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Independent component analysis (ICA) is a powerful method for source separation and has been used for decomposition of EEG,
MRI, and concurrent EEG-fMRI data. ICA is not naturally suited to draw group inferences since it is a non-trivial problem to
identify and order components across individuals. One solution to this problem is to create aggregate data containing observations
from all subjects, estimate a single set of components and then back-reconstruct this in the individual data. Here, we describe such
a group-level temporal ICA model for event related EEG. When used for EEG time series analysis, the accuracy of component
detection and back-reconstruction with a group model is dependent on the degree of intra- and interindividual time and phase-
locking of event related EEG processes. We illustrate this dependency in a group analysis of hybrid data consisting of three simulated
event-related sources with varying degrees of latency jitter and variable topographies. Reconstruction accuracy was tested for
temporal jitter 1, 2 and 3 times the FWHM of the sources for a number of algorithms. The results indicate that group ICA is
adequate for decomposition of single trials with physiological jitter, and reconstructs event related sources with high accuracy.

1. Introduction

Event related brain responses to simple cognitive tasks are
composed of multiple dynamic, temporally and regionally
overlapping, functionally separable sub-processes which add
to existing oscillatory background activity [1–5]. In other
words, event-related processes are spatially and temporally
mixed across the brain, and the scalp EEG samples a volume-
conducted, spatially degraded version of the responses,
where the potential at any location and latency can be con-
sider-ed a mixture of multiple independent sources that stem
from large-scale synchronous field potentials [6, 7]. The ex-
ploration of the trial-to-trial variability in these responses
provides important clues about the dynamics and adaptabil-
ity of cognitive processes [2, 6, 8–10]

One powerful and increasingly popular method that al-
lows for decomposition of EEG data and assessment of single
trial variability is blind source separation with independent
component analysis (ICA). ICA algorithms solve a two-di-

mensional linear mixing problem of spatially, and/or tempo-
rally independent sources [11, 12]. ICA models spatio-tem-
poral data as a linear combination of maps and timecourses
while attempting to maximize the statistical independence
between either the maps (spatial ICA, sICA) or the time
courses (temporal ICA, tICA). The method has general appli-
cability to Gaussian mixtures, regarding psychophysiological
and neuro imaging data it has been successfully used with
averaged ERPs [13], single trial EEG [6, 7, 14], structural
and functional MRI [15], and recently also in EEG-fMRI
integration [16–22]. Tools for data analysis with ICA are im-
plemented for example in the academic freeware toolboxes
EEGLAB [23], ICALAB [24] and GIFT [15, 25], both run-
ning in Matlab, as well as the stand-alone package FSL-
MELODIC [26].

The basic ICA model applies to single subject data, thus
one inherent limitation to the use of ICA in typical multi-
subject/session EEG studies is that this method is not nat-
urally suited to generalize results from a group of subjects.
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This is because ICAs from separate runs or participants
will generate different sets of components with different
order and scaling that need to be matched across datasets
to allow group inferences. This is in contradistinction to the
straightforward way of making group inferences from, for
example, ERP component averages from selected channels
and latencies in the general linear model [27, 28]. Therefore,
a method combining individual components is desired where
group inferences are straightforward. There are two strategies
to allow for matching of independent components across
individuals: one is to combine individual ICs across subjects
with clustering techniques [7, 29–31]. Clustering usually
involves selection of suitable algorithms and features of inter-
est, that is, topography, timecourse, spectrum and so forth by
which between-subject correspondences of components are
identified. This requires additional assumptions about the
data and expert user input, and differences in algorithm and
feature selection, as well as user bias can then create equivocal
results. Alternatively, a more parsimonious approach is to
create aggregate data containing observations from all sub-
jects, directly estimate components that are consistently ex-
pressed in the population in a single set of ICs and then back-
reconstruct estimated components to the individual data.
This approach has so far predominantly been used for spatial
ICA of fMRI [25, 26, 32]. We have recently adopted a group
ICA method for parallel and joint decomposition of con-
current EEG-fMRI recordings [21, 22, 33]. Here, we present
a group-level temporal ICA model based on the rationale
proposed by Calhoun et al. [25] for single-trial analysis of
event related EEG timeseries that we also implement in the
toolbox EEGIFT, which is available from the Mind Re-
search Networks’ medical image analysis lab webpages
at http://icatb.sourceforge.net/gift/eegift startup.php along
with documentation and tutorial datasets. EEGIFT runs in
Matlab (The Mathworks, Natick, MA), and employs pre-
processed data from EEGLAB [23], a popular free toolbox
for EEG processing which can be downloaded from http://
sccn.ucsd.edu/eeglab/.

In order to make the component estimation computa-
tionally feasible, we employ a data reduction using principal
component analysis (PCA). The number of components
estimated from the data can be based on minimum descrip-
tion length [34] principle (MDL) or on other estimates of
dimensionality. Due to aggregation and data reduction with
PCA preceding component estimation, group ICA of EEG
time-domain data is preferentially suited to the detection
of components that contribute to event-related potentials.
Processes that are not time/phase-locked within and across
subjects, such as background rhythms cannot be satisfyingly
reconstructed, in these cases the transformation of the data
into the frequency domain prior to ICA decomposition
is useful [35]. For time domain data it follows that the
accuracy of component detection and back-reconstruction
with a group model is dependent on the degree of intra-
and inter-individual time and phase-locking of event related
EEG processes. Similar to findings in early studies of PCA
decomposition of ERP averages [36, 37], excess latency jitter
results in splitting of a single source into two (or more)
independent components representing the source and its

approximate time derivative [21]. Here, we illustrate this
dependency in a group analysis of 20 hybrid datasets con-
sisting of three simulated event-related sources with varying
degrees of latency jitter, mixed with real EEG data from 20
subjects that participated in a passive listening experiment. It
is not trivial to recover reliable estimates about ERP latency
jitter from real EEG data, we assume from a literature search
and unpublished observations in our lab that single trial peak
latencies of larger components such as the auditory N1 and
P3 vary approximately 20–40 ms2, roughly corresponding to
the full width at half maximum (FWHM) of these com-
ponents (for comparison, see, e.g., [8]). We tested the re-
construction accuracy (RA), expressed as the variance of the
source accounted for by the reconstructed IC (in terms of
R2) for latency jitter 1, 2 and 3 times the average FWHM
of the sources for the Infomax, ERICA, JADE, fastICA, and
SIMBEC algorithms that are implemented among others in
GIFT and EEGIFT.

2. Method

2.1. Group tICA. The group ICA model is divided into the
underlying data generation and mixing process, recording,
pre-processing, reduction, component estimation and back-
reconstruction (schematically illustrated in Figure 1). We
assume that the scalp EEG signal is a gaussian mixture con-
taining statistically independent non-gaussian source time-

series s(t) = [s1(t), s2(t), . . . , sN (t)]
T

indicated by si(t) at time
t for the ith source from N sources. The sources have weights
that specify the contribution to each timepoint. The weights
are multiplied by each source’s fixed topography. Secondly,
it is assumed that the N sources are linearly mixed so that a
given time point contains a weighted mixture of the sources.
The linear combination of sources is represented by the
unknown mixing system A where As(t) = u(t) where u(t) =
[u1(t),u2(t), . . . ,uN (t)]T and represents N ideal samples of
the signal ui(t) at time t, for the ith source in the brain.
The sampling of the electric activity on the scalp results in
y(t) = [y1(t), y2(t), . . . , yK (t)]T where the EEG is sampled
at K timepoints where t ∈ {1, 2, . . . ,K}. A set of possible
transformations during pre-processing, such as downsam-
pling and filtering determine the effective sampling such that
y( j) = [y1( j), y2( j), . . . , yK ( j)]T where the effective tempo-
ral sampling is indexed by j = 1, 2, . . . ,K .

2.2. Data Reduction. For each individual separately, the pre-
processed single trial data y( j) are pre-whitened and reduced
via PCA (Figure 1,R−1

1 , . . . ,RM
−1) containing the major

proportion of variance in the N uncorrelated timecourses
of x( j) = [x1( j), x2( j), . . . , xN ( j)]T . PCA whitening pre-
conditions the data and simplifies ICA estimation due to
the orthogonal projection, reduction of complexity, and de-
noising, as well as compressing the data and thus reducing
the computational load. Group data is generated by concate-
nating individual principal components in the aggregate data
set G. In detail, let Xi = R−1

i Yi be the L-by-V reduced data
matrix from subject i where Yi is the Q-by-V data matrix
containing preprocessed EEG epochs from all channels,
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Figure 1: Group ICA. In the group ICA model, we assume that the EEG is a linear mixture of temporally independent sources in each
subject s(t). The linear combination of sources is represented by the unknown mixing matrix A, and yields the ideal samples of brain activity
u(t), and the signals recorded with the EEG amplifier (E). Transformations (T) during preprocessing contain filtering, epoching, artefact
rejection, individual ICA for additional artefact reduction and so forth, altering the effective temporal sampling and dimensionality of the
data y(i). For each individual separately, the pre-processed single trial data are pre-whitened and reduced to R via PCA. Group data is
generated by concatenating individual principal components in the aggregate data set G. Temporal ICA is performed in this set, estimating
aggregate components (C). From the aggregate components, the individual data are reconstructed (see text for details).

R−1
i is the L-by-Q reducing matrix from the principal compo-

nent decomposition, V is the number of timepoints (samples
per epoch∗ trials), Q is the number of scalp channels, and L
is the size of the channel dimension following reduction. The
next step is to concatenate the reduced data from all subjects
into a matrix and reduce this matrix to N , the number of
components to be estimated. The N-by-V reduced, concate-
nated matrix for the M subjects is

X = G−1

⎡
⎢⎢⎢⎢⎣

R−1
1 Y1

...

R−1
M YM

⎤
⎥⎥⎥⎥⎦, (1)

where G−1 is an N-by-LM reducing matrix from a second
PCA decomposition and is multiplied on the right by the
LM-by-V concatenated data matrix for the M subjects.

2.3. ICA Estimation. The idea is to find the mixing matrix
A and compute the si sources for the group. After concate-
nation of individual principal components in the aggregate
data set G, this matrix is decomposed by ICA, estimating the
optimal inverse of the mixing matrix Â, and a single set of

source timecourses (Ŝ). Following ICA estimation, we can
write X = ÂŜ, where Â is the N-by-N mixing matrix and

Ŝ are the N-by-V component timecourses. Substituting this
expression for X into (1) and multiplying both sides by G
results in

GÂŜ =

⎡
⎢⎢⎢⎢⎢⎣

R−1
1 Y1

...

R−1
M YM

⎤
⎥⎥⎥⎥⎥⎦. (2)
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2.4. Partitioning and Single Subject Reconstruction. Partition-
ing the matrix G by subject provides the following expression

⎡
⎢⎢⎢⎢⎣

G1

...

GM

⎤
⎥⎥⎥⎥⎦ÂŜ =

⎡
⎢⎢⎢⎢⎣

R−1
1 Y1

...

R−1
M YM

⎤
⎥⎥⎥⎥⎦. (3)

We then write the equation for subject i by working only with
the elements in partition i of the above matrices such that

GiÂŜi =
[
R−1
i Yi

]
. (4)

The matrix Ŝi in (4) contains the single subject component
timecourses for subject i, calculated from the following
equation

Ŝi =
(
GiÂ

)−1
R−1
i Yi. (5)

We now multiply both sides of (4) by Ri and write

Yi ≈ FiGiÂŜi (6)

yielding the ICA decomposition of the data from subject i
contained in the matrix Yi. The N-by-V matrix Ŝi contains
theN component timecourses, and theQ-by-N matrix FiGiÂ
is the single subject mixing matrix, yielding the scalp maps
for N components.

2.5. Generation of Hybrid Data. In this simulation, 20 mutu-
ally uncorrelated hybrid EEG datasets were generated con-
taining 63 channels, 256 timepoints and 500 trials. Three
event-related sources (S1–S3) with variable topographies
across datasets were mixed with real EEG data from 20 partic-
ipants from an unrelated study. For each single trial, an event
related response (ERR) was simulated with two Gaussians
(7).

ERRx = a1e
−((x−b)/3c1)2 − 2

3
a2e

−((x−b)/2c2)2

. (7)

The amplitudes a1 and a2 were varied randomly and in-
dependently from 0.5–2.5 and the widths c1 and c2 from
0.5–1.5, introducing additional jitter of the ERR amplitude
and shape. Latency jitter is a relevant source of variability in
single trials, affecting the accuracy of component estimation
[21, 36, 37]. The three sources simulated here had non-
overlapping peak latencies, and latency variability (within-
“subject”) in b was in a range of 20 samples in S1, corre-
sponding to the FWHM of the ERR, 40 samples (2 FWHM)
in S2, and 60 samples (3 FWHM) in S3. Sine waves with
random phase and amplitude modulation were additionally
entered as background activity into each source. Across in-
dividual datasets the average peak latency of each source
dataset was varied by 20 samples (between-“subjects”). For
each source, the scalp distributions were generated as dipolar
maps covering six channels (of 63), with 50% overlap be-
tween S1-S2, and S2-S3, respectively. Across datasets, the
location of each source was systematically varied. These

sources were normalized to unit variance, and mixed with
normalized real EEG data with the same dimensions from 20
participants. The resulting hybrid data are shown in the top
half of Figure 2 for two datasets.

2.6. Independent Component Analysis. In order to generate
a reference value for the performance of group ICA we
computed individual ICA solutions in EEGLAB for each of
the datasets, employing the Infomax algorithm [38]. For the
group ICA, all subjects were analyzed at once, and principal
component analysis (PCA) was used for compression to
allow the datasets to be processed together. The number of
components is estimated by doing singular value decompo-
sition on the data and the resulting eigenvalues are passed
to MDL method [34]. Here we selected 20 components as
the top 20 components usually explain more than 95% of the
variance in the data. In our experience, the exact choice of the
number of components does not critically affect the results as
long as this number is not much smaller than the true num-
ber of sources. In the PCA steps, data from each dataset was
reduced over the spatial dimension, that is. from the number
of channels to 20 principal components, concatenated across
subjects, and again reduced to 20 components. Temporal
ICA was then performed using the Infomax algorithm [38]
with subsequent back-reconstruction into single subjects.In
order to assess reconstruction accuracy of group ICA for
different numbers of estimated components, we estimated
the solutions for 10, 20, 30, 40 and 50 components using
Infomax. For comparison between algorithms, we also es-
timated solutions using the fastICA [39], JADE [40], SIM-
BEC [41] and ERICA [42] algorithms. The reconstruction
accuracy of group ICA was expressed as the variance of
the simulated sources accounted for by the reconstructed
ICs averaged across the 20 datasets (R2), separately for the
entire single trial images, the amplitude modulation across
trials around the component peak latency (averaged in a
20 sample window), the component average timeseries, and
topographies (Table 1). Results for two hybrid datasets with
variable topographic and temporal representations of the
three sources are illustrated in Figure 2.

2.7. Application to Real Data. In addition to the quantifica-
tion of the model performance, we illustrate group ICA in
the context of typical recording conditions and preprocess-
ing steps that we employ with a decomposition of an auditory
oddball dataset. 32 healthy participants took part in the ex-
periment after providing a written statement of informed
consent. Participants were sitting in an electro-magnetically
shielded and sound-attenuated testing chamber (Rainford
EMC Systems, Wigan, UK) and were fitted with 61 Ag/AgCl
scalp electrodes mounted in an elastic cap (EasiCap, Falk
Minow Services, Breitenbrunn, Germany) and two addi-
tional channels monitoring eye movements. All channels
were referenced to the nose, and impedances were kept below
10 kΩ. EEGs were recorded continuously at 500 Hz sampling
frequency with a band-pass from .01–250 Hz with BrainAmp
DC amplifiers (BrainProducts, Munich, Germany). The ex-
periment consisted of detecting an infrequent target sound
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Figure 2: Hybrid Data. The figure shows two hybrid datasets with three source topographies (A) and timecourses (s) on top, the mixture of
the sources with real EEG (X) in (b), and the reconstruction of the sources after group ICA (W , y) in (c) section.

within a series of frequent regular sounds and participants
were asked to respond as quickly as possible by pressing a
button with their right index finger. The standard stimulus
was a center-panned 500 Hz tone, the target stimuli were
left or right-panned location deviants, respectively. Targets
occurred with a probability of 0.1 for each location. Stimulus
duration was 75 ms and the inter-stimulus interval was
700 ms, with no immediate repetitions of targets. All stimuli
were presented at approximately 65 decibels above threshold.
EEGs were down-sampled to 250 Hz, filtered with a zero-
phase Butterworth filter from 1–45 Hz, and re-referenced to
common average reference. In the example application, the
data were segmented from −800 to 1200 ms around target
stimuli and thus contain a sequence of standard-target-

standard sounds, to dissociate between obligatory stimulus-
related and target-related components, respectively. Trials
with amplitudes exceeding ±150µV on any of the channels
were excluded from further analysis. Concatenated single
sweeps around target onset were subjected to single subject
Infomax ICA in EEGLAB [23] running in MATLAB. Com-
ponents with topographies and timecourses attributeable
artifacts were identified and removed from the data [43].
For each dataset, we extract 20 components from the data
based on the MDL method. Missing trials were padded
with the mean from surrounding trials because there are
gradual changes across trials. Single-trials were additionally
denoised with a wavelet filter [44]. Hereafter, group ICA was
computed, estimating 20 components.
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Table 1: Reconstruction Accuracy. The table summarizes the reconstruction accuracy (RA, mean across datasets± S.E.M.) of different group
ICA models. RA stands for proportion of the source variability accounted for by the ICs averaged across the 20 datasets, and was computed
separately for the entire single trial images, the amplitude modulation across trials around the component peak latency, the component
average timeseries, and topographies.

Single Trial Peak Latency Average Topography

Algorithm, Nr IC’s S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Infomax single, 20 0.98± .01 0.97± .02 0.98± .01 0.99± .01 0.99± .01 0.99± .02 1± .00 1± .00 1± .00 0.89± .03 0.89± .04 0.90± .03

Infomax, 10 0.87± .06 0.79± .08 0.66± .09 0.92± .03 0.89± .03 0.79± .05 0.99± .01 0.94± .03 0.84± .04 0.84± .04 0.82± .03 0.81± .03

Infomax, 20 0.88± .04 0.77± .07 0.54± .08 0.91± .03 0.87± .03 0.69± .06 0.99± .01 0.96± .02 0.84± .05 0.87± .04 0.83± .05 0.74± .05

Infomax, 30 0.87± .07 0.76± .07 0.50± .10 0.91± .04 0.86± .05 0.65± .05 0.99± .01 0.95± .02 0.86± .05 0.87± .04 0.81± .05 0.83± .04

Infomax, 40 0.87± .08 0.75± .09 0.47± .09 0.91± .03 0.86± .04 0.62± .08 0.99± .02 0.96± .01 0.87± .04 0.88± .03 0.79± .04 0.81± .04

Infomax, 50 0.87± .05 0.75± .06 0.44± .11 0.91± .05 0.85± .04 0.59± .07 0.99± .01 0.96± .01 0.84± .05 0.88± .04 0.81± .05 0.81± .04

ERICA, 20 0.88± .03 0.73± .05 0.46± .09 0.92± .05 0.85± .05 0.62± .08 0.99± .01 0.89± .04 0.77± .06 0.86± .03 0.76± .06 0.71± .06

JADE, 20 0.79± .06 0.76± .07 0.43± .10 0.85± .03 0.87± .05 0.59± .09 0.99± .02 0.96± .02 0.79± .06 0.87± .05 0.78± .08 0.77± .07

fastICA, 20 0.86± .09 0.77± .08 0.53± .09 0.90± .06 0.87± .07 0.68± .10 0.99± .01 0.96± .01 0.82± .05 0.87± .04 0.84± .06 0.74± .07

SIMBEC, 20 0.87± .08 0.78± .08 0.50± .09 0.91± .06 0.88± .06 0.65± .07 0.99± .01 0.92± .03 0.78± .06 0.87± .03 0.79± .04 0.75± .05

3. Results

Reconstruction accuracy (RA) for all analyses is summa-
rized in Table 1. Individual ICA reconstructs the source
timecourses with near-perfect accuracy and independent of
latency jitter, the topographies are recovered with an accu-
racy of around 0.9. Group ICA models yield overall lower
RA than individual ICA, coming closest to individual ICA in
S1, where the entire source timecourse is reconstructed with
0.86 on the average, Infomax with 20 components yields the
best performance at 0.88. RA for the amplitude modulation
around the peak latency of S1 is 0.9 on the average,
for the average timecourses RA is 0.99. These two latter
features are typically most relevant for making inferences
about electrophysiological data, that is. the overall shape
of the waveform and the (single trial) peak amplitudes of
components. The topographies of S1 are reconstructed with
an accuracy of 0.87. The group ICA result for all features falls
with increasing latency jitter regardless of algorithm choice.
For the entire timecourse, average RA across algorithms is
S1—0.86, S2—0.76, S3—0.50, with the most pronounced
drop-off of all features. The peak RA for the peak is S1—0.90,
S2—0.87, S3—0.65. RA for the timecourse average is S1—
0.95, S2—0.95, S3—0.82, the topographies are reconstructed
with S1—0.87, S2—0.80, S3—0.77 overall a less pronounced
drop-off. This effect is more pronounced with increasing
the number of estimated components as can be seen in the
RA of all features of S3. In summary, all three sources were
recovered with sufficient reconstruction accuracy of all four
features.

The decomposition of the real data yielded a number of
event related components that showed differential responses
between standard and target sounds. We related these in
terms of the topography and peak latency to the ERP com-
ponents N1, T-complex, P2, N2 and subcomponents of the
P3. In Figure 3, we show the group mean of one independent
component that represents the auditory N1, together with
the reconstructions for three representative subjects. The
group mean of the N1 component is representative for the
group level average, and as is expected somewhat smaller in
amplitude than compared to a single subject’s mean ampli-

tude because of inter-individual latency differences. Parts of
this dataset accompany the toolbox as tutorial material and
the entire dataset is available upon request.

4. Discussion

This work presents an approach to perform a temporal
independent component analysis on single-trial time domain
EEG data for multiple subjects simultaneously. Our model
uses a combination of principal component analysis for data
reduction, subsequent independent component analysis on
the aggregate data, and back-reconstruction of the aggregate
mixing matrix in individual Subjects [20, 25]. This method
is implemented in the freeware toolbox EEGIFT that runs in
Matlab (R13 and newer) and is downloadable from http://
mialab.mrn.org/ or http://icatb.sourceforge.net/. EEGIFT
has a graphical user interface (GUI) that allow import of
EEG data from multiple participants pre-processed in
EEGLAB (http://sccn.ucsd.edu/eeglab/). Another GUI allows
the user to specify of analysis details, such as PCA data
reduction, model order, choice of ICA algorithm, and the
respective parameters. EEGIFT also allow robust estimation
with ICASSO [45]. The analysis output is stored after back-
reconstruction as individual timecourses and topographies
in Matlab format which can be used for specifying between-
condition and/or between-groups statistical tests. Individual
data, group averages, and population statistics can also be
visualized in a GUI as topographies, grand mean time-
courses and single trial images. Analyses can also be batch-
scripted for convenience. A full documentation of functions
in EEGIFT, including a tutorial walkthrough, accompa-
nies the download package (http://icatb.sourceforge.net/gift/
eegift startup). User support is provided through the GIFT
mailing list (Icatb-discuss).

In EEGIFT, the back-reconstructed timecourses and top-
ographies are a function primarily of the variability within
subjects, as opposed to representing a representation of the
average across subjects. A simulation affords to create a situa-
tion of a known ground truth with sources and noise param-
eters, and is useful to illustrate of the concept of the group
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Figure 3: Real Data Decomposition. This figure is an illustration of one component from a group ICA decomposition of an auditory oddball
dataset (n = 32 participants), and shows the group mean of one independent component in the leftmost column, and reconstructions
for three subject s in the other columns. Note that the group mean component peaks have smaller amplitude due to latency jitter. Top:
topography, Middle: single trial image, bottom: component event related average. Vertical lines in the lower left indicate the onset of the
preceding standard, target, and succeeding standard, respectively. Topography and latency identify this component as the auditory N1, and
typical N1-enhancement is clearly visible in response to targets.

model. Here, we generated hybrid data with realistic spatial,
temporal and amplitude variability. The reconstruction
of the solutions with different algorithms and numbers
of components demonstrates that this approach offers a
straightforward and computationally tractable solution to
the problem of multi-subject analysis with ICA. The results
from the decomposition of hybrid dataset illustrate that this
group model is able to recover timecourses and topographies
of event related responses on single trial level with overall
sufficiently high accuracy. As laid out in the introduction,
the critical determinant for the success of a group model
computed for time-domain data is intra- and inter-subject
latency jitter. There is considerable difficulty in reliably
estimating latency jitter of event related responses in real EEG
data; we assume here that physiologic jitter is roughly on
the order of the full width at half maximum of sources, in
which case the reconstruction accuracy of the group model
reaches more than 90% of the accuracy of the individual ICA
estimates. Individual ICA with subsequent ordering of com-
ponents across subject would achieve the highest accuracy
with an ideal clustering technique. We did not attempt to
directly compare the performance of group-level ICA with
that of individual ICA with subsequent clustering, apart from
possible computational limitations, the challenge for existing
algorithms is to identify and cluster components with
poor between-subject correspondence of their topographies
and timecourses [7, 29–31]. Group ICA avoids any such

problems since the decomposition is computed for all data-
sets/subjects simultaneously, estimating a single set of com-
ponents with the same order across datasets. Consequently,
it is straightforward to perform random-effects population
tests for the timecourses as well as the topographies. This can
also be done in the statistical parametric mapping framework
where testing within the Gaussian random field theory with
adjustments for multiple comparisons (e.g., [28, 46, 47]).
Apart from being used as a primary tool for inference, we
believe that there is also a utility for group ICA in the mining
stage of prediction-based analysis: For example, in cases
where a-priori models of the event related responses can only
be poorly specified, for example, where the selection criteria
for appropriate electrodes and time-windows from the EEG
data are unclear, group ICA results can be used for model
specification.

As noted in Section 1, the limitation of the current meth-
od is that responses with poor time/phase-locking are not
satisfyingly reconstructed [21, 36, 37]. This is a consequence
of the data reduction and aggregation, which inherently
limits the visibility of this method to evoked activity, both
within and across subjects. Sources that have a loose relation
to stimulus/response onset, if extracted and identified, are
usually represented in more than one component. This is
in clear contradistinction to the superior performance of
temporal ICA on concatenated EEG epochs from single
subjects, which is insensitive to trial-to-trial phase/latency
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variability of sources. For detection of poorly time-locked
processes in this framework one could consider time-domain
data with frequency or time-frequency transformed data
[35], or incorporate correction for latency jitter during pre-
processing where feasible [8, 44]. We assume from testing the
performance of this model extensively in simulated, hybrid,
and real data that it is a very useful addition to the available
ICA-toolbelt, in that it affords a straightforward possibility to
perform group analysis of event related EEG responses. Since
the underlying generative model is flexible and modality
independent, and the software implementations are highly
interrelated, a genuine advantage of this method is that the
EEG components can be fused with results from diverse
biomedical imaging modalities such as sMRI, fMRI, DTI and
VBMas well as genetic information (SNP) within the same
conceptual and computational framework [15, 18, 20, 23, 48,
49]. This then affords multimodal inferences which can bear
novel insights about brain function.
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