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a b s t r a c t

Assessing directed functional connectivity from time series data is a key challenge in neuroscience. One
approach to this problem leverages a combination of Granger causality analysis and network theory.
This article describes a freely available MATLAB toolbox – ‘Granger causal connectivity analysis’ (GCCA) –
which provides a core set of methods for performing this analysis on a variety of neuroscience data types
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including neuroelectric, neuromagnetic, functional MRI, and other neural signals. The toolbox includes
core functions for Granger causality analysis of multivariate steady-state and event-related data, func-
tions to preprocess data, assess statistical significance and validate results, and to compute and display
network-level indices of causal connectivity including ‘causal density’ and ‘causal flow’. The toolbox is
deliberately small, enabling its easy assimilation into the repertoire of researchers. It is however readily

cy w
etwork theory
ausal density

extensible given proficien

. Introduction

The accelerating availability of neuroscience data is placing
ncreasing demands on analysis methods. These data are gener-
ted at multiple levels of description, from spike trains to local field
otentials to functional MRI (fMRI) BOLD signals. A key challenge
hen analyzing such data is to determine the functional connec-

ivity of the underlying mechanisms. Many methods for functional
onnectivity analysis identify undirected connectivity; examples
nclude synchrony (Engel and Singer, 2001) and phase coherence
Nunez et al., 2001; Doesburg et al., 2009). However, a satisfactory
nderstanding of neural mechanisms is likely to require identi-
cation of directed functional connectivity. A powerful technique

or extracting such connectivity from data is Granger causality (G-
ausality) (Granger, 1969; Ding et al., 2006; Seth, 2007). According
o G-causality, a variable X1 ‘Granger causes’ a variable X2 if infor-

ation in the past of X1 helps predict the future of X2 with better
ccuracy than is possible when considering only information in the
ast of X2 itself (Granger, 1969; Seth, 2007). This paper describes
freely available software toolbox, programmed in the MATLAB

Natick, MA) environment, which allows application of a range of
-causality analyses to neuroscience data broadly construed. Taken
ogether, the analysis methods incorporated in the toolbox form
Granger causal connectivity analysis’ (GCCA). A first version of
he toolbox was released in 2005 (Seth, 2005); the present paper
escribes the first significant revision and extension of the software,

∗ Tel.: +44 1273 678549; fax: +44 1273 877873.
E-mail address: a.k.seth@sussex.ac.uk.
URL: http://www.anilseth.com.

165-0270/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2009.11.020
ith the MATLAB language.
© 2009 Elsevier B.V. All rights reserved.

as well as the theoretical infrastructure underpinning its function-
ality.

It should be noted that identifying directed functional connec-
tivity is not equivalent to identifying physically instantiated causal
interactions in systems. Although the two descriptions are inti-
mately related (Seth and Edelman, 2007; Cadotte et al., 2008),
physically instantiated causal structure can only be unambiguously
identified by perturbing a system and observing the consequences
(Pearl, 1999). Directed functional connectivity in general, and G-
causality analysis in particular, is therefore best understood as a
statistical relationship among observed variables that reflects but
may not be identical to the underlying physical mechanism.

The importance of identifying causal structure within data,
especially during exploratory analysis phases, indicates a need for
easy-to-apply, transparent, and extensible software methods. Such
methods are provided by the GCCA toolbox described here. The
toolbox includes several different types of function. The core func-
tions implement G-causality analysis given multivariate time series
data. Other functions test whether the provided data satisfies nec-
essary assumptions, assess the statistical significance and validity
of inferred interactions, generate network-level descriptions of pat-
terns of causal interactions, and graphically display analysis results.
Functions are also included to apply various preprocessing tech-
niques and to demonstrate the toolbox capabilities. The toolbox
is intentionally small when compared to several other brain sig-
nal analysis toolboxes (e.g., Delorme and Makeig, 2004; Cui et al.,

2008), in order to facilitate assimilation of the methods into the
repertoire of researchers. Also, the toolbox is not targeted specifi-
cally to any particular experimental technique. G-causality analysis
has been successfully applied to a wide range of data types includ-
ing spike trains (Cadotte et al., 2008; Nedungadi et al., 2009), local

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:a.k.seth@sussex.ac.uk
dx.doi.org/10.1016/j.jneumeth.2009.11.020
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Fig. 1. Demonstration of the GCCA toolbox. The data-generating process is shown in the top-left panel. Matrix and network representations of the corresponding G-causalities
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re shown in the remaining top panels (green lines depict unidirectional connecti
ausal flow, unit causal density, and the raw time series generated by the process. C
escribed further in Section 4; both ‘unweighted’ (bars) and ‘weighted’ (lines) vers
eader is referred to the web version of the article.)

eld potentials (Kaminski et al., 2001; Brovelli et al., 2004), EEG
ignals (Babiloni et al., 2005; Keil et al., 2009), fMRI BOLD signals
Roebroeck et al., 2005; Sato et al., 2006), among others. Several
uch studies have utilized an earlier version of the present toolbox
Sridharan et al., 2008; Shanahan, 2008; Gow et al., 2008; Gow and
egawa, 2009; Gaillard et al., 2009; Chang et al., 2008; Stevens et
l., 2009) or have followed the procedures it advocated (Keil et al.,
009). By November 2009, over 600 researchers from many dif-
erent countries had downloaded the toolbox. The present toolbox
xtends the earlier version in several important ways, including (i)
requency decomposition of causal interactions, (ii) partial Granger
ausality, (iii) ‘Granger autonomy’, (iv) analysis of event-related
ata, (v) additional preprocessing and validation techniques, for
xample for removal of single frequency line-noise from data and
or checking model consistency, and (vi) built-in functions for
ootstrap and permutation statistical testing. The toolbox is also
nhanced with respect to the efficiency of its core algorithms.

A screenshot of the toolbox demonstration function is provided
n Fig. 1. In this figure, data are generated according to the model
escribed in Baccalá and Sameshima (2001) (Eq. (1.1), see top-left
anel).

x1(t) = 0.95
√

2x1(t − 1) − 0.9025x1(t − 2) + w1(t)
x2(t) = 0.5x1(t − 2) + w2(t)
x3(t) = −0.4x1(t − 3) + w3(t)

x4(t) = −0.5x1(t − 2) + 0.25
√

2x4(t − 1) + 0.25
√

2x5(t − 1)+w4(t)

x5(t) = −0.25
√

2x4(t − 1) + 0.25
√

2x5(t − 1) + w5(t)

(1.1)

The model generates five time-series which are shown in
he bottom-right panel of the figure. w1 − w5 are independent
ormally-distributed processes with zero mean and unit standard

eviation. The remaining panels show the results of GCCA of the
ime-series. The top panels show G-causalities in both matrix and
etwork form. In this case the inferred causalities are identical
o the underlying physical network structure (as noted this need
ot be true in general). The bottom panels show network-level
ed lines depict bidirectional connections). The bottom panels show (left-to-right)
ow and causal density are network-level descriptions of causal patterns which are
re shown. (For interpretation of the references to colour in this figure legend, the

summary descriptions of the causal patterns, described further in
Section 4. Briefly, causal flow reflects the extent to which a variable
is influenced by or influences the remainder of the system; causal
density expresses the overall degree of causal interactivity, either
averaged across an entire network or assessed on a per-variable
basis.

The remainder of this paper is organized as follows. Section 2
describes the underlying theory of G-causality and of the various
extensions represented in the toolbox. Section 3 discusses the sta-
tistical assumptions involved in G-causality analysis and describes
various preprocessing and validation techniques. Section 4 intro-
duces some network-level descriptors of G-causality interaction
patterns which can be useful for inferring macroscopic dynami-
cal properties of neural systems. Section 5 discusses the important
issue of filtering. Section 6 then outlines modality-specific issues
involved in application of G-causality to data acquired from func-
tional MRI (fMRI), neuroelectric and neuromagnetic signals, and
spike train data. Limitations of the present instantiation of the
toolbox are noted in Section 7, and Section 8 sets G-causality in
the context of other frameworks for identifying directed functional
connectivity. For detailed descriptions of the individual functions
in the toolbox the reader is referred to the accompanying manual,
available online at www.anilseth.com.

2. Granger causality

2.1. Bivariate and conditional G-causality

In 1969 Granger introduced the idea of G-causality as a for-
malization, in terms of linear regression modelling, of Wiener’s
(and Akaike’s) intuition that X2 ‘causes’ X1 if knowing X2 helps

predict the future of X1 (Granger, 1969; Seth, 2007). According to
G-causality, X2 causes X1 if the inclusion of past observations of X2
reduces the prediction error of X1 in a linear regression model of
X1 and X2, as compared to a model which includes only previous
observations of X1. To illustrate G-causality, suppose that the tem-

http://www.anilseth.com
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single trial data and cca granger regress mtrial for mul-
tiple trial data. These functions return G-causality magni-
tudes and F-values. The function cca findsignificance filters
these values through the multiple comparison corrections just
described.
64 A.K. Seth / Journal of Neurosci

oral dynamics of two time series X1(t) and X2(t) (both of length T)
an be described by a bivariate autoregressive model:

X1(t) =
p∑

j=1

A11,jX1(t − j) +
p∑

j=1

A12,jX2(t − j) + �1(t)

X2(t) =
p∑

j=1

A21,jX1(t − j) +
p∑

j=1

A22,jX2(t − j) + �2(t)

(2.1)

here p is the maximum number of lagged observations included
n the model (the model order, p < T), A contains the coefficients of
he model, and �1, �2 are the residuals (prediction errors) for each
ime series. If the variance of �1 (or �2) is reduced by the inclusion
f the X2 (or X1) terms in the first (or second) equation, then it is
aid that X2 (or X1) G-causes X1 (or X2). Assuming that X1 and X2 are
ovariance stationarity (i.e., unchanging mean and variance), the
agnitude of this interaction can be measured by the log ratio of

he prediction error variances for the restricted (R) and unrestricted
U) models:

2→1 = ln
var(�1R(12))

var(�1U)
, (2.2)

here �1R(12) is derived from the model omitting the A12,j (for all
) coefficients in the first equation and �1U is derived from the full

odel.
Importantly, G-causality is easy to generalize to the multivari-

te (conditional) case in which the G-causality of X2 on X1 is tested
n the context of multiple additional variables X3 . . . Xn (Geweke,
982). In this case, X2 G-causes X1 if knowing X2 reduces the vari-
nce in X1’s prediction error when all other variables X3 . . . Xn are
lso included in the regression model. To illustrate, for a system of
hree variables (1,2,3), we represent the noise covariance matrix of
he unrestricted model as

here all �iU are estimated from the (vector) autoregressive model
ncluding all variables. A useful partition of the matrix is given by
he second equality. For n variables there are n restricted models,
ith each restricted model omitting a different predictor variable.

or example, the noise covariance matrix of the restricted model
mitting variable 2, with its partition, is

here all �iR are estimated from the autoregressive model omitting
ariable 2. The G-causality from variable 2 to variable 1, conditioned
n variable 3, is given by

2→1|3 = ln
�11

�11
. (2.3)

The above development assumes that the observed data can be
ell represented by multivariate autoregressive (MVAR) models.

he GCCA toolbox uses two different core algorithms to estimate
hese models. For data consisting of single long trials, the method
f ordinary-least-squares is used to compute the regression coef-
cients (A in Eq. (2.1)). Alternatively, if the data are in the form

f multiple repetitions of relatively short trials (e.g., event-related
ata), the method of Ding et al. (2000) is used. In this method, each
rial is considered to be an independent realization of a single sta-
istically stationary process, such that a single MVAR model can be
stimated based on the entire data set. The algorithm enabling this
ethods 186 (2010) 262–273

estimation is due to Morf et al. (1978), its computer implementa-
tion is available as part of the BSMART network analysis software
(Cui et al., 2008).1

2.1.1. Model order
The estimation of MVAR models requires as a parameter the

number of time-lags (p) to include, i.e., the model order. Too few
lags can lead to a poor representation of the data, whereas too many
can lead to problems of model estimation. A principled means to
specify the model order is to minimize a criterion that balances
the variance accounted for by the model, against the number of
coefficients to be estimated. Two criteria are implemented in the
toolbox: the Akaike information criterion (AIC, Akaike, 1974) and
the Bayesian information criterion (BIC, Schwartz, 1978). For n
variables:

AIC(p) = ln(det(�)) + 2pn2

T
(2.4)

BIC(p) = ln(det(�)) + ln(T)pn2

T
(2.5)

The BIC is more often used for application to neural systems
because it compensates for the large number of data points com-
monly found in neural data sets (fMRI excepted). In cases where
the model order specified by the minimal BIC/AIC is too large to
permit feasible computation, or in cases where the BIC/AIC does
not reach a clear minimum over the range tested, a smaller model
order can be chosen on condition that the BIC/AIC shows no further
substantial decreases at higher orders (Brovelli et al., 2004).

2.1.2. Statistical significance
Having computed G-causality magnitudes, it is important to

assess their statistical significance. A time-domain G-causality

interaction is significant if the coefficients in the correspond-
ing Aij are jointly significantly different from zero. This can be
established via an F-test on the null hypothesis that Aij are zero
(Granger, 1969).2 These tests should be corrected for multiple
comparisons. The most conservative correction is the Bonfer-
roni correction, in which the applied threshold is Pnom/n(n − 1),
where Pnom is the nominal threshold (typically 0.01 or 0.05).
A less conservative alternative is the false discovery rate (FDR)
which controls the expected proportion of incorrectly rejected
null hypotheses (type I errors) (Benjamini and Hochberg, 1995).
(The Bonferroni, by contrast, controls the expected number of
type I errors.) The GCCA toolbox is able to apply both of these
corrections.

The core functions implementing time-domain G-causality
analysis in the GCCA toolbox are cca granger regress for
1 http://www.brain-smart.org.
2 It is also known that the maximum likelihood estimator F̂ will have (asymp-

totically for large samples) a �2-distribution under the null hypothesis F = 0
(Granger, 1963; Whittle, 1953) and a non-central �2-distribution under the alter-
native hypothesis F > 0 (Geweke, 1982; Wald, 1943).

http://www.brain-smart.org
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.2. Spectral G-causality

Neural dynamics are often usefully interpreted in the fre-
uency domain. A frequency-domain (spectral) interpretation of
-causality can be derived by examining the Fourier components
f an MVAR model estimated in the time-domain (Geweke, 1982).
he following treatment is based on the development in Kaminski
t al. (2001) and Brovelli et al. (2004) [see also Seth, 2007]. The
ourier transform of (2.1) gives:

A11(f ) A12(f )
A21(f ) A22(f )

)(
X1(f )
X2(f )

)
=

(
E1(f )
E2(f )

)
(2.6)

n which the components of A are

Alm(f ) = ılm −
p∑

j=1

Alm(j)e(−i2�fj),

ılm = 0 (l = m),
ılm = 1 (l /= m).

ewriting (2.6) as

X1(f )
X2(f )

)
=

(
H11(f ) H12(f )
H21(f ) H22(f )

)(
E1(f )
E2(f )

)

e have

H11(f ) H12(f )
H21(f ) H22(f )

)
=

(
A11(f ) A12(f )
A21(f ) A22(f )

)−1

here H is the transfer matrix. The spectral matrix S can now be
erived as

(f ) = 〈X(f )X∗(f )〉 = 〈H(f )�H∗(f )〉
n which the asterisk denotes matrix transposition and complex
onjugation and � is the noise covariance matrix. The spectral G-
ausality from j to i is then

j→i(f ) = −ln

⎛
⎝1 −

(
�jj − (�2

ij
/�ii)

)
|Hij(f )|2

Sii(f )

⎞
⎠ (2.7)

n which Sii(f ) is the power spectrum of variable i at frequency f
nd �, H, and S are defined for bivariate models only.

The GCCA toolbox contains the function cca pwcausal which
eturns pairwise spectral G-causalities and coherence values for
matrix of time series. This function is a wrapper function for

wcausal.m, which is part of the BSMART toolbox.3 It uses the Morf
lgorithm to estimate the underlying time-domain model such that
t can be used both for single long time-series and for multi-trial
ata. Importantly and in contrast to the time-domain formulation,
he statistical distribution of spectral G-causality does not follow
ny standard distribution entailing that statistical significance val-
es and confidence intervals must be estimated using surrogate
ata methods (see Section 2.5).

Two alternative measures closely related to spectral G-causality
re partial directed coherence (Baccalá and Sameshima, 2001) and
he directed transfer function (Kaminski et al., 2001). For compar-
tive results among these methods see Baccalá and Sameshima
2001), Pereda et al. (2005) and Gourévitch et al. (2006).
.3. Partial G-causality

Time-series inference methods such as G-causality can be
ndermined by the confounding influence of environmental

3 pwcausal.m is available from http://www.brain-smart.org.
ethods 186 (2010) 262–273 265

(exogenous) and unmeasured (latent) inputs. An adaptation of
G-causality that addresses this problem has been called partial G-
causality (Guo et al., 2008). The intution, based on the concept of
partial coherence, is that the influence of exogenous and/or latent
variables on a measured system will be reflected by correlations
among the residuals of an MVAR model of the measured variables.
The partial G-causality is defined as (compare with Eq. (2.3)):

FP
2→1|3 = ln

(
�11 − �12�−1

22 �21

�11 − �13�−1
33 �31

)
(2.8)

Note that partial G-causality cannot be computed for <3 variables
because even the restricted model requires residual covariance
terms in order to provide an estimate of the influence of exoge-
nous/latent variables. It should also be noted that the analogy
with partial coherence is not exact. Whereas partial coherence
directly removes the influence of known external variables from a
fundamentally bivariate measure (coherence), partial G-causality
controls for the influence of unknown variables on a multivari-
ate measure (G-causality) indirectly via their influence on residual
covariances. For this reason, partial G-causality will only remove
all traces of exogenous/latent variables in the unlikely case that
these variables have equivalent effects on all components of the
measured system. However, numerical investigations show that
even when this condition is not met, partial G-causality nonetheless
delivers substantially improved results as compared to standard
conditional G-causality in many situations (Guo et al., 2008).

Partial G-causality is implemented in the GCCA toolbox
by the function cca partialgc for single trial data and by
cca partialgc mtrial for multi-trial data. As with spectral G-
causality, the statistical significance of partial G-causalities must
be estimated by surrogate data methods (see Section 2.5).

2.4. G-autonomy

The framework of G-causality provides a novel approach to mea-
suring the ‘autonomy’ of a variable, where autonomy is understood
as the degree of self-determination or ‘self-causation’ exhibited by
a variable (Seth, 2009; Bertschinger et al., 2008). Instead of ask-
ing whether the prediction error of X1 is reduced by including past
observations of X2, the G-autonomy measure asks whether the pre-
diction error of X1 is reduced by inclusion of its own past, given
a set of external variables X2 . . . Xn. That is, a variable X1 is ‘G-
autonomous’ to the extent that its own past states help predict
its future states over and above predictions based on past states
of a set of external variables X2 . . . Xn. Put simply, a variable is
G-autonomous to the extent that it is dependent on its own his-
tory and that these dependencies are not accounted for by external
factors.

Recalling Eq. (2.2), if the variance of �1 (or �2) is reduced by the
inclusion of the X1 (or X2) terms in the first (or second) equation,
then it is said that X1 (or X2) is G-autonomous with respect to X2 (or
X1). In other words, X1 is G-autonomous if the coefficients in A11
are jointly significantly different from zero. As with G-causality, this
can be tested by performing an F-test of the null hypothesis that
A11 = 0, given assumptions of covariance stationarity on X1 and X2.
By analogy with G-causality, the G-autonomy of X1 with respect to
X2 is given by:

A1|2 = ln
var(�1R(11))

var(�1U)
, (2.9)
where �1R(11) is derived from the model omitting the A11,j (for all j)
coefficients in the Granger equations.

In the toolbox, G-autonomy can be computed using the func-
tion cca autonomy regress and statistical significances identified
using cca findsignificance autonomy. At present, G-autonomy

http://www.brain-smart.org
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Fig. 2. Illustration of bootstrap (A) and permutation (B) resampling for setting significance thresholds for spectral G-causality (shown for 1–100 Hz); 500 resamples in each
c show
l ts, yel
( erred

h
a
c
G
a
a

F
p

ase. The generative model is given by Eq. (2.10), sampled at 500 Hz. (A) Thin lines
ine shows permutation threshold; blue line shows sample G-causality. In both plo
For interpretation of the references to colour in this figure legend, the reader is ref

as not been applied to neural data. It is however possible to envis-
ge many interesting applications, for example in examining the

onditions under which the activity of a particular brain area is
-autonomous with respect to a set of other areas. Illustrative
pplications of G-autonomy to computational models of interacting
gents are described in Seth (2009).

ig. 3. The autocorrelation function can reveal non-CS variables. Left panels show a non
anels show the same variable after first-order differencing. In this example, the autocor
bootstrap confidence intervals around sample G-causality (thick line). (B) Thin red
low shading indicates frequencies at which G-causality significantly exceeds zero.
to the web version of the article.)

2.5. Surrogate statistics
Several G-causality measures lack known statistical distri-
butions. These measures include spectral G-causality, partial
G-causality, and the ‘difference of influence’ metric that is use-
ful for analyzing fMRI data (see Section 6). Establishing statistical

-CS variable (top) with high and slowly declining autocorrelation (bottom). Right
relation is greatly reduced at all lags.
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ignificance in these cases requires surrogate methods such as
ootstrapping and random permutation (Efron and Tibshirani,
994). Permutation testing is useful for assessing whether an
bserved value is different from zero; bootstrapping places con-
dence intervals around a value, which can be useful either for
istinguishing a value from zero or to compare apparently different
alues.

.5.1. Bootstrap resampling
The premise of bootstrapping is that a single observation

an stand in for a distribution if it is resampled with replace-
ent (Efron and Tibshirani, 1994). In the context of MVAR
odels a data matrix is subdivided into many windows which

re repeatedly sampled with replacement to generate surrogate
ata matrices. Importantly, causal relationships within each win-
ow are not disturbed. Confidence intervals on the sample value
f the test statistic (e.g., F) are then generated by examining
he empirical quantiles of the bootstrap distribution. Typically,
housands of resamples are recommended for reliable testing.
ootstrap resampling is implemented in the toolbox via the func-
ions cca partialgc doi bstrap and cca pwcausal bstrap for
ime-domain and spectral G-causality analysis respectively. Both
onferonni and FDR multiple comparison corrections are imple-
ented within these functions.

.5.2. Permutation resampling
In a permutation resampling test, a reference distribution is

btained by calculating many values of a test statistic following
earrangements of the labels on the data points. In other words,
ermutation tests involve resampling consistent with the assump-
ion that the null hypothesis is true. Application to MVAR models
nvolves subdividing a data matrix into many windows and con-
tructing surrogate data matrices by rearranging the windows
or each variable separately. The distribution of the test statistic
e.g., F) over these resampled matrices then gives the expected
istributions assuming a null hypothesis (F = 0). Significance
hresholds can be derived by examining the empirical quan-
iles of this distribution. Permutation resampling is implemented
n the toolbox via the functions cca partialgc doi permute
nd cca pwcausal permute. In the spectral case, permutation
ignificance thresholds for each potential causal interaction are
etermined by the method of Blair and Karniski (1993). Accord-

ng to this method, the G-causality spectrum is calculated for each
ermutation and the maximum G-causality value identified. A
istribution of maximum G-causalities can then be derived follow-

ng repeated permutations, and a per-interaction threshold is set
gainst this distribution (Ding et al., 2006). After application of this
rocedure, Bonferonni and FDR corrections can be implemented to
ontrol for multiple comparisons among different potential inter-
ctions.

.5.3. Example
To illustrate bootstrap and permutation resampling as applied

o spectral G-causality, consider the simple system:

x1(t) = 0.95
√

2x1(t − 1) − 0.9025x1(t − 2) + w1(t)

x2(t) = 0.5x1(t − 2) + w2(t)

x3(t) = −0.4x4(t − 3) + w3(t)

x4(t) = 0.35x4(t − 2) + w4(t)

(2.10)

n this system x1 drives x2 and x4 drives x3; w1 − w4 are indepen-

ent processes as in Eq. (1.1). There are no conditional relationships.
ig. 2 (right) shows the results of permutation significance testing
sing 500 resamples, a nominal P value of 0.05, Bonferroni correc-
ion for multiple comparisons, and the Blair and Karniski method
or permutation resampling. As expected, only the correct causal
ethods 186 (2010) 262–273 267

interactions exceed the permutation threshold. Similarly, only the
correct causal interactions have bootstrap confidence intervals that
do not intersect with zero (Fig. 2 left).

3. Preprocessing and validation

Meaningful application of the GCCA toolbox requires, minimally,
that (i) the data satisfy certain preconditions and (ii) the MVAR
models describe the data in a statistically satisfactory manner.

3.1. Preconditions and preprocessing

The primary precondition for G-causality analysis is that
the variables must be covariance stationary (CS; also known as
weak or wide-sense stationarity). Covariance stationarity requires
that the first and second statistical moments (mean and vari-
ance) of each variable do not vary with time. If this condition
is not satisfied, MVAR models will be invalid and may con-
tain so-called ‘spurious regression’ results, i.e., correlations that
arise from non-stationarities rather than from relations among
variables (Granger and Newbold, 1974). One way to detect vio-
lations of CS is to examine the autocorrelation function of a
variable (use cca sacf). Non-CS variables typically will have an
autocorrelation that declines slowly with increasing lags (Fig. 3
left). Most CS variables will have a sharply declining autocor-
relation function (Fig. 3 right), though this is not true in all
cases.

Formally, deviations from CS can be examined by testing
for ‘unit roots’ within the data. The ‘augmented Dickey-Fuller’
(ADF) test assesses whether a unit root is present in a vari-
able. The intuition behind this test is that if a variable is CS
it will exhibit a tendency to return to a constant (or deter-
ministically trending) mean. Therefore large values will tend
to be followed by smaller values, and small values by larger
values. The ADF test identifies the absence of this condi-
tion. The test is implemented in the toolbox by the function
cca check cov stat.

For non-CS variables, several preprocessing steps can be applied.
First, deterministic linear trends can be removed via the function
cca detrend. Second, unit roots can be removed via differenc-
ing, i.e. x′(t) = x(t) − x(t − 1), using function cca diff. Often, one
application of differencing is sufficient (see Fig. 3, right). Occasion-
ally, repeated applications are required. It should be noted that
differencing can change the interpretation of causal network anal-
ysis inasmuch as causal interactions are now among changes in
variables rather than among the variables per se. Moreover, differ-
encing can induce changes in the spectral profile of a time-series,
complicating the interpretation of spectral G-causality. Repeated
differencing obviously induces further challenges in interpreta-
tion.

If the data are in the form of multiple realizations (trials), non-
stationarities due to variation of the mean during each trial can
be removed by subtracting the ensemble mean, which is deter-
mined by averaging the values for each variable at each time
point across trials (Ding et al., 2000). Similarly, intra-trial variation
in the standard deviation can controlled for by dividing through
by the ensemble standard deviation. These capabilities are pro-
vided within the toolbox via the function cca rm ensemblemean.
These steps can be extremely useful for event-related analyses,
enabling causal interactions to be inferred based on the induced

response. Note, in addition, that the MVAR algorithms in the
toolbox require the time series to be zero mean (there is no con-
stant term fitted in (2.1)). Therefore, the temporal mean should
be removed either from each trial (for multitrial data) or from
the entire time series. This step, as well as division through
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y the temporal standard deviation, can be carried out using
ca rm temporalmean.4

A different perspective on non-CS data is that causal relations
mong variables may be changing over time. In this case it may
ake sense to apply methods that are sensitive to time-varying

ausality. One approach is simply to divide the corresponding time
eries into short highly overlapping time windows each of which
ay be locally CS (Hesse et al., 2003; Ding et al., 2000). A constraint

n this approach is to ensure that each window has sufficient data
oints (i.e., at least np). Alternative approaches, not yet included

n the toolbox but more generally applicable, include spectral fac-
orization of wavelet transformations (Dhamala et al., 2008; see
ection 7) and adaptive recursive least-squares modelling (Hesse
t al., 2003).

In summary, it is good practice to apply the following pre-
rocessing steps in the following order (Ding et al., 2000): (i)

inear detrend, (ii) removal of temporal mean and division by
emporal standard deviation, (iii) for multi-trial data, removal of
nsemble mean and division by ensemble standard deviation, and
iv) differencing and/or windowing as necessary to achieve CS. If
he objective is to examine time-varying causal connectivity then
he windowing step could be introduced earlier, after the linear
etrend.

.2. Model validation

G-causality inferences are only valid if an MVAR model ade-
uately captures the correlation structure in the data. There
re several ways to check this. The simplest is to note the
mount of variance accounted for by the model, in terms of the
djusted sum-square-error. This value is returned by the functions
ca granger regress and cca granger regress mtrial. Typi-
ally, a value of less than 0.3 signifies that the model may not have
aptured the data adequately. An alternative way to test the same
ntuition is by checking the model ‘consistency’, as defined by Ding
t al. (2000). In the GCCA toolbox consistency is calculated as

=
(

1 − |Rs − Rr |
|Rr |

)
× 100 (3.1)

here Rr is the correlation vector of the real data and Rs is the
orrelation vector of simulated data generated via the MVAR model.
ach vector is a row vector (length n2) derived by reshaping the
orresponding covariance matrix. As a rule of thumb, consistency
alues below 80% may give cause for concern.

A second important check on model validity makes use of the
urbin–Watson statistic which tests whether the residuals of a
VAR model are serially uncorrelated, as they should be if the
odel effectively captures the data (Durbin and Watson, 1950).

he Durbin–Watson statistic d is calculated as

=

T∑
t=2

(�t − �t−1)2

T∑
t=2

�2
t

. (3.2)
s a rule of thumb, if d < 1.0 there may be cause for concern.
he toolbox returns d as well as a significance value based on the
rocedure described in Durbin and Watson (1950) (significance

ndicates serially correlated residuals). As implemented in the tool-

4 Dividing by the standard deviation is useful for avoiding artifacts in causal con-
ectivity due to differences in signal power (Ding et al., 2000). Of course, power
ifferences can be physiologically significant and such differences should be ana-

yzed separately, using data untreated by this step.
ethods 186 (2010) 262–273

box, this test does not examine cross-correlations among residuals.
It could be argued that such cross-correlations may signify model
mis-specification in just the same way as does residual autocorre-
lation. However, as discussed in the context of partial G-causality
(Section 2.3), residual cross-correlations could also signify the influ-
ence of latent and/or exogenous variables. For this reason, only
the autocorrelation structure of residuals is examined in the GCCA
toolbox.

All functions within the toolbox that perform a regression have
the option of returning both the consistency value and the signifi-
cance of the Durbin–Watson statistic.

4. Causal networks and their visualization

Methods for analyzing causal connectivity are especially pow-
erful when applied in combination with graph-theoretic and
network-theoretic techniques which allow their quantitative char-
acterization (Seth, 2005). In causal networks, nodes represent
variables or system elements and directed edges represent causal
interactions. There is wide range of graph theory concepts that may
find useful application to causal networks (Eichler, 2005; Bullmore
and Sporns, 2009). Here, we describe those that are implemented
in the GCCA toolbox.

4.1. Causal density

The causal density of the dynamics of a system X is a global
measure of causal interactivity (Seth, 2005, 2008). Causal density is
defined as the mean of all pairwise G-causalities between system
elements, conditioned on the remainder of the system; interactions
which do not reach statistical significance are set to zero.

cd(X) ≡ 1
n(n − 1)

∑
i /= j

FXi→Xj |X[ij]
(4.1)

where X[ij] denotes the subsystem of X with variables Xi and Xj

omitted. It is also possible to calculate a [0,1] bounded version of
cd in which all statistically significant interactions are set to 1 (oth-
erwise 0). Causal density provides a useful measure of dynamical
complexity in the sense that complexity reflects the coexistence of
integration and segregation in dynamics (Sporns, 2007; Shanahan,
2008). High values of cd indicate that system elements are globally
coordinated in their activity (in order to be useful for predicting
each other’s activity) and at the same time dynamically distinct (so
that different elements contribute in different ways to these predic-
tions) (Seth, 2005). A related quantity is unit causal density, cdu(i),
which is the summed causal interactions involving node i, normal-
ized by the number of nodes (see Fig. 1 bottom). A system with n
elements will have n cdu values. (Again an unweighted version can
be calculated by setting all significant interactions to 1.) Nodes with
high values of cdu can be considered to be causal hubs within X. The
function cca causaldensity can be used to calculate cd and cdu.
The toolbox also contains functions to calculate causal density by
frequency, given the output of a spectral G-causality analysis.

4.2. Causal flow

The causal flow of node i in a causal network is defined as the
difference between its (weighted or unweighted) in-degree and
out-degree (see Fig. 1 bottom). A node with highly positive causal

flow exerts a strong causal influence on the system as a whole and
can be called a causal source. A node with a highly negative causal
flow can be called a causal sink. Causal flows can be calculated using
the function cca causalflow; calculation of spectral causal flows
is also supported.
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Fig. 4. Artifacts induced by bandpass filtering using FIR filter at 1–100 Hz. Raw data is from the model described in Fig. 1 with an assumed sampling rate of 500 Hz. Top-
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anel shows that most (but not all) artifacts are removed given a sufficiently high
idirectional connections. Lower panels show power spectral density (W/Hz) for u
his figure legend, the reader is referred to the web version of the article.)

.3. Visualization

The ability to effectively visualize causal networks is key to
heir interpretation. The GCCA toolbox includes functions for gen-
rating simple graphical depictions of network causal connectivity
Fig. 1, top right). Also included are functions for generating
atafiles that describe a network in a format suitable for import-

ng into the Pajek network analysis software5 which contains
any useful tools for network visualization and analysis. Functions

nabling causal network visualization are cca plotcausality,
ca plotcausality spectral, and cca pajek.

. Filtering

It is critical to ensure that preprocessing steps do not introduce
purious correlation structure into the data which can result in arti-
actual causal connectivity. In general, procedures that preserve
he fine-grained timing relations among variable are safe, whereas
hose that do not, are not. One common preprocessing step that can
ause problems is that of bandpass and/or notch filtering. According
o Geweke (1982), the estimation of MVAR models in asymptotic
onditions should not be affected by linear operations, such as
pplication of standard finite impulse response (FIR) filters. How-
ver, under more realistic conditions filtering can be problematic.
or example, Fig. 4 shows the time-domain G-causality artifacts
ntroduced by bandpass filtering at 1–100 Hz, of data generated by

he model described in Eq. (1.1). A standard FIR filter was used in
wo stages, low-pass with a 100 Hz high cutoff and high-pass with a
Hz low cutoff, implemented using the EEGLAB software (Delorme
nd Makeig, 2004).6 One solution to this problem may be to use

5 http://vlado.fmf-uni-lj.si/pub/networks/pajek.
6 Each stage involves both forward and backward filtering in order to ensure

recisely zero phase distortion.
he causal network following filtering and model estimation with p = 5. Top-right
l order (e.g., p = 75). Green lines show unidirectional connections, red lines show
ed (left) and filtered (right) data. (For interpretation of the references to colour in

substantially higher model orders so that the filter window is cov-
ered by the MVAR model. Fig. 4 (right) shows that with a model
order p = 75 the correct causal network is mostly, but not entirely
recovered.

Some data sources require targeted removal of artifacts at spe-
cific frequencies. For example, EEG data is often contaminated by
‘line noise’ at the power supply frequency. The presence of line
noise can severely disrupt time-domain G-causality analysis, as
shown in Fig. 5A. Typically, line noise is removed via ‘band-stop’
or ‘notch’ filters tuned to the appropriate frequency. As with band-
pass filters, band-stop/notch filters can induce time-domain causal
network artifacts though the effects do not seem to be as severe
(Fig. 5C). Again, high model orders may help remove or reduce
these artifacts (Fig. 5D). An alternative, supported by the toolbox, is
multitaper filtering, a procedure in which a sinusoidal oscillation is
fitted to the line noise artifact and subtracted away (Mitra and Bokil,
2008; Brovelli et al., 2004). Because this operation is purely sub-
tractive it should not introduce any additional G-causality artifacts
(Fig. 5B). However, multitaper filtering is sensitive to choice of fil-
ter parameters and in practice may not always succeed in removing
the line noise.

6. Applications

6.1. Functional MRI

Application of GCCA to fMRI data is particularly attractive given
the high spatial specificity of the fMRI BOLD signal. However,
G-causality as applied to fMRI faces distinctive challenges and con-
straints. These challenges arise from the facts that the fMRI BOLD

signal has relatively poor temporal resolution (on the order of
seconds) as compared to other noninvasive neuroimaging tech-
niques, and that it is an indirect measure of neural dynamics usually
modelled by a convolution of underlying neural activity with a
‘hemodynamic response function’ (HRF), which reflects aspects of

http://vlado.fmf-uni-lj.si/pub/networks/pajek
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Fig. 5. Artifacts induced by simulated line noise at 20 Hz. Raw data is from the model described in Fig. 1 with an assumed sampling rate of 500 Hz, contaminated with a
20 Hz oscillation applied separately to each variable. Top row shows causal networks, bottom row shows power spectral density (W/Hz). (A) Unfiltered data. (B) Following
multitaper filtering (window size 1000, 5 tapers, half bandwidth of 3). (C) Following notch filtering (width 2 Hz) with low model order (p = 5). (D) Following notch filtering
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ith high model order (p = 75). Notch filtering was applied using the eegfilt fun
his outcome is not guaranteed.

eurovascular coupling. Of particular importance is that the delay
mbedded in the HRF is known to vary between subjects and among
ifferent brain regions within the same subject (Aguirre et al.,
998). Because G-causality is based on temporal precedence, such
ariability has the potential to introduce artifacts when assigning
ausality. The impact of HRF variation on G-causality analysis of the
OLD signal has recently been discussed extensively (Roebroeck et
l., 2009 and commentaries). Below, we summarize parts of this
iscussion in the context of practical application.

The most useful response to challenge posed by neurovas-
ular coupling would be to ‘undo’ the effects of the HRF via
econvolution, with GCCA then being applied to the recovered,
ncontaminated, neural activity. Although reliable deconvolution
equires information about the form of the HRF that is not nor-
ally available, some promising approaches have recently been

uggested (Chang et al., 2008; Vakorin et al., 2007). In the absence
f reliable deconvolution, two strategies can be followed to min-
mize the impact of HRF variability (Roebroeck et al., 2005). First,
CCA should focus on the modulation of causal connectivity by
xperimental condition (e.g., a higher level of causal density dur-
ng waking than during sleep), as opposed to attempting to identify
anonical causal structure for each condition independently. This
s because, since HRFs are not expected to vary between condi-
ions, it is unlikely that HRF variation across brain regions affects
he comparison of conditions. Second, it may be useful to examine
o-called ‘differences of influence’ (DOI) than causal connectivities
er se (Roebroeck et al., 2005). The DOI term is determined by the
symmetry in causal connectivity (i.e., FA→B − FB→A). This term is
elatively insensitive to artifactual bidirectional causal connectiv-
ties introduced by the slow and heterogeneous dynamics of the
RF, but of course at the expense of being constitutively unable

o identify valid instances of reciprocal causality. DOI values are
eturned by the GCCA toolbox and their statistical significance can
e assessed using the surrogate data methods provided. More gen-
rally, knowledge of the HRFs may not be necessary for G-causality
nalysis to disclose causal relations among event-related BOLD
ime series (Tang et al., 2009), and when combined with results

btained from ablation and/or stimulation studies, GCCA of BOLD
ignals may be particularly informative.

Prior to confronting issues of HRF shape and variability,
MRI analyses involve a preprocessing pipeline which must be
ndertaken with care when G-causality is applied. The follow-
ithin the EEGLAB software. In this case, all treatments are effective but in general

ing procedure can be recommended: (i) slice timing correction;
(ii) spatial realignment to control for movement artifacts; (iii)
coregistration to structural MRI; (iv) normalization to a standard
coordinate space (e.g., Tailarach space); (v) spatial smoothing (if
required), (vi) covarying out of so-called ‘nuisance covariates’ such
as the global signal, white matter, cerebro-spinal fluid, and motion
components), and finally (vii) time series extraction by averag-
ing (or taking the first eigenvariate or principal component of)
all voxels within a region-of-interest (ROI). Importantly, tempo-
ral smoothing is avoided. Standard preprocessing techniques can
then be applied as described in Section 3. It should be noted that
this pipeline is only suggestive and does not exclude other valid
approaches.

Roebroeck and colleagues have proposed a strategy for applying
G-causality to fMRI, which they call “Granger causality mapping”
(GCM). GCM combines the steps described above with the proce-
dure of selecting a single seed voxel (ROI) and then computing a
large number of independent bivariate G-causality models includ-
ing the seed voxel and – one-by-one – all other voxels in the fMRI
dataset. GCM is therefore an exploratory approach which allows
identification of voxels that are causally implicated in the activity
of the seed voxel. It should be noted that this approach can be com-
plemented with multivariate G-causality analyses of preselected
networks of voxels or ROIs (Deshpande et al., 2009).

6.2. EEG, MEG, LFP

In contrast to fMRI, electromagnetic measures of neural activ-
ity [e.g., electroencephalography (EEG), magnetoencephalography
(MEG) and intracranially recorded local field potentials (LFP)] have
a time resolution on the order of action potential generation (i.e.,
milliseconds). Such measures are however lacking in spatial resolu-
tion and/or coverage, are susceptible to artifacts including electrical
line-noise and, for MEG/EEG a range of other environmental and
non-neural physiological influences, each of which has the poten-
tial to introduce confounds affecting G-causality analysis.

One common approach to artifact removal is to use bandpass

filtering; however, we have already discussed issues involved in
band-pass and band-stop filtering, suggesting that multi-taper fil-
tering offers a useful alternative to band-stop (notch) filters for
the selective removal of line-noise artifacts (see Section 5). For
more general artifact removal, manual inspection and rejection of
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ontaminated data is time consuming but effective. Independent
omponents analysis (ICA) may also remove many artifact sources
n the logic that certain artifacts (e.g., stereotyped eye and mus-
le artifacts) will be temporally independent from neural activities
Jung et al., 2000; Delorme and Makeig, 2004). Because ICA is a sub-
ractive method it should be compatible with G-causality analysis.

Following artifact removal or rejection, it can be useful to down-
ample the data so that the corresponding MVAR model order lies
ithin a reasonable range. For example, data sampled at 1 kHz can

e downsampled to 250 Hz by retaining only every 4th data point
n each time series (e.g., Brovelli et al., 2004). EEG data must also
e re-referenced to a common source. Among several possibilities,
e-referencing to the global average has been used successfully
Zhang and Ding, 2009) though care must be taken to ensure
hat artifactual cross-correlations are not introduced. Alternatively,
onversion of sensor-space EEG/MEG data into estimates of sur-
ace current source density (e.g., using the BESA software package,

EGIS Software GmbH) removes the need to establish a reference.
or LFP data, if required, bipolar montages can be constructed by
ubtracting signals recorded from adjacent sites belonging to each
lectrode (Gaillard et al., 2009). If the data are event-related, it is
lso important to subtract the pre-stimulus baseline from each
rial. Event-related data also invite subtraction of the ensemble

ean (see Section 3.1) so that G-causality analysis operates on the
nduced response, rather than on the event-related signal itself.

EEG and MEG measure the population effects of neural activ-
ty as they appear at the scalp surface, consequently localization to
nderlying neural sources must be indirectly inferred via inverse
odelling. Reviewing the compatibility of source modelling meth-

ds with G-causality analysis is an active area of investigation that
ies beyond the present scope (see, e.g., Babiloni et al., 2005). Note
hat surface current source density estimates may provide a use-
ul ‘middle ground’ between sensor space and source localization
Cohen et al., 2009).

In summary, the following pipeline can be recommended for G-
ausality analysis of electrical/magnetic neural signals: (i) artifact
emoval/rejection; (ii) downsampling; (iii) re-referencing (EEG),
urrent source density estimation (EEG/MEG), or optional bipolar
ontage generation (LFP); and finally for event-related data (iv)

ubtraction of pre-stimulus baseline. Standard preprocessing tech-
iques (including ensemble mean removal) can then be applied as
escribed in Section 3. Again, this pipeline is suggestive and does
ot exclude alternative approaches.

.3. Spike trains

Recording of trains of individual action potentials (spikes), from
ultiple neurons in parallel, is increasingly prominent and holds

reat promise for elucidating the operating principles of neural sys-
ems. Such data can be acquired from implanted electrodes and
rom multi-electrode arrays on which brain slices or living neural
ultures can be mounted (Cadotte et al., 2008; Harris et al., in press).
pike train data pose a challenge for G-causality analysis because
hey consist in point processes (i.e., sequences of ‘on’/‘off’ states,
ith ‘on’ states generally sparse in neural data), rather than in dis-

rete samples of continuous processes. The simplest approach to
ealing with spike train data is to convolve the spike train with
Gaussian (e.g., by low pass filtering), or half-Gaussian, of suit-

ble width. Convolution effectively transforms the spike train into
continuous estimate of mean firing rate. A more complex but

n principle more suitable method is to estimate a spectral rep-

esentation of the point process data and then to apply specialized
actorization techniques to derive causality metrics directly from
his spectral representation (Nedungadi et al., 2009). Alternatively,
katan et al. (2005) describe a maximum likelihood approach to
stimating functional connectivity, designed specifically for point-
ethods 186 (2010) 262–273 271

process data, that is not based on G-causality. These latter methods
are not included in the GCCA toolbox.

7. Limitations

The current GCCA toolbox does not support several poten-
tially useful analyses. One limitation is that multivariate spectral
G-causality analysis cannot be performed. The best method for
performing this analysis remains an active area of investigation.
The standard approach is to analyze spectral features of autore-
gressive models following (Geweke, 1982), as implemented here
for pairwise analysis by the function cca pwcausal. However, in
the multivariate case Geweke spectral causality can occasionally be
negative, an outcome which eludes physical interpretation (Chen
et al., 2006). Very recently, Ding and colleagues have introduced a
nonparametric approach to computing spectral G-causality based
on a factorization of wavelet transformations (Dhamala et al., 2008)
[as already noted, this method is also suited to analysis of spike train
point-process data (Nedungadi et al., 2009)]. This method always
provides non-negative results, offers robustness to uncertainties
in determining autoregressive model order and is better placed to
capture complex spectral features of data. These advantages are
especially important for multivariate (>3 variable) data and it is
therefore intended that future versions of the GCCA toolbox will
implement a version of this method.

A second limitation is that nonlinear G-causality analysis is
not supported. Again, there are several competing approaches to
this problem. A simple solution (Seth, 2009) is to fit autoregres-
sive coefficients to Taylor expansions of the data, however this
method requires estimating large numbers of parameters. Alter-
native approaches include locally nonlinear autoregressive models
(Freiwald et al., 1999), nonlinear kernels such as radial basis func-
tions (Ancona et al., 2004), and adapting methods from information
theory such as transfer entropy (Schreiber, 2000). Interestingly,
we have recently shown that, for Gaussian variables, G-causality
and transfer entropy are entirely equivalent (Barnett et al., 2009).
One implication of this result is that, under Gaussian assumptions,
there is nothing extra to account for by nonlinear extensions to
G-causality, since a stationary Gaussian autoregressive process is
necessarily linear (Barnett et al., 2009). It should also be noted that
although the brain is highly nonlinear at many levels of description,
linear effects can be among the robust especially in the context of
large-scale neurodynamic interactions (Freeman, 1972; McIntosh
et al., 1994).

A general limitation of the toolbox, and one that attends most
G-causality methods, is that scaling to massively multivariate
data-sets is extremely challenging because of the large number
parameters that would need to be estimated for a fully multi-
variate model. This problem is particularly challenging for fMRI
BOLD data which typically consists of very large numbers of vari-
ables (voxels), each with only a few observations, as compared to
other neuroscience data sources. The simplest approach to deal-
ing with high-dimensional data is to perform repeated pairwise
analysis. More advanced approaches could utilize sparse (regular-
ized/penalized) regression techniques which are able to perform
massively multivariate autoregression by imposing priors on the
values of most coefficients (i.e., assume that most causal connec-
tions do not exist). For example, Valdés-Sosa et al. (2005) have
developed a method that combines penalized regression with
pruning of unlikely connections using a local false discovery rate.

They validate their approach on simulated idealized cortical net-
works, and show that it can identify neural circuitry related to
emotional processing as measured by fMRI.

Scaling could also be helped by increasing the computational
performance of the toolbox, for example by combining the flexibil-
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ty of MATLAB with the computational velocity of other languages
e.g., C/C++), and also with possibilities for hardware accelera-
ion offered by parallel computation, either via standard Beowulf
lusters or via graphical processor unit (GPU) technologies. GPU
echnology in particular is developing extremely rapidly and seems
ble to dramatically enhance the parallelization of the large-scale
atrix manipulations required by G-causality analysis. Future tool-

ox versions will explore these important issues.

. Discussion

The GCCA toolbox provides a range of MATLAB functions
nabling the application of G-causality analysis to a broad range of
euroscience data. Together with the theoretical and practical con-
ext provided in this paper, it is well placed to facilitate progress
n a wide cross-section of the neuroscience community. However,
t is critical to ensure that the toolbox is not treated as ‘a black
ox’ whereby its output is assumed to be a valid and informative
ransformation of its input. As with any complex procedure the

axim ‘garbage in, garbage out’ applies. For this reason the toolbox
ncorporates a comprehensive range of validation and preprocess-
ng tools, appropriate combinations of which must be tailored to
ach new application. Also for this reason, and in contrast to most
imilar projects, the GCCA toolbox deliberately avoids the use of
raphical user interfaces (GUIs), on the logic that such interfaces
an render the underlying algorithms opaque and inaccessible. The
act that the toolbox employs only MATLAB functions throughout
hould also help ensure transparency and accessibility.

.1. Exploratory and confirmatory statistics

G-causality can usefully be considered as an exploratory rather
han confirmatory approach to discerning directed functional con-
ectivity. This is because G-causality is permissive with respect
o structural constraints, typically making few if any assumptions
bout the causal connectivity patterns embedded in the data. Con-
rmatory approaches, by contrast, first specify a candidate causal
echanism and then test whether the data fit the proposed model.

his distinction is sometimes phrased in terms of ‘data driven’ ver-
us ‘model driven’, but this phraseology is misleading because both
xploratory and confirmatory approaches involve the estimation
f mathematical models from data: MVAR models in the case of
-causality, and other more constrained models for confirmatory
pproaches.

It is instructive to briefly compare G-causality with a popular
nd prima facie confirmatory alternative, dynamic causal modelling
DCM, Friston et al., 2003). As applied to neuroscience data, DCM
nvolves the estimation of parameters reflecting directed functional
onnectivity and also of parameters reflecting the generation of
bservable data from underlying neural mechanisms. For example,
CM for fMRI involves the estimation of a hemodynamic forward
odel connecting the fMRI BOLD signal to neuronal activity.7 As

ompared to G-causality, the explicit incorporation of a forward
odel can mitigate against artifactual causal connections arising

rom (for example) inter-areal variance in hemodynamic lag, but
uch mitigation is critically dependent on the accuracy of these
orward models, the estimation of which still relies on the same

ata. To put the point slightly differently, given a certain covariance
tructure in the data, G-causality will account for that structure in
erms of connectivity whereas DCM will account for that structure
ia some combination of connectivity and neurovascular coupling
roperties. Other significant differences also apply (Roebroeck et

7 Different DCMs are required for each different neuroimaging methodology.
ethods 186 (2010) 262–273

al., 2009). Standard DCM relies on a well characterized input, since
there is typically no stochastic term (though see Friston et al., 2008),
whereas G-causality is based explicitly on stochastic models and
so can be applied equally to spontaneously generated dynamics.
In practice, DCM is limited to a small number of variables (nodes,
regions-of-interest) as compared to G-causality, a consequence of
the increased number of parameters that must be estimated for
each variable. It should also be noted that DCM can also involve
an exploratory component in the form of selection among multiple
candidate models based on their ability to account for the data via
their log-evidence, a Bayesian procedure (Penny et al., 2004).

In short, although DCM and G-causality are often viewed as
competing methods (David et al., 2008; Friston, 2009) they may
be better understood as complementary, inhabiting different parts
of the exploratory-confirmatory spectrum but not confined to the
extremes. Formally, both approaches can be given a state-space
interpretation in which relations between measured variables
and input variables are mediated via unobservable state variables
(Roebroeck et al., 2009). In practice, G-causality may be easier to
apply because of (i) the lack of explicit forward models and (ii)
increased latitude with respect to number of variables incorpo-
rated. In either case, the advice of Box and Draper (1987, p. 424)
should not be forgotten: “All models are wrong, but some are use-
ful”.

8.2. Documentation and licensing

The GCCA toolbox can be freely downloaded from
www.anilseth.com under the GNU general public license (version
3, see www.gnu.org). A manual is included in the download
package which describes in detail each MATLAB function, provides
a walk-through tutorial of the toolbox in action, and includes
demonstrations of other more specific functions. All functions
are carefully commented so that MATLAB literate researchers
should be able to understand and modify the code with ease. A
dedicated web-site has been created on which users are encour-
aged to post comments, describe bugs and bug-fixes, and suggest
proposed enhancements. A list of known errors and ‘frequently
asked questions’ is maintained at this site, which can be found at
http://ccatoolbox.pbwiki.com.
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