<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; ">Dear Krishnaj,<div><br><div><br></div><div><div><blockquote type="cite"><p class="MsoNormal" style="MARGIN: 0in 0in 10pt"><font face="Calibri">I wanted to know, what exactly does the option "Subtract individual subject mean spectrum" do?</font></p></blockquote><div><br></div><div>This option computes the average spectrum for all data channels or components and subtract from the subject spectrum. This is useful if you want to minimize the effect of individual subjects so only the part of the spectrum that differs from the average spectrum in a subject is visible.</div><div><br></div><div>To compute significance, you simply need to select the type of significance you want to compute in the GUI (parametric or permutation). For further processing you may also retrieve the scalp map values from the command line. For instance, if you plotted the ERP scalp maps of the channel data</div><div><br></div><div>chanlocs = eeg_mergelocs(ALLEEG.chanlocs); % merge all channel location structures</div><div><br></div><div>chanlist = { chanlocs.labels }; % labels for all the channels</div><div><br></div><div>[STUDY erps erptimes pvalcond pvalgroup ] = std_erpplot(STUDY, ALLEEG, chanlist, 'topotime', [100]); % assumes that you have pre-computed ERPs and plot the grand-average scalp map at 100 ms</div><div><br></div><div><div>figure; topoplot(mean(erps{1,1},3), chanlocs); % replot the scalp map - the mean averages across subjects (first condition and first group)</div><div><br></div></div><div>[F df pvals] = statcond(erps); % recompute statistics if you have several groups and/or conditions</div><div><br></div><div><div>figure; topoplot(-log10(pvals{1}), chanlocs); clim([0 3]); cbar;% plot statistical significance across conditions (scale 0 to 3 in log10 -> 1 to 0.001).</div></div><div><br></div>Note that of course, you can do all of this from the GUI. However, it is sometimes useful to go back to the command line for instance if you have 2 groups of subject and want to compute statistics of ERP/ERSP difference across conditions. You may then use the std_erpplot (or std_specplot, std_erspplot) to retrieve the scalp maps/curves/images you are interested in, compute the difference and then apply the statcond function or your own function to recompute significance and plot it.</div><div><br></div><div>Hope this helps.</div><div>Best,</div><div><br></div><div>Arno</div><div><br></div></div></div></body></html>