<html><head><meta http-equiv="Content-Type" content="text/html charset=us-ascii"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div>Greetings,</div><div><br></div><div><br></div><div><blockquote type="cite">1. How much minimal RAM is needed to run CUDAICA ?</blockquote><div><br></div><div>It all depends on the size of the dataset. You'll need at least NCHANNELS * NSAMPLES * 8 bytes of both CPU RAM and GPU RAM memory for the dataset. There are also more data structures involved, so keep in mind that if you have a big dataset, it might not fit into the GPU.</div><div><br></div><br><blockquote type="cite">2. Whether it runs on Mac OS 10.6 ?</blockquote><div><br></div><div>It should, but I don't have such version to test on it.</div><div><br></div><br><blockquote type="cite">3. Whether any of the needed downloads (such as Xcode from Appstore) have a specific cost ? </blockquote><div><br></div><div>It's free. Although in Snow Leopard (1.6) you should download it from <a href="http://apple.com/">apple.com</a></div><br><blockquote type="cite">4. How to check that whatever graphics card we have is compatible with CUDICA ?</blockquote><div><br></div><div>You should check your GPU device in the "System Information" application. Although, if you install CUDA 5.0 toolkit, you will get a CUDA item in the System Preferences pane.</div><br><blockquote type="cite"><div>5. As per a recent question on eeglab list, is it possible to use similar functionality to speed up other processes </div><div>such as study precomputation in eeglab ?</div></blockquote><div><br></div><div>CUDAICA was developed to speed up the Infomax ICA algorithm developed <span style="background-color: rgb(252, 255, 255); font-family: Helvetica, Arial, sans-serif; ">by Sigurd Enghoff.</span></div><div><span style="background-color: rgb(252, 255, 255); font-family: Helvetica, Arial, sans-serif; "><br></span></div><div><span style="background-color: rgb(252, 255, 255); font-family: Helvetica, Arial, sans-serif; ">I don't know about the study </span><font face="Helvetica, Arial, sans-serif">pre computation, but it all depends on the nature of the algorithm, as CUDA has some restrictive memory access patterns.</font></div><div><font face="Helvetica, Arial, sans-serif"><br></font></div><div><font face="Helvetica, Arial, sans-serif">Regards,</font></div><div><font face="Helvetica, Arial, sans-serif">Federico</font></div></div></body></html>