<p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB">Dear list,</span><span lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<span lang="EN-GB"><br></span></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB">I have a question concerning the role of the sphering matrix </span>(which decorrelates the channels) in the rather common scenario where I compute an ICA on one version of a dataset, but then apply the ICA results to another version of the same data (e.g. epoched vs. continuous, filtered vs. unfiltered).</p>
<p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB">To remove artifacts in my study, I compute the ICA on high-pass filtered (e.g. 1 Hz) data, because this results in much better ICA decompositions. However, I would like to apply the results of this ICA to my original, unfiltered version of the same dataset, because would like to keep slow potentials (< 1 Hz) in the data. After running ICA on the filtered data, I save both EEG.icaweights and EEG.icasphere. </span></p>
<p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB"><br></span></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<span lang="EN-GB">When I now apply the ICA weight matrix to the original data it is unclear to me which sphering matrix needs to be used.</span><span lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<span lang="EN-GB">Should I (A) also import the ICA sphering matrix from the filtered data or (B) recompute the sphering matrix (cmd: sphere(EEG.data)) for the original unfiltered data and consequently use that one. Both possibilities result in different outcomes since sphering matrices are different for both versions of the datasets. Which of these possibilities are recommended and more importantly, why exactly?</span><span lang="EN-US"><u></u><u></u></span></p>
<p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB">A related question concerns the exporting-importing of the weight matrix in the GUI of EEGLAB. When exporting weights, a single exported file contains the combined weight*sphering matrix. However, when importing, two different files need to be imported, i.e. both weight matrix and sphere matrix separately. This does not seem practical. Or is there a rationale behind this distinction between import and export?</span><span lang="EN-US"><u></u><u></u></span></p>
<p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB"><br></span></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<span lang="EN-GB">Thanks for any input on this,<u></u><u></u></span></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB"><br>
</span></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)"><span lang="EN-GB">Best<br>Maarten De Schuymer</span><u></u><u></u></p><p class="MsoNormal" style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:13px;background-color:rgb(255,255,255)">
<u></u> </p>