial
seizure from the unaveraged EEG.

In this previous study, two epileptic components were
isolated (as spike and slow wave components). The work of
Kobayashi et al. is of particular interest because it is the spike
that lies within the spike and wave component that is respon-
sible for a partial epileptic seizure. If the spike and the wave
component, typical of a partial seizure, consist of two sepa-
rate distinct sources, then the spike could be localized to a
specific region of the neocortex. Conversely, it is also plau-
sible that the ICA algorithm could separate the spike com-
ponent from the wave component, but such a separation may
be spurious and not due to a real separation of sources in the
brain. If this is the case, then a localization of an independent
component (IC) that does not exist would arise. If surgical
treatment were to follow, a healthy localized region of the
brain could be incorrectly treated.

METHOD

Independent Component Analysis
Linear ICA is a signal processing technique that allows

one to statistically separate original signals from their mix-
ture. The cocktail party problem highlights the possibility of
how linear ICA could be applied to the EEG.

The Cocktail Party Problem
Consider a group of people talking at a party (Fig. 1).

An observer could walk around the room and listen in on the
conversation. Even though the same information exists in
the conversation, the conversation would sound different to
the observer at different positions around the room. This is
due to the observer’s relative distance from the speakers. By
recording the same conversation from many different posi-
tions in the room, it is possible to statistically demix the
original speakers voices from the conversation. This is the
foundation of ICA theory.

It has been supposed that the signals from the neurons
in the brain could be likened to the speakers in the room (Fig.
2). The signals from the brain linearly combine (Nunez and
Katznelson, 1981) at the scalp to create a mixed signal that is
a superposition of the original signals. A typical EEG record
consists of 16 to 25 electrical recordings taken from scalp
electrodes that are placed uniformly over the head of the
patient as described by the 10:20 convention (Tyner et al.,
1983) Thus, can one apply ICA to the EEG?
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Rules of Linear ICA
Linear ICA can separate signals from their mixtures if

four rules are upheld: 1) the mixing matrix is constant; 2) the
number of sensors is equal to or greater than the number of
sources; 3) the mixing is cumulative (or a linear superposi-
tion); 4) and no reflections exist.

The first rule of ICA holds once regions of stationarity
in the data are located. This can be achieved by performing
stationarity tests on the data (Challis and Kitney, 1991). Once
the stationary data have been located, an eigenvalue analysis
(Rencher, 2002) is performed on the stationary sections. The
second rule of ICA is determined by looking for a sharp drop
in the power of the eigenvalues of the data. This locates the
number of sources that exist in the data. The third rule of ICA
is assumed from research in the literature that the signals of
the brain superposition together linearly at the scalp (Nunez
and Katznelson, 1981). The fourth rule is also assumed. In
EEG, volume conduction from sources to electrodes would

essentially be instantaneous, and the effects of the layers of
scalp, skull, and CSF should be confined to changes in the
mixing matrix (although frequency-dependent attenuation
may occur when capacitive effects are incorporated in addi-
tion to resistive effects (Ferjallah et al., 1996). In this article,
we reassess the methodology used in the 1999 study of
Kobayashi et al. for a number of partial and generalized
epilepsies and hence determine the applicability of ICA to the
EEG for 4 common types of seizure.

DATA INVESTIGATED
The EEG multichannel data were provided by the

Department of Pediatric Neurosciences at the Royal Hospital
for Sick in Edinburgh. The data were drawn from a vast
database that can provide epileptic EEG data from 2,500
existing records of some 500 patients. From these records,
partial and generalized childhood epileptic discharges were
investigated. The EEG instrument received the analog signals
from 21 electrode sensors. Using analog filters, the EEG
instrument 100-Hz low-pass filtered and 50-Hz notch filtered
(to remove mains hum) the signals. The analog signal was
then digitized at a sampling rate of 167 Hz. The electrode
sensors were placed according to the International 10:20
system (Tyner, 1983), using the reference electrode, CZ.
These data sets were not used in any previous studies that
have tried to apply ICA to the case of epilepsy. The data were
displayed using MatLab software (http://www.mathworks.
com/).

Four data sets were analyzed in this investigation. Each
data set came from one of four types of common seizure now
described. Some data sets were chosen from partial seizures.
These seizures are localized to only a few channels of the
EEG record. It was this form of seizure that was reported in
(Kobayashi et al., 1999) and is known to have a characteristic
spike/wave profile. The rest of the data sets used in the
investigation were from three other common types of seizure.
These were generalized seizures, which fall into the two
categories: primary generalized seizures and secondary gen-
eralized seizures. The primary generalized seizures are split
into two further types: primary typical generalized seizures
and primary atypical generalized seizures.

STATIONARITY
A signal is said to be “strongly stationary” when the

mean autocorrelation function, which implies variance, and
all higher-order moments of the signal do not change, or
remain stationary, with time. Strongly stationary signals do
not occur in real-world systems. Thus, in real-world systems
the word “stationary” (Challis and Kitney, 1991) implies a
system that is defined as “weakly stationary,” where the mean
and variance are constant.

When one observes an EEG, the observed output sig-
nals are made up of hidden input signals and a hidden mixing
matrix. The hidden input signals are signals that emanate
from sources in the brain and can be stationary or nonsta-
tionary as described above.

The hidden input signals travel various distances from
their source, through the neocortex to the electrode sensors.

FIGURE 1. Schematic of the cocktail party problem.

FIGURE 2. Schematic of the superposition of brain signals
at the scalp.
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The mixing matrix is used to store the distances from the
input sources to the electrode sensors and also includes an
attenuation constant that is a function of distance. The mixing
matrix can also be stationary or nonstationary. It is defined as
constant, or stationary, if the distance between the sources
and the electrode sensors does not change with time. Namely,
the sources are static and do not move. Conversely, the
mixing matrix is said to be nonstationary if the distance
between the sources and the electrode sensors changes with
time. Namely, the sources’ locations move as time evolves.
Thus, the hidden input signals are linearly mixed, or linearly
superpositioned, together by the mixing matrix at the elec-
trode sensor to produce the observable output signals that can
be either stationary or nonstationary.

Figure 3 describes the four different cases of stationar-
ity that can be observed. Linear ICA can demix signals from
their mixtures as long as the mixing matrix is constant, or
stationary. As one can see, case 1 occurs when the mixing
matrix is constant and the hidden inputs are stationary. The
observed signals at the EEG will therefore be stationary
signals and solvable by ICA. Case 2 occurs when the mixing
matrix is constant and the hidden inputs are nonstationary.
The observed signals at the EEG will therefore be nonsta-
tionary signals and solvable by ICA. Cases 3 and 4 occur
when the mixing matrix is nonstationary and the hidden
inputs are either stationary or nonstationary. The observed
signals at the EEG will therefore be nonstationary signals
which are not solvable by ICA. As one can see, cases 2, 3,
and 4 all provide a nonstationary output, and even though
case 2 is solvable by ICA, it is not possible to distinguish it
from cases 3 and 4 because they are all nonstationary in
nature. Therefore, we elected a conservative approach and
only applied ICA to observable data that were stationary in
nature to guarantee that the mixing matrix was constant.

To examine the issue of stationarity for the EEG, the
mean power in the signal and the covariance of the mul-
tichannel data were investigated over a 2N window, where N
represents the number of sensors. (A window of 2N is the
minimum window size one can use to provide a robust
measure of the covariance.) Areas where the power and

covariance remained constant implied regions where the
mixing matrix was constant and stationarity of source signals
were constant.

Locating Regions of Stationarity in the EEG
Data

In the Kobayashi et al. study, three patients were
examined. For each patient, 32 segments of EEG were con-
catenated together to form a data set. Each segment consisted
of a whole epileptiform discharge and brief surrounding
background. The number of points in each segment was 90,
which was taken at a sampling rate of 200 Hz, representing
450 milliseconds. The total concatenated data length was 14.4
seconds. ICA was then applied to these sets of data.

Unsworth and colleagues questioned the methodology
of Kobayashi et al. (1999) (Unsworth et al., 2002) and
developed a new method (Unsworth et al., 2004; 2005) that
was found to validate further the results presented in the
current study. ICA can only be applied when the mixing
matrix is constant or stationary. Any form of concatenation of
this type could corrupt any form of continuity that exists in
the mixing matrix and thus render ICA inappropriate. Appli-
cation of ICA to such concatenated data sets could lead to
very different demixtures as compared with the demixtures
obtained by applying ICA directly to raw EEG data time-
courses.

The authors decided to reexamine the stationarity of
the mixing matrix for partial epilepsy that was examined in
the study by Kobayashi et al. (1999) and also for three other
types of common seizure.

Results: Partial Seizures
Figure 4, shows the multichannel EEG for a partial

seizure. These seizures are localized to only a few channels of
the EEG record. This form of seizure, the type that was
reported in Kobayashi et al. (1999), is known to have a
characteristic spike/wave profile. Figure 5, shows three plots.
The upper plot is a spatial-temporal covariance plot (which
will be referred to as the covariance from now on) of the
multichannel EEG. The upper plot was obtained as follows.
Assume that the data are arranged as in Fig. 4 (namely, the
first channel represents the first row of data, the second
channel the second, and so on). To calculate the covariance,
at least 2N samples of data are required, where N is the
number of electrodes. The calculation is started by taking a
column of the first 2N samples of data (thus this column
consists of the first 2N samples of the first channel, the first
2N samples of the second channel, and so on). This creates a
21 � 2N matrix, which is then multiplied by its transpose to
get a 21 � 21 symmetric covariance matrix. The first row, or
first column, of this matrix describes the variance of all the
channels relative to the first channel. This column is taken
and normalized to the trace of the matrix (which is the power
of the channels over the 2N interval). This normalized col-
umn then forms the first column of the upper plot and
represents the spatial covariance of the 21 EEG channels
relative to the first channel over the first time interval 2N.
This is then repeated for each 2N time interval of multichan-
nel data. Thus, the upper plot is built up column by column.FIGURE 3. Schematic of Stationarity concept.
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FIGURE 4. A partial seizure.

FIGURE 5. A partial seizure (c3561db5). Upper plot: Covariance plot (each window is 2N samples). Center plot: Mean power.
Lower plot: Sample trace of one channel (for reference).
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To compare the upper plot temporally and spatially, the upper
plot was normalized to the maximum value that occurred in
all the columns of the upper plot. The middle plot is the mean
power of all the channels at a specific time (t), and the lower
plot is a plot of one of the EEG channels. This is to help the
reader locate where in the signal that stationarity is occurring.
As one can see, when a constant covariance is located the
mean power is often not constant. Only over the epileptic
spike/wave discharge did stationarity hold. Also it should be

noted that this did not occur on every spike/wave occasion
because the mean power would often fluctuate. When station-
arity did occur, it was only for very short time intervals of 4N
� 84 samples. The region labeled “peak A” was chosen to
have the best stationarity on which to perform the eigenvalue
analysis (described later). On the whole, the data could be
considered nonstationary over the regions of epileptic sei-
zure.

Results: Primary Generalized Typical Seizures
Primary generalized seizures are exhibited across all

the channels of an EEG record. Each channel of the EEG
exhibits a repetitive nonlinear profile which can be very
different to the profiles of other channels. When the repetitive
behavior is synchronous in all channels, the seizure is re-
ferred to as a typical generalized seizure or a typical absence
seizure. Figure 6 shows the EEG record of a primary gener-
alized typical seizure.

For the primary generalized seizures, larger data
lengths were found in the body of the seizure. The section
that best provided stationarity can be seen in window posi-
tions 61 to 67 (this region is framed by a rectangle that
corresponds to 15.34–16.85 seconds) of Fig. 7, and provided
12N � 252 points of data on which to perform the eigenvalue
analysis (described later).

Results: Primary Generalized Atypical Seizures
When the primary generalized seizure is asynchronous

in all channels, the seizure is referred to as a primary
generalized atypical seizure or primary atypical absence sei-

FIGURE 6. A generalized seizure.

FIGURE 7. A generalized seizure (d665fd3c). Upper plot: Covariance plot (each window is 2N samples, where (N) is the
number of electrodes). Center plot: Mean power. Lower plot: Sample trace of one channel for reference.
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zure. Figure 8 shows the EEG record for a primary general-
ized atypical seizure. It can be seen in Fig. 9 that even though
the covariance is constant, the mean power fluctuates a lot.
Like the partial seizure, it is hard to locate regions of
stationarity. The section that best provided stationarity can be
seen in window positions 12 to 19 (this region is framed by
a rectangle that corresponds to 3.02–4.78 seconds) of Fig. 9,
and provided 14N � 294 points of data on which to perform
the eigenvalue analysis (described later).

Results: Secondary Generalized Seizures
A secondary generalized seizure can be described as a

partial seizure that generalizes across all EEG channels into a
generalized seizure. Figure 10 shows the EEG data record of
a secondary generalized seizure. It can be clearly seen that
very large areas of constant covariance and mean power
occur in Fig. 11. These areas correspond to the regions where
the seizure generalizes. The section across window positions
33 to 43 (this region is framed by a rectangle that corresponds

FIGURE 8. A generalized atypical seizure.

FIGURE 9. A generalized atypical seizure (sd50206): Upper plot: Covariance plot (each window is 2N samples). Center plot:
Mean power. Lower plot: Sample trace of one channel for reference.

FIGURE 10. A secondary generalized seizure.
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to 20.75–27.04 seconds) of Fig. 11, which provided 50N �
1,050 points of data (each window is 5N long, so 10 windows
� 50N � 1,050 samples), where N is the number of elec-
trodes, was chosen to perform the eigenvalue analysis on
which is described in the next section.

EIGENVALUE ANALYSIS
In the article by Kobayashi et al. (1999), no attempt was

made to determine the number of generating sources that
existed in the EEG data. Instead the data were demixed using
ICA for the maximum number of sources that could be
conjectured. This was equivalent to the number of electrodes
used, which was 25. Thus, the assumption that the number of
sources was equal to the number of electrodes was being
made. It is imperative to identify the number of sources that
exist before using ICA to a given problem. Failure to do so
will result in an ICA algorithm that returns a set of solutions
that look very plausible but in fact have no meaning. It was
our intention to examine this issue for the EEG when applied
to epilepsy.

We elected to use an eigenvalue analysis approach
(Rencher, 2002). Eigenvalue analysis can be used to deter-
mine the number sources that exist in a linear mixture. Such
an analysis requires as a rule of thumb, 10N samples of data
to give robust results. However, �5N samples of data will
produce reliable results. The way one determines how many
sources exist from such an analysis is to simply measure the
eigenvalues that exist and to plot them in descending order of

size. The location of the number of the sources that exist is
where the power in the eigenvalue plot falls to zero.

Results: Eigenvalue Analysis of Partial and
Generalized Seizures

Eigenvalue analysis (Rencher, 2002) was applied to the
regions of data chosen in the previous sections (i.e., where the
mixing matrix was found to be stationary). Figures 12 to 15
are the eigenvalue plots for the four seizures studied. For each

FIGURE 12. Eigenvalues for a partial seizure.

FIGURE 11. A secondary generalized seizure (sd50178). Upper plot: Covariance plot (each window is 5N samples). Center
plot: Mean power. Lower plot: Sample trace of one channel for reference.
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figure, the eigenvalues calculated were firstly normalized to
the largest eigenvalue and then a 10log10 plot of the normal-
ized eigenvalues is displayed in rank order.

In the four different seizures analyzed, no sudden drop
in the power of the eigenvalues, which locates the number of
sources in the data, was found. Instead, a slowly decreasing
level of power in the eigenvalues was observed. This implies
that one could be examining a source-rich environment where
there are many more sources than sensors. In addition, we
applied the eigenvalue analysis across the whole data set to
take into account the possibility of a constant mixing matrix
and nonstationarity of sources (i.e., case 2, shown in Fig. 3).
The same behavior was observed, implying a source-rich
environment.

DISCUSSION
The work of Kobayashi et al. (1999) was reassessed

and found to break many assumptions that are necessary for
ICA to be valid. Stationarity tests were applied to identify

where the mixing matrix was constant for a variety of
different epilepsies.

It was found that for partial seizures, stationarity very
rarely held. When it did, ICA could be applied over the
spike/wave region only, a small region 4N points. It must be
noted that not all the spike/wave regions were stationary. An
additional point to note is for this type of seizure, the
stationarity of each spike/wave region must be assessed on its
own merits, as not all spike/wave regions are stationary.

Primary generalized typical seizures were found to
have stationary sections over 12N points.

Primary generalized atypical seizures were found to be
stationary over 14N points. It must be noted that the primary
generalized atypical seizure data, like the partial seizure data,
had fluctuations in the stationarity and there was no predict-
able place in which stationarity could be guaranteed. Rather,
each section of the primary generalized atypical data had to
be assessed on its own merits.

For secondary generalized seizures, periods of station-
arity of 20N samples were found. Reliable periods of station-
arity were found to occur when the when the seizure gener-
alized.

Overall, the secondary generalized seizure data had the
most reliable and predictable areas of stationarity. The next
most reliable data set for stationarity was the primary gener-
alized typical seizures. It was very hard to identify regions of
stationarity for partial and primary generalized atypical sei-
zures.

Eigenvalue analysis was applied to the stationary sec-
tions of the seizure data. For all data sets a decreasing level
of power in the eigenvalues was observed. This implies that
one could be examining a source-rich environment, where
there are many more sources than sensors. The same result
was found when the analysis was applied across all of the
data. No evidence was found to suggest that ICA could be
applied to any of the four seizure data sets presented here.

This pilot study highlights the pitfalls of directly ap-
plying linear ICA to a given problem when the fundamental

FIGURE 13. Eigenvalues for a generalized seizure.

FIGURE 14. Eigenvalues for a generalized atypical seizure.

FIGURE 15. Eigenvalues for a secondary generalized sei-
zure.
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axioms of ICA do not hold. Source localization techniques
should not be applied to the demixed ICs, because this would
result in further error and spurious prediction of where the
sources originate from— if such sources exist at all.

More importantly, the results from this study suggest
that it is not appropriate to use ICA or source localization
from IC components in these four common cases of epilepsy.
This is because the spurious ICs determined by ICA could
lead to a spurious localization of the epilepsy. If surgical
treatment were to follow, it could result in the incorrectly
treatment of a healthy localized region of the brain.

Because this article presents the results from a pilot
study, the conclusions are based on the analysis of four
seizures only. The analysis of many more seizures from more
patients should be performed to further validate the findings
presented here.
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