<div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px">Some SCCN and EEGLAB news:</span></font></div><div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px"><br>
</span></font></div><div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px">- SCCN recently celebrated our 10th anniversary with <a href="http://sccn.ucsd.edu/events/">an impromptu cake and talk at tea time</a>. Arno put his thoughts about the 10th anniversary of EEGLAB itself <a href="http://sccn.ucsd.edu/wiki/The_first_decade_of_EEGLAB">in the EEGLAB wiki</a> last fall.</span></font></div>
<div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px"><br></span></font></div><div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px">- Our paper on the 'dipolarity' of independent EEG component processes is finally out and freely <a href="http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0030135">available in PLoS ONE</a>. This paper shows, roughly put, that the more mutual information a linear decomposition 'squeezes out of' the single channel time courses in EEG multi-channel data (upon transforming the data from channels to components), the more of those components it returns have a 'dipolar' scalp map, i.e. one near-precisely matching the projection of a single current dipole, most likely the 'equivalent dipole' of the cortical patch </span></font><span class="Apple-style-span" style="color:rgb(48,48,48);font-family:Verdana,Arial,Helvetica,sans-serif;line-height:21px">source </span><span class="Apple-style-span" style="color:rgb(48,48,48);font-family:Verdana,Arial,Helvetica,sans-serif;line-height:21px">of the component process ... </span></div>
<div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px"><br></span></font></div><div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px">This result supports the strategy implemented in EEGLAB to first decompose EEG data using ICA (in particular, Infomax ICA or Amica), then to estimate the location of the cortical generator area by fitting an equivalent dipole to the component scalp map. Most spatial EEG measures, for example the scalp map at the peak of a cognitive ERP, cannot be well fit with a single dipole. This fact leads many who know it to question why single-dipole models are valid for ICA. The new paper indicates that this model is quite often valid -- though 'ground-truth' testing and confirmation of this claim will still require sufficient, model-based analysis of ultra-high density cortical field recordings....</span></font></div>
<div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px"><br></span></font></div><div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px">- We are now preparing the renewal proposal for the EEGLAB project funding from the US National Institutes of Health (NIH). We will soon be posting a request for letters of support from users both in the US and abroad. Such user support will be appreciated by us and by the funding sponsors...</span></font></div>
<div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px"><br></span></font></div><div><font class="Apple-style-span" color="#303030" face="Verdana, Arial, Helvetica, sans-serif"><span class="Apple-style-span" style="line-height:21px">Scott Makeig</span></font></div>
<span class="Apple-style-span" style="color:rgb(48,48,48);font-family:Verdana,Arial,Helvetica,sans-serif;line-height:21px"><strong style="font-weight:bold"><div style="font-size:11px"><span class="Apple-style-span" style="color:rgb(48,48,48);font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;line-height:21px"><strong style="font-weight:bold"><br>
</strong></span></div>Citation: </strong>Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S (2012) <b>Independent EEG Sources Are Dipolar</b>. PLoS ONE 7(2): e30135. doi:10.1371/journal.pone.0030135</span><span class="Apple-style-span" style="color:rgb(48,48,48);font-family:Verdana,Arial,Helvetica,sans-serif;font-size:12px;line-height:21px"><h2 style="font-family:Georgia,'Times New Roman',Times,serif;color:rgb(51,51,51);font-size:1.6em;border-bottom-width:1px;border-bottom-style:solid;border-bottom-color:rgb(204,204,204);padding-top:0px;padding-right:0px;padding-bottom:3px;padding-left:0px;margin-top:20px;margin-right:0px;margin-bottom:0px;margin-left:0px;font-style:normal;background-image:none;background-color:initial">
Abstract <a href="http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0030135#top" style="color:rgb(0,102,153);text-decoration:underline;font-family:Verdana,Arial,Helvetica,sans-serif;font-size:0.6em;font-variant:normal;letter-spacing:0px;margin-left:0.5em">Top</a></h2>
<p>Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (<a href="http://sccn.ucsd.edu/wiki/BSSComparison" style="color:rgb(0,102,153);text-decoration:underline">http://sccn.ucsd.edu/wiki/BSSComparison</a>).</p>
</span><div><br></div>-- <br>Scott Makeig, Research Scientist and Director, Swartz Center for Computational Neuroscience, Institute for Neural Computation; Prof. of Neurosciences (Adj.), University of California San Diego, La Jolla CA 92093-0559, <a href="http://sccn.ucsd.edu/%7Escott" target="_blank">http://sccn.ucsd.edu/~scott</a><br>