Greetings Juan,<div><br></div><div>Can you provide some more information about </div><div><br></div><div>...on MacOS...</div><div>1. How much minimal RAM is needed to run CUDAICA ?</div><div>2. Whether it runs on Mac OS 10.6 ?</div>
<div>3. Whether any of the needed downloads (such as Xcode from Appstore) have a specific cost ? </div><div>4. How to check that whatever graphics card we have is compatible with CUDICA ?</div><div>5. As per a recent question on eeglab list, is it possible to use similar functionality to speed up other processes </div>
<div>such as study precomputation in eeglab ?</div><div><br></div><div>Thanks for any information you can provide! please feel free to refer to specific parts of the documentation as necessary.</div><div><br></div><div>Best wishes,</div>
<div>Tarik</div><div><br></div><div><br><br><div class="gmail_quote">On Sun, Jul 8, 2012 at 7:27 PM, Juan Kamienkowski <span dir="ltr"><<a href="mailto:jkamienk@gmail.com" target="_blank">jkamienk@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear eeglablist,<br>
<br>
We recently developed a GPU-based solution for Infomax ICA<br>
implementation (CUDAICA) that, comparing with the original BLAS and<br>
CUBLAS versions, obtains a 25x increase of performance for the ICA<br>
calculation. This is a couple of hours instead a couple of days of<br>
processing. This is now published online in:<br>
<br>
Federico Raimondo, Juan E. Kamienkowski, Mariano Sigman, and Diego<br>
Fernandez Slezak "CUDAICA: GPU Optimization of Infomax-ICA EEG<br>
Analysis" Computational Intelligence and Neuroscience. Volume 2012<br>
(2012), Article ID 206972, 8 pages. doi:10.1155/2012/206972<br>
<br>
<a href="http://www.hindawi.com/journals/cin/2012/206972/" target="_blank">http://www.hindawi.com/journals/cin/2012/206972/</a><br>
<br>
We will be very glad if you want to try it. CUDAICA is freely<br>
available from our wiki<br>
(<a href="http://calamaro.exp.dc.uba.ar/cudaica/doku.php?id=start" target="_blank">http://calamaro.exp.dc.uba.ar/cudaica/doku.php?id=start</a>) with a<br>
description of application features, FAQ and installation instructions<br>
. CUDAICA works as a standalone application and integrates to the<br>
EEGLAB Toolbox adding an option to process ICA using CUDAICA, just<br>
like any other ICA implementation. It was designed for standard EEGLAB<br>
users, with no extra effort needed to run this implementation. It<br>
works under CUDA enabled hardware, that is, almost every modern<br>
graphic card, making CUDAICA widely available and easy to use.<br>
<br>
Best,<br>
<br>
juan<br>
<br>
--<br>
Juan E Kamienkowski<br>
Laboratorio de Neurociencia Integrativa<br>
Departamento de Fisica, FCEN-UBA<br>
Ciudad Universitaria, Pabellon I<br>
(1428) Buenos Aires, Argentina<br>
Phone: (54-11) 4576 3300 (282)<br>
Fax: (54-11) 4576 3357<br>
<a href="http://www.neurociencia.df.uba.ar/" target="_blank">http://www.neurociencia.df.uba.ar/</a><br>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br>
</blockquote></div><br></div>