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a  b  s  t  r  a  c  t

Granger  causality  (G-causality)  is  increasingly  employed  as  a method  for  identifying  directed  functional
connectivity  in  neural  time  series  data.  However,  little  attention  has  been  paid  to the  influence  of common
preprocessing  methods  such  as  filtering  on  G-causality  inference.  Filtering  is  often  used  to  remove  arti-
facts  from  data  and/or  to isolate  frequency  bands  of  interest.  Here,  we show  [following  Geweke  (1982)]
that  G-causality  for a stationary  vector  autoregressive  (VAR)  process  is  fully  invariant  under  the  appli-
cation  of  an  arbitrary  invertible  filter;  therefore  filtering  cannot  and  does  not  isolate  frequency-specific
G-causal  inferences.  We  describe  and  illustrate  a  simple  alternative:  integration  of  frequency  domain
(spectral)  G-causality  over  the appropriate  frequencies  (“band  limited  G-causality”).  We  then  show,  using
eywords:
ranger causality
igital filtering
ector autoregressive modelling
ime series analysis

an  analytically  solvable  minimal  model,  that  in  practice  G-causality  inferences  often  do  change  after  fil-
tering, as  a consequence  of  large  increases  in empirical  model  order  induced  by  filtering.  Finally,  we
demonstrate  a valid  application  of  filtering  in  removing  a  nonstationary  (“line  noise”)  component  from
data.  In  summary,  when  applied  carefully,  filtering  can  be  a useful  preprocessing  step  for  removing  arti-
facts  and  for  furnishing  or improving  stationarity;  however  filtering  is  inappropriate  for  isolating  causal

 freq
influences  within  specific

. Introduction

A key theme in contemporary neuroscience is to move from
ocalisation of function to characterisation of functional networks.
n particular, analysis methods aimed at extracting directed func-
ional (i.e., causal) connectivity from neural signals are increasingly
n demand.1 G-causality analysis is widely employed to identify
ausal connectivity in neural time series data. G-causality is a statis-

ical measure of causality based on precedence and predictability.
ut simply, if a variable A contains information that helps pre-
ict another variable B, better than can be done knowing only

Abbreviations: G-causality, Granger causality; iid, identically and independently
istributed; MVGC, multivariate Granger causality; VAR, vector autoregressive;
MA, vector moving average; VARMA, vector autoregressive moving average; FIR,
nite impulse response; IIR, infinite impulse response; OLS, ordinary least squares;
IC, Akaike information criterion; BIC, Bayesian information criterion; CV, cross-
alidation; EEG, electroencephalography; MEG, magnetoencephalography; fMRI,
unctional magnetic resonance imaging; BOLD, blood oxygen level dependent; HRF,
emodynamic response function; DTF, directed transfer function; PDC, partially
irected coherence.
∗ Corresponding author. Tel.: +44 1273 699246.

E-mail addresses: l.c.barnett@sussex.ac.uk (L. Barnett), a.k.seth@sussex.ac.uk
A.K. Seth).

1 We  prefer the term causal connectivity, a description of the data, to effective
onnectivity,  which implies a model of the underlying mechanism; see Bressler and
eth (2011).

165-0270/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2011.08.010
uency  bands.
© 2011 Elsevier B.V. All rights reserved.

the past of B itself, then A is said to “G-cause” B. The concept
has typically been operationalised in the context of linear VAR
models and its uptake within neuroscience has been facilitated
by the appearance of dedicated software toolboxes implementing
the methods (Seth, 2010; Cui et al., 2008). However, the interac-
tion of G-causality with standard data preprocessing procedures is
not well understood and presents a possibly serious confound to
many applications. In this paper, we  focus on the effects of (tempo-
ral) filtering on G-causality. This is a crucial issue since filtering is
often applied semi-automatically as a preprocessing step in many
analyses. Most applications of filtering attempt to achieve one (or
both) of two  objectives: (i) removal of artifacts such as electrical line
noise and (non-neural) physiological influences, and (ii) isolation
of effects within a specific frequency band [e.g., the beta or gamma
ranges in M/EEG (Pollonini et al., 2010; Wilson and Yan, 2010)].
Anticipating our results, we  show that G-causality is theoretically
invariant under the application of arbitrary (invertible) multivari-
ate filters, and so cannot achieve the second objective. However,
the invariance holds strictly for stationary data—stationarity being a
prerequisite for G-causality analysis—so that filtering can be useful
for artifact removal if it is able to render a previously nonstationary
time series stationary. In practice, filtering can pose challenges for

the effective estimation of the autoregressive models on which G-
causality is based, hence the need for its careful application in the
context of achieving or improving stationarity. Although our analy-
sis is targeted at “explicit” filtering imposed by an experimenter as

dx.doi.org/10.1016/j.jneumeth.2011.08.010
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:l.c.barnett@sussex.ac.uk
mailto:a.k.seth@sussex.ac.uk
dx.doi.org/10.1016/j.jneumeth.2011.08.010
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 data (pre)processing stage, our results may  also have implications
or “implicit” filtering that may  arise as a result of physiological pro-
esses intervening between neural variables and observables, for
xample as manifest in the hemodynamic BOLD signal measured
sing fMRI.

In his seminal 1982 paper Geweke (1982) noted, but did not
ustify or explore, the invariance of G-causality under filtering via
he somewhat oblique aside “[G-causality] is invariant with respect
o scaling of X and Y; in fact it remains unchanged if X and Y
re pre-multiplied by different invertible lag operators.” Perhaps
ecause there is no explicit reference to “filtering” this note appears
o have been overlooked as G-causality has been taken up within
euroscience. More recently, researchers have worried that filter-

ng does in fact affect G-causality (Florin et al., 2010; Seth, 2010).
 recent study by Florin et al. (2010) suggested that application
f filtering to neural data disturbs the information content and
ime ordering of the data, leading to spurious and missed causal-
ties (Type I and Type II errors, respectively). Their conclusion is
ased on the correct observation that filtering in general alters
he regression coefficients of VAR models of the data. They then
how using numerical simulations that filtering induces Type I and
ype II errors in sample.2 However, they did not make any ana-
ytical connection between the two observations. In fact, as we
rgue, the errors observed in simulation by Florin et al. derive from
he difficulties inherent in fitting VAR models to filtered data, not
rom the filtering process per se.  In particular, filtering generally
nduces a large increase in the empirical model order (the number
f lagged observations incorporated into a VAR), leading to model
is-specification given limited data.
Our paper is organised as follows: in Section 2 we define G-

ausality in both the time and frequency domains, for unconditional
nd conditional situations, and for both univariate and multivariate
block, ensemble) variables. We  also discuss estimation for finite-
ample empirical data and significance testing. Readers familiar
ith the mathematical basis of G-causality may  wish to skip this

ection, referring to it where needed for notation. In Section 3 we
emonstrate analytically the invariance of G-causality under the
pplication of an (almost) arbitrary stable, invertible, multivari-
te filter. The invariance is completely general, applying to all the
arieties of G-causality just mentioned. We  then consider issues
rising in empirical estimation of G-causality, suggesting several
easons why filtering may  corrupt empirical estimates despite the
heoretical invariance. As mentioned, these turn principally on an
ncrease in empirical model order induced by filtering; filtering may
lso induce near-nonstationarity and other numerical instabilities.
onsequently, we argue that (i) filtering can be useful for pre-
rocessing nonstationary (or near-nonstationary) time series and
ii) estimation of G-causality within specific frequency bands can
e accomplished by integrating the frequency domain G-causality
ver the appropriate frequencies (“band limited G-causality”). Sec-
ion 4 introduces a minimal VAR system for which G-causalities can
e obtained analytically. We  use this model to test how empirical
stimates of G-causality are influenced by both FIR and IIR filters.
e compare estimates of model order for unfiltered and filtered

rocesses, showing a large increase in optimal (empirical) model
rder following filtering, as well as an increase in the likelihood of
nstable VAR models. We  then analyse the effects of model order
nd filtering on statistical significance testing, showing [consistent
ith Florin et al. (2010); Seth (2010)]  increases in both Type I and
ype II errors after filtering. We  explain this result by showing a
trong association between increased error rates and an increase
n VAR model order entailed by filtering. Based on these findings,

2 A similar corruption of G-causality inferences by filtering was  shown in another
et of recent simulations (Seth, 2010).
nce Methods 201 (2011) 404– 419 405

we  demonstrate a useful example of filtering to remove line noise.
Finally, we  show that band-limited G-causality on unfiltered data
correctly identifies frequency specific causal interactions, whereas
G-causality on filtered data does not. Our conclusions are sum-
marised and discussed in Section 5.

2. Multivariate G-causality (MVGC)

Consider a covariance-stationary, n variable, VAR(p) process Ut

(the “universe” of measurable variables) specified by the model3

p∑
k=0

Ak · U t−k = εt (1)

for −∞ < t < ∞,  where the n × n square matrices Ak, k = 0, 1, 2, . . .,  p
are the regression coefficients with A0 ≡ I, the identity matrix, and
εt are serially uncorrelated iid residuals (white noise) with covari-
ance matrix  ̇ ≡ cov(εt). We  allow the model order p to be infinite.
Introducing the lag operator L so that LU t = U t−1, L2U t = U t−2,
etc., we  can write (1) in the form

A(L) · U t = εt (2)

where the p th order square matrix polynomial A(z) is defined to
be A(z) ≡

∑p
k=0Akzk, with A(0) = I.

Covariance-stationarity requires that A(z) exists and is invertible
for all z on the unit disk |z | ≤ 1 in the complex z-plane (Hamilton,
1994); a VAR model of the form (2) is described as stable if it satisfies
this condition. For the finite order case, this requires that all roots
of the characteristic polynomial det(A(z−1)) lie strictly inside the
unit circle. The maximum modulus of the roots of the characteristic
polynomial is the spectral radius of the VAR model, written �(A).
Intuitively, �(A) determines how rapidly autocorrelation of the VAR
decays with increasing lag time, and stability requires that �(A) < 1.

Since the VAR (2) is assumed covariance-stationary, by the Wold
decomposition theorem (Hamilton, 1994) it may  be written equiv-
alently in VMA  form as

U t = H(L) · εt (3)

where the transfer function H(z) for the model is the rational matrix
function defined by H(z) ≡ A(z)−1. In general, the VMA  representa-
tion will be of infinite order.

2.1. Time domain

We  consider firstly unconditional G-causality. Suppose that Ut

is decomposed into two  jointly distributed, multivariate processes

U t =
(

Xt

Y t

)
with dim (X) = k and dim (Y) = l, k + l = n. We  wish to

ascertain the causal effect of the variable Y on the variable X; i.e.,
the G-causality FY→X .

We may  decompose the autoregression (2) as(
Axx(L) Axy(L)
Ayx(L) Ayy(L)

)
·
(

Xt

Y t

)
=
(

εx,t

εy,t

)
(4)

with VMA  representation(
Xt

)
=
(

Hxx(L) Hxy(L)
)

·
(

εx,t

)
(5)
3 In all that follows, bold type indicates a vector quantity and upper-case type
denotes either a matrix or a random variable, depending on context. Vectors are
considered to be column vectors. The symbol T indicates matrix transpose; an aster-
isk  denotes the conjugate transpose of a (complex) matrix, and det(·) denotes the
determinant of a (square) matrix.
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nd residuals covariance matrix

 =
(

˙xx ˙xy

˙yx ˙yy

)
(6)

ince the sub-process Xt is covariance-stationary, by Wold’s
heorem it will itself have an (in general infinite order) VMA  rep-
esentation

t = H′
xx(L) · ε′

x,t (7)

ith transfer function H′
xx(z), serially uncorrelated residuals ε′

x,t
nd residuals covariance matrix ˙′

xx ≡ cov(ε′
x,t). We  then have a

orresponding VAR form

′
xx(L) · Xt = ε′

x,t (8)

ith A′
xx(z) ≡ H′

xx(z)−1. We  refer to (8) as the restricted regression,  as
pposed to the full or unrestricted regression (4).  Importantly, even
f the original VAR (2) is of finite order, the restricted VAR (8) will
n general be of infinite order.

The (unconditional) MVGC from Y to X in the time domain
Geweke, 1982) is then defined to be4:

Y→X ≡ ln

(
det(cov(ε′

x,t))

det(cov(εx,t))

)
= ln

(
det(˙′

xx)
det(˙xx)

)
(9)

he rationale behind (9) is as follows: the magnitude of the resid-
als εx,t of the full regression (4) indicates how well both X and Y
ogether predict the future of X, while the magnitude of the residu-
ls ε′

x,t of the restricted regression (8) indicates how well X predicts
ts own future. Thus FY→X may  be considered as a measure of the
xtent to which Y helps predict the future of X over and above the
egree to which X already predicts its own future. It is strictly in this
ense that MVGC should be considered a “causal” measure. In sam-
le, (9) has a simple interpretation as a likelihood ratio test statistic
nder the null hypothesis of zero causality, H0 : Axy,k = 0 for k = 1, . . .,

 (Geweke, 1982).
We have previously shown that, for Gaussian processes, FY→X

s equivalent to the transfer entropy from Y to X (Barnett et al.,
009), a measure of the time-directed information flow from the
rocess Y to the process X (Schreiber, 2000; Kaiser and Schreiber,
002). This information-theoretic interpretation is significant, as

t implies that G-causality may  be considered an absolute quantity
measured in bits) so that comparison of causalities between differ-
nt sets of variables is valid (although validity may  be undermined
y differences in statistical bias; see Section 4.1.2).

.2. Frequency domain

We write A(�) for the Fourier transform of the regression coef-
cients Ak, which is just A(z) evaluated at z = e−i� (it should be
lear from context and notation when we refer to the frequency-
omain version). The frequency domain transfer function is then
(�) = A(�)−1 and the (cross) spectral power density of the multi-
ariate process Ut is given by

(�) = H(�)˙H(�)∗ (10)

 principled formulation of G-causality in the frequency domain
as developed originally by Geweke (1982) as follows: the power

pectrum may  be decomposed as:( )

(�) = Sxx(�) Sxy(�)

Syx(�) Syy(�)
(11)

4 det(cov(ε)) is known as the “generalised variance” (Barrett et al., 2010) of the
esiduals ε. For a full discussion as to why the generalised variance is to be preferred
o  the “total variance” trace(cov(ε)) in the context of G-causality [cf. Ladroue et al.
2009)],  please see Barrett et al. (2010).
nce Methods 201 (2011) 404– 419

Then Sxx(�) is just the spectral density of Xt—which by (7) is also
equal to H′(�)˙′H′(�)∗—and from (10) we have

Sxx(�) = Hxx(�)˙xxHxx(�)∗ + 2 �e{Hxx(�)˙xyHxy(�)∗}
+ Hxy(�)˙yyHxy(�)∗ (12)

Geweke then notes that in the case that ˙xy ≡ 0, which may always
be effected by a linear transformation of variables leaving FY→X

invariant (Barrett et al., 2010), (12) takes the simpler form

Sxx(�) = Hxx(�)˙xxHxx(�)∗ + Hxy(�)˙yyHxy(�)∗ (13)

whereby the power spectrum of X splits into an “intrinsic” term
and a “causal” term. The (unconditional) spectral MVGC from Y to
X is then defined as

fY→X (�) ≡ ln
(

det(Sxx(�))
det(Hxx(�)˙xxHxx(�)∗)

)
(14)

or, in terms of untransformed variables (i.e., where ˙xy /= 0),

fY→X (�) ≡ ln

(
det(Sxx(�))

det(Sxx(�) − Hxy(�)˙y|xHxy(�)∗)

)
(15)

with Sxx(�) as in (12) and the partial residuals covariance matrix
˙y|x is defined to be ˙yy − ˙yx˙−1

xx ˙xy. Geweke then establishes
the fundamental decomposition of MVGC by frequency:

1
�

∫ �

0

fY→X (�) d� ≤ FY→X (16)

with equality when det(Ayy(z) − ˙yx˙−1
xx Axy(z)) /= 0 on the unit disk

|z | ≤ 1. We  note, following Geweke (1982),  that this condition for
equality is usually satisfied (in particular it is satisfied for the model
we examine in Section 4).

2.3. The conditional case

Suppose that Ut decomposes into three jointly distributed mul-

tivariate processes U t =
(

Xt

Y t

Zt

)
with dim (X) = k, dim (Y) = l and

dim (Z) = m,  k + l + m = n. We  now wish to calculate the causal effect
of the variable Y on the variable X, controlling for any common
effects of Z on both X and Y; i.e., the G-causality FY→X|Z . Following
Geweke (1984),  consider the full regression(

Axx(L) Axy(L) Axz(L)
Ayx(L) Ayy(L) Ayz(L)
Azx(L) Azy(L) Azy(L)

)
·
(

Xt

Y t

Zt

)
=
(

εx,t

εy,t

εz,t

)
(17)

and the restricted regression(
A′

xx(L) A′
xz(L)

A′
zx(L) A′

zz(L)

)
·
(

Xt

Zt

)
=
(

ε′
x,t

ε′
z,t

)
(18)

The conditional MVGC (Geweke, 1984) from Y to X given Z in the
time domain is then defined as:

FY→X|Z ≡ ln

(
det(cov(ε′

x,t))

det(cov(εx,t))

)
= ln

(
det(˙′

xx)
det(˙xx)

) (19)

with similar rationale as for the unconditional case: FY→X|Z is to
be considered as a measure of the extent to which Y helps pre-
dict the future of X over and above the degree to which X and
Z together already predict the future of X. (Note that the transfer

entropy equivalence (Barnett et al., 2009) carries through to this
conditional case.)

The spectral conditional case is less straightforward; Geweke
notes that, defining the new variables X†

t ≡ ε′
x,t , Z†

t ≡ ε′
z,t (i.e.,
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he residuals of the restricted regression (18)) and setting YZ† ≡
Y t

Z†
t

)
, we have the identity

Y→X|Z ≡ FYZ†→X† (20)

hus in the time domain the conditional MVGC may  be expressed
s an unconditional MVGC in terms of new variables defined as
he residuals of the restricted regression. The frequency domain
onditional MVGC is accordingly defined as

Y→X|Z(�) ≡ fYZ†→X† (�) (21)

nd the spectral decomposition

1
�

∫ �

0

fY→X|Z(�) d� ≤ FY→X|Z (22)

gain holds, with equality under a corresponding condition to that
or (16).

.4. Application to empirical data

To apply the above formalism to empirical data, suppose we
re given covariance stationary multivariate time series data, and
hat we may  assume the underlying generative process to be rea-
onably modelled as a stable VAR(p) (of unknown order) of the
orm (1).  There are then several strategies available for obtain-
ng estimates of the necessary quantities for calculation of (time
r frequency domain, unconditional or conditional) MVGCs. Most
traightforwardly, an appropriate empirical model order p is first
etermined by, for example, the Akaike or Bayesian information cri-
erion, cross-validation, or other standard technique5 (McQuarrie
nd Tsai, 1998). Regression coefficients may  then be estimated
y one of several standard procedures, such as OLS, solution of
he Yule-Walker relations or Whittle’s multivariate extension of
evinson–Durbin recursion (Hamilton, 1994; Whittle, 1963). Once
nown, residuals may  be calculated directly from the data and
stimates obtained for their covariance matrices. For frequency-
omain MVGC, the transfer function may  be calculated by Fourier
ransforming regression coefficients, from which spectral power
ensities are then easily calculated according to (10). This is the
pproach taken in the empirical study (Section 4) in this paper;
pectral MVGCs are calculated as just described, and time-domain
VGCs by integration of the corresponding spectral causalities.6

lternative approaches, not considered here, include the “nonpara-
etric” method proposed by Dhamala et al. (2008a,b),  in which the

ransfer function and residuals covariance matrices are obtained
y canonical factorisation of the spectral density matrix (Wilson,
972), which may  be estimated directly from time series data by
ourier or wavelet transform.

.4.1. Significance testing
For the univariate predictee case [i.e., where k ≡ dim (X) = 1],

ince the residuals covariance matrices are simple variances, a stan-
ard F-test on the restricted and full regressions under the null
ypothesis H0 : FY→X|Z = 0 (and assumptions of normality for the
esiduals) yields, in both the unconditional and conditional case
N − p(l + m + 1)
pl

[exp(F̂Y→X|Z) − 1]∼F(pl, N − p(l + m + 1)) (23)

5 Strictly speaking, following our remarks in Section 2.1, model orders should
e  estimated separately for the full and restricted regressions; however this seems
arely implemented in practice.

6 Note that this approach—at least in the un conditional case—avoids having to fit
 separate restricted regression.
nce Methods 201 (2011) 404– 419 407

where F̂Y→X|Z is the maximum likelihood estimator for FY→X|Z , N
is the sample size (time series length) and F(d1, d2) denotes the F-
distribution with d1, d2 degrees of freedom. For the unconditional
case, (23) holds with m = 0. Unfortunately, for the multivariate
predictee case k > 1, there does not appear to be an equivalent
result. Geweke (1982) states that, at least for the unconditional
case,7 NF̂Y→X approaches a �2(pkl) distribution asymptotically for
large sample size N, although it is not clear what constitutes a
“sufficiently large” sample for the approximation to be useful (cf.
Section 4.1.2 below). For spectral MVGC (both uni- and multivari-
ate, unconditional and conditional) nothing appears to be known
about the distribution of the maximum likelihood estimator. For
these reasons, non-parametric methods such as permutation test-
ing (Anderson and Robinson, 2001) are generally preferable in order
to obtain an empirical null distribution for significance testing. In
the models analysed in Section 4, we compare all three methods (F,
�2, and permutation testing).

3. Invariance of MVGC under multivariate filtering

Fig. 1 provides an example of the result we will derive ana-
lytically in this section. The left panel shows frequency-domain
G-causality from one variable to another, before and after lowpass
filtering (right panel). It is apparent that the G-causality in the stop-
band (shaded area), although noisy due to the sample estimation
procedure (cf. Section 3.1), is essentially unchanged by the filter-
ing process. We now explain the theoretical basis for this possibly
counterintuitive result.

Suppose given a multivariate discrete digital filter with ratio-
nal transfer function G(z) = P(z)−1Q(z), where Q (z) =

∑r
k=0Qkzk

and P(z) =
∑s

l=0Plz
l are n × n square matrix polynomials,8 nor-

malised so that P(0) = I (the identity matrix). The filter is of FIR
type iff P(z) ≡ I; otherwise it is of IIR type. We  demand, further-
more, that the filter be stable and invertible.  Stability requires that
det(P(z)) /= 0 on the unit disk |z | ≤ 1; i.e., that all poles of G(z) lie
outside the unit circle (Antoniou, 1993), while invertibility requires
that the Q(0) be invertible. Intuitively, a filter is stable if an impulse
does not “blow up”. Invertibility guarantees that a pure lag inverse
filter exists.9 We  note that a FIR filter is always stable.

We indicate filter-transformed quantities by a tilde, so that for a
multivariate time series ut the filter action in the time domain may
be represented as ũt = G(L) · ut , or

s∑
l=0

Pl · ũt−l =
r∑

k=0

Qk · ut−k (24)

In practice it is frequently the case that the same filter is applied
individually to each component of ut with no cross terms; i.e.,
G(z) = diag(g(z)) for a univariate discrete digital filter with transfer
function g(z) of the more familiar form
7 It appears that Geweke’s argument applies equally to the conditional time
domain statistic, again implying a �2(pkl) asymptotic distribution for NF̂Y→X|Z ,
although in his subsequent paper (Geweke, 1984) introducing multivariate con-
ditional G-causality this is not mentioned.

8 We take G(z) as a rational matrix function of z rather than, as is more common
in  the signal processing literature, of z−1. This is consistent with the usage of Section
2;  again, in the time domain z may  be replaced by the lag operator L,  and in the
frequency domain by e−i� .

9 Note that this is rather a stringent condition: for example the simple delay FIR
filter ũt = ut−1, although stable, is not invertible.
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tationary processes which may  be reasonably modelled as VARs. If
the data is to begin with non-stationary, then G-causality analysis is
inappropriate13 and the resulting (in any case spurious) results may
well be altered by filtering. In fact it can be useful to apply filtering
ig. 1. Left-hand panel: frequency-domain (unconditional) G-causality from one va
ere  generated from a simulated two variable VAR(30) process. Right-hand panel

ndicate the filter stop-band.

If now Ut is a covariance-stationary VAR(p) process as specified
y (2) then the filtered process Ũ t ≡ G(L) · U t satisfies A(z)G(z)−1 ·

˜ t = εt . Thus it has the VAR representation

(L) · Ũ t = ε̃t (26)

ith coefficients polynomial

(z)  ≡ G(0)A(z)G(z)−1 (27)

nd residuals ε̃t ≡ G(0) · εt . Since the filter is assumed invertible,
(0)−1 exists and thus Ã(0) = I as required, while from the filter sta-
ility assumption it is clear that the VAR model (26) will be stable,
ince the zeros of det (Ã(z)) are the zeros of det(A(z)) together with
he zeros of det(P(z)). Importantly, even if the unfiltered VAR (2)
as finite model order, the filtered VAR (26) will in general have

nfinite model order; this may  be seen from the presence of the
(z)−1 term in the expression (27) for the filtered VAR coefficients
olynomial.10

Starting with the unconditional case, given a decomposition

t =
(

Xt

Y t

)
as before, we  ask how the corresponding G-causality

Ỹ→X̃ transforms under the filter, where the filtered decomposition
s

X̃t

Ỹ t

)
=
(

Gxx(L) Gxy(L)
Gyx(L) Gyy(L)

)
·
(

Xt

Y t

)
(28)

rom (28) we see that as long as Gxy(z) ≡ 0—i.e., the filtered compo-
ents of X do not depend on Y—we have

˜ t = Gxx(L) · Xt (29)

hence from (8) the restricted filtered process has the VAR repre-
entation

′
xx(L) · X̃t = ε̃′

x,t (30)

ith coefficients polynomial Ã′
xx(z) ≡ Gxx(0)A′

xx(z)Gxx(z)−1 and
esiduals ε̃′

x,t ≡ Gxx(0) · ε′
x,t . Now the filtered full regression (26)

˜ T
as residuals covariance matrix ˙ = G(0)˙G(0) , so that in particu-
ar ˜̇ xx = Gxx(0)˙xxGxx(0)T, while the filtered restricted regression
30) has residuals covariance matrix ˜̇ ′

xx = Gxx(0)˙′
xxGxx(0)T. Now

10 The exception is an all-pole IIR filter, in which case the order of the filtered VAR
s  the sum of the VAR order and the filter order; such filters are unusual in practice
nd are not considered here. In general, digital filtering preserves finite order in
ARMA processes, but not in VAR processes.
to another, estimated in sample, before and after lowpass filtering. Time series data
ency response of the 8th order least-squares linear-phase FIR filter. Shaded areas

Gxy(z) ≡ 0 and G(0) non-singular imply that Gxx(0) is also non-
singular. It follows immediately from (9)—the determinants
det(Gxx(0)) factor out and cancel—that

FỸ→X̃ = FY→X (31)

so that G-causality in the time domain remains invariant11 under
any stable, invertible filter G(z) with Gxy(z) ≡ 0.

In the frequency domain, H̃(�) = G(�)H(�)G(0)−1, so that S̃(�) =
G(�)S(�)G(�)∗. Thus in particular, H̃xy(�) = Gxx(�)Hxy(�)Gyy(0)−1

and S̃xx(�) = Gxx(�)Sxx(�)Gxx(�)∗, while the partial residuals covari-
ance matrix transforms as ˜̇ y|x = Gyy(0)˙y|xGyy(0)T. Thus in (15)
the determinants det(Gxx(�)) factor out and cancel and we have at
(almost12) all frequencies �

fỸ→X̃ (�) = fY→X (�) (32)

Thus spectral G-causality demonstrates the same invariance as in
the time domain.

It may  be verified along similar lines that the invariance extends
(in both time and frequency domain) to the conditional case, where
we now require Gxy(z) = Gxz(z) = Gzy(z) ≡ 0. This result may be con-
sidered a generalisation of the invariance of MVGC under the group
of (unlagged) linear transformations of variables given in Barrett
et al. (2010, Section 4.2).

3.1. Non-invariance in practice

Given the theoretical invariance demonstrated above, how can
we  account for the disruptions of G-causality estimates by filtering
that have been noted in simulations (e.g., Seth, 2010; Florin et al.,
2010)? First, we  emphasise that the invariance holds strictly for s
11 Note that for the trace version of MVGC (Ladroue et al., 2009) the invariance will
not hold in general, since the trace of Gxx(0) does not factor out.

12 It is possible that Gxx(�) vanishes at some frequencies, at which the spectral
G-causality becomes undefined. At worst, however, this may  only occur at a finite,
discrete set of frequencies. We note that this situation cannot arise if we impose the
further restriction that the inverse filter also be stable; in fact it appears that this
restriction is required to guarantee preservation of equality in (16).

13 It is possible to define (and estimate) G-causalities for non-stationary time series
if  multiple (synchronised) realisations of a process are available (Ding et al., 2000).
We  do not address this case here.
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o attain stationarity, for example by the use of notch filtering to
emove line noise (cf. Section 4.1.3), or highpass filtering to remove
ow-frequency transients. Even the common preprocessing step of
ifferencing may  be viewed as a (stable, invertible) FIR filter.

Assuming a stationary VAR process, there are several interlinked
easons why filtering may  corrupt G-causality estimates in sample:

(I) The first and most important is the increase in model order
entailed by filtering. As noted, filtered processes will in gen-
eral have infinite model order; yet in sample a finite model
order must be chosen. This means that (i) any finite (estimated)
model order approximation to the filtered VAR process will
inevitably result in a poorer model fit than for the unfiltered
process, and (ii) the increase in number of model parame-
ters will result in poorer estimates of those parameters. For
short time series (where high model order also decreases sig-
nificantly the available time series length) these effects may
make it virtually impossible to estimate the “real” (high) fil-
tered model order parameters without overfitting. Standard
model order selection procedures, along with noisy parameter
estimation (Section 2.4)  are thus likely to result in substan-
tially sub-optimal estimated models and, consequently, poor
causal estimates with an increased likelihood of type I and type
II errors in significance testing. To aid intuition on this issue,
recall that in practice highpass, lowpass, bandpass and notch
filters are often applied for which the frequency response14 is
very close to zero in the stop band, where filtered series will
consequently have power spectra very close to zero. Further,
for high-order filters (and particularly IIR filters) there may
be steep roll-off on the edges of the stop band (e.g., elliptic
filters) and/or broad, flat spectra in the pass band (e.g., Butter-
worth filters). Filtering thus “distorts” the power spectrum of
the process so that filtered data will need to be modelled by a
high order VAR to capture the detail in the modified spectrum.

(II) A related cause of error is that, even though in theory a stable
filter acting on a stable VAR process yields another stable VAR
process, filtering may  increase the likelihood that empirical
estimates of VAR parameters yield unstable or near-unstable
models. The reason is again poor parameter estimation due
to increased model order as discussed above. Furthermore, Eq.
(27) shows that this effect is likely to be exacerbated in the case
of IIR filters for which the poles of the filter transfer function lie
closer to the unit circle than the poles of the VAR transfer func-
tion, effectively increasing the spectral radius for the filtered
process. Note that an unstable estimated model precludes any
further causal analysis.

III) A final source of error is the potential appearance of numer-
ical instabilities in the causal estimation procedure following
filtering. In the frequency domain, since S̃(�) = G(�)S(�)G(�)∗

we have det(S̃(�)) = det (G(�))2 · det(S̃(�)) and from (14) or
(15) we  see that as the filter response approaches zero at
some frequency �, the spectral MVGC fY→X (�) becomes sin-
gular. In sample these relationships will not be exact, but may
nevertheless result in numerical instabilities when calculating
causalities from empirical data, in both the time and frequency
domains. To see how such instabilities might occur in prac-
tice, consider the autoregressions necessary for calculation of
both time and frequency domain G-causality. For a covariance-

stationary VAR(p) as in (2) it may  be shown by a Yule-Walker,
OLS or equivalent procedure that the regression coefficients
Ak can be expressed in terms of the autocovariance sequence

14 For a multivariate filter with transfer function G(z), we measure the magnitude
f  the frequency response (i.e., the gain) by || G(�) | |, where || · | | denotes some matrix
orm.
nce Methods 201 (2011) 404– 419 409

� k ≡ cov(Ut, Ut−k), k =. . . , − 2, − 1, 0, 1, 2, . . . of the process Ut

as

( A1 A2 . . . Ap ) = −( �1 �2 . . . �p )

×

⎛
⎜⎜⎝

�0 �1 . . . �p−1
�−1 �0 . . . �p−2

...
...

. . .
...

�−(p−1) �−(p−2) . . . �0

⎞
⎟⎟⎠

−1

(33)

For empirical data, computation of (33), with the � k replaced
by their sample estimates, is implicit in any standard15 solution
of the regression (1).  The power spectrum of a covariance-
stationary process Ut is (by definition) the Fourier transform
of the autocovariance sequence: S(�) ≡

∑∞
k=−∞�k e−i�k. Sup-

pose that Ut has been pre-filtered such that at some frequency
�, we have S(�) ≈ 0. Then we see that near-colinearities arise
among the � k with the consequence that the matrix inver-
sion in (33) may  become ill-conditioned, and estimation of
both time and frequency domain G-causalities unreliable. One
might consider alleviating such instabilities by adding (mini-
mal) white noise; however, simulations (not reported) indicate
that even very low level added noise in conjunction with severe
filtering introduces artefacts which skew causal estimation.

Looking ahead, our simulation results (Section 4) show that
degraded parameter estimation due to increased model order is
the principal cause of poor G-causality estimation in sample. We
expect this effect to be very general across all applications of fil-
tering to stationary VAR processes. This effect also accounts for the
observed increase in the incidence of unstable estimated models
(Fig. 5). We  note that for the IIR filter used, the poles lie further
from the unit circle than the poles of the VAR transfer function
(Fig. 4), so that there is no (theoretical) increase in spectral radius.
Nor was there evidence of numerical instability in our simulations,
due most likely to the low order VAR and comparatively low order
of the filters used; it is not difficult, though, to construct examples
where this effect is evident.

3.2. Band-limited MVGC

As mentioned, a common application of filtering is to restrict
analysis to frequency ranges of prior interest. Our analysis indi-
cates that this strategy is inappropriate for G-causality. We  now
suggest an alternative method for analysing G-causality in specific
frequency bands, in both time and frequency domains. In the fre-
quency domain the solution is trivial: we simply disregard values
of fY→X (�) or fY→X|Z(�) at frequencies � outside the desired range.
In the time domain, suppose that B ⊂ [0,  �], the frequency band of
prior interest, is a (not necessarily connected) measurable subset of
the full (normalised) frequency range; that is, we wish to suppress
causal contributions at frequencies lying outside B. The spectral
decomposition relations (16) and (22) may  be viewed as averag-
ing spectral causality over the full range frequency range � ∈ [0, �].
Therefore causal contributions within the desired pass band B are
given simply by the average (unfiltered) spectral causality over B.
Accordingly, we  define

1
∫

FX→Y (B) ≡
�(B) B

fY→X (�) d� (34)

15 An exception is the nonparametric approach of Dhamala et al. (2008a,b) men-
tioned in Section 2.4. It is not clear how accuracy and numerical stability of this
technique compare with more conventional regression-based methods, particularly
for  short time series.
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Fig. 2. Lowpass filter frequency response: the FIR (solid line) filter is an order

did not occur during any of our experiments. Frequency-domain
10 L. Barnett, A.K. Seth / Journal of Neu

X→Y |Z(B) ≡ 1
�(B)

∫
B

fY→X|Z(�) d� (35)

here �(B) ≡
∫
B d� is the measure (length) of B. We  term FX→Y (B),

resp. FX→Y |Z(B)] the unconditional [resp. conditional] band-limited
ultivariate G-causality over the frequency band(s) specified by

. As with spectral G-causality, there is no known empirical null
istribution for FX→Y (B) or FX→Y |Z(B), so for significance testing
on-parametric methods such as permutation testing should be
mployed (cf. Section 2.4.1).

. A minimal example

In this section, we introduce a simple VAR model for which
-causalities can be analytically derived.16 We  use this model to
xplore the empirical issues described above. Consider the two-
ariable VAR(1) model

t = aXt−1 + cYt−1 + εx,t (36)

t = bYt−1 + εy,t (37)

ith uncorrelated, unit variance residuals. It is stable iff |a | < 1 and
b | < 1. This is the simplest system with non-trivial G-causalities;

e therefore refer to it as the “minimal VAR(1)”.

In the previous notation we have  ̇ = I, and A1 = −
(

a c
0 b

)
, so

hat

(z) =
(

1 − az −cz
0 1 − bz

)
(38)

nd

(z) = 1
(1 − az)(1 − bz)

(
1 − bz cz

0 1 − az

)
(39)

y (10), since  ̇ = I, we have

(z) = H(z)H(z)∗ = 1
|1 − az|2|1 − bz|2

×
(

|1 − bz|2 + c2|z|2 cz(1  − az̄)
cz̄(1 − az)  |1 − az|2

)
(40)

nd setting z = e−i�, from (14) we may  derive

Y→X (�) = ln

(
1 + c2

1 − 2b cos � + b2

)
(41)

e see that fY→X(�) does not depend on the autoregressive coef-
cient a of Xt and is monotonic decreasing (resp. increasing)
ccording as b > 0 (resp. b < 0). From (16) (it may  be verified that the
ondition for equality is trivially satisfied) the time domain MVGC
s given by17

Y→X = 1
�

∫ �

0

ln

(
1 + c2

1 − 2b cos � + b2

)
d� (42)

(
2 2

√
2 2 2 2

)

= ln

1 + b + c + (1 + b + c ) − 4b

2
(43)

16 As far as we  are aware, this analysis is the first G-causality example in the
iterature to be solved in full analytically.
17 The definite integral may  be evaluated from its partial derivative with respect
o  c, which is integrable over � ∈ [0, �] by elementary methods; FY→X may  then
e calculated simply as an indefinite integral over c, with the initial condition that
Y→X = 0 at c = 0.
8 linear-phase least-squares, the IIR filter (dashed line) an order 4 Butterworth,
both applied in forward and reverse directions for zero-phase filtering. Cutoff (nor-
malised) frequency for both filters is at �/2 radians.

4.1. Experiments

Two  types of (stable, invertible) digital filters were tested: a
FIR linear-phase least-squares filter of order 8, and an IIR Butter-
worth filter of order 4 (Antoniou, 1993). Both filters were lowpass,
with cutoff at normalised18 frequency � = �/2 radians. For consis-
tency with standard practice, data was  filtered in both the forward
and reverse directions for zero-phase filtering19; note that this has
the effect of squaring the transfer function, thus doubling the fil-
ter order. All filters were stable and invertible, with stable inverse
filters (cf. our remarks in Section 3). Fig. 2 shows the frequency
response in dB for both filter types. Note that neither filter is all-
pole (cf. Section 3) so the filtered VAR will thus always be of infinite
order.

We performed several experiments using the minimal VAR(1)
specified by (36) and (37) to investigate the effects of filtering.
In all experiments the system was  simulated with parameters
a = 0.3, b = − 0.8 and c = csig ≈ 0.2104 calculated from (43) so that
FY→X = 0.1 for a “significant causality” model. For a “null model”
(no causality) c was set to zero so that FY→X = 0. The theoretical
spectral G-causality (41) for the significant causality model is plot-
ted along with components of the power spectrum of the process
in Fig. 3. We  see that fY→X(�) peaks as the frequency approaches
� radians, so that the lowpass filter (Fig. 2) suppresses power in a
broad band where spectral causality is highest.

To illustrate clearly finite-sample effects, comparatively short
stationary time series of length N = 29 = 512 were generated.20 In all
experiments regression coefficients were calculated by a standard
OLS procedure, via QR decomposition of the stacked, lagged series.
It is during this stage of computation that numerical instabilities as
discussed in Section 3.1 under point III, might arise. As noted, this
causalities were then calculated according to (15) at a frequency
resolution of 210 = 1024 over the normalised frequency range � ∈ [0,

18 Frequencies are normalised throughout, so that � radians corresponds to the
Nyqvist frequency f/2 where f is the sampling frequency in Hz.

19 Experiments (not included) suggest that zero-phase filtering in fact has minimal
qualitative impact on results.

20 Powers of two  were used to maximise efficiency of the FFT (Fast Fourier Trans-
form) algorithm used in spectral calculations.
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simulated validation (out-of-sample) data of the same number
of time steps. The CV model order estimation criterion was then
to maximise the log-likelihood calculated from the out-of-sample
residuals.21 Note that for real-world data without the benefit of a
ig. 4. Poles of the minimal VAR transfer function (crosses) and the 4th order But-
erworth IIR filter (circles) drawn in the complex z-plane along with the unit circle.

]. Finally, time-domain causalities were calculated by numerical
uadrature of spectral causality according to (16) (cf. Section 2.4).
gain we note that for the IIR filter, since all poles lie further from

he unit circle than the poles 1/a, 1/b  of the transfer function (39)
Fig. 4), the potential confounding effect of increased spectral radius
oes not arise here (cf. Section 3.1).

.1.1. Model order estimation and stability of estimated VAR for
ample filtered process

We first examine model order estimation for the unfiltered and
ltered time series. This involves calculating sample estimates Â1,

 . .,  Âp of the regression coefficient matrices for a range of model
rders p. Optimal model orders are then computed by various
ethods which balance model complexity against model fit (see

elow). Before this, it is first important to test whether estimated
oefficients will in general define stable VAR s as model order
ncreases. As noted, we can rule out unstable VAR estimates aris-

ng from the location of the filter poles. However, as model order
ncreases, more parameters need to be estimated given the same
ata, which will eventually lead to unstable VAR estimates, for both
nfiltered and filtered time series.
Fig. 5. Percentage of unstable VAR estimates plotted against model order for filtered
and unfiltered series of length 29, for the minimal VAR(1) with c = 0.

To test this, we  ran 1000 trial simulations of length N = 29 of the
minimal VAR(1), for model orders ranging from 1 to 120. The trials
were repeated with and without filtering, both for the significant
c = csig and null c = 0 systems. Regression coefficients for each trial
were estimated as described above, and stability assessed via calcu-
lation of the spectral radius �(Ã) of the model (Section 2). Results for
c = 0 (there was  little difference for c = csig) are displayed in Fig. 5.
The percentage of unstable VAR estimates increase sharply from
order p = 60, reaching close to 100% by p = 120. As anticipated, insta-
bility rates are higher for filtered data given the increased difficulty
of fitting VAR models following filtering (Section 3.1).

Three techniques were tested to assess an appropriate order for
a VAR(p) model of the filtered (and unfiltered) data: the Akaike and
Bayesian error criteria (AIC and BIC) and a cross-validation (CV)
procedure (McQuarrie and Tsai, 1998). All are based on the max-
imised value of the log-likelihood function which, for an estimated
VAR(p) model of the form (1),  is given (up to a constant depending
only on the sample size N, which remains fixed in our experiment)
by

L ≡ −N

2
ln det( ˆ̇ ) (44)

where ˆ̇
 is the sample estimate of the residuals covariance matrix.

Then

AIC = −2L + N(N + d)
N − d − 2

(45)

BIC = −2L + d ln N (46)

where d ≡ pn2 is the number of parameters in the model. Optimal
model orders are specified by the AIC/BIC reaching a minimum. We
used a version (45) of the AIC which incorporates a second-order
small sample correction as proposed by Hurvich and Tsai (1989),
without which the AIC frequently failed to attain a minimum. For
the cross-validation, VAR coefficients were estimated for train-
ing (in-sample) data and residuals calculated for independently
21 Minimising the mean squared out-of-sample residuals gave virtually identical
results.
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bottom rows show results from repeating the above experiments
using fixed model orders of 16 (reflecting an “informed guess”) and
4 (reflecting a drastic underestimation), respectively. For model
ig. 6. Mean estimated optimal model order for unfiltered and filtered time series
f  length 29, for the minimal VAR(1) with c = 0 and various model order selection
riteria. Error bars indicate 95% confidence intervals.

nown generative process, CV estimates may  be derived by stan-
ard techniques involving partitioning of the data into training and
alidation subsets.

For 1000 realisations of both the filtered and unfiltered min-
mal VAR(1) the various estimation criteria were calculated for

odel orders ranging from p = 1 to 120; unstable VAR estimates
ere discarded, as were cases where the criterion failed to achieve

 minimum before the upper limit p = 120. Results for c = 0 (again,
here was little difference for c = csig), showing the mean estimated
ptimal model order and 95% confidence intervals are displayed in
ig. 6. As expected, all estimation methods agreed on model order

 ≈ 1 for unfiltered data. For filtered data there is substantial dis-
greement between selection criteria; AIC and BIC tend to select
odel orders roughly half that of CV (interestingly, AIC and BIC are

n agreement for the IIR but not the FIR filter). The cross-validation
stimates are arguably the most reliable in principle (although in
ractice they require more data), yielding optimal mean values of

 ≈ 44 for the FIR filter and p ≈ 80 for the IIR filter. Although the
recise choice of model order does not affect our qualitative con-
lusions (see below), these values are clearly very much in excess
f the actual unfiltered model order p = 1.

.1.2. Statistical bias and significance testing
We next examined how filtering affected bias and significance

esting of the G-causality test statistic. We  performed another 1000
inimal VAR(1) simulations of length N = 29, filtered and unfiltered,

or both the null and significant causality models, over a range
f model orders. Again, unstable VAR estimates were discarded.
mpirical distributions of FY→X were calculated by Kaplan–Meier
stimation (Kaplan and Meier, 1958), along with the F and asymp-
otic �2 null distributions. Results are displayed in Fig. 7.

We note firstly that, since the G-causality statistic FY→X is posi-
ive, the corresponding finite-sample statistic FY→X will suffer from
ystematic positive bias; thus, even for the null model, for which
Y→X = 0, the sample statistic will generally be >0. The bias is seen
learly in Fig. 7; it increases strongly with model order, but is not
ubstantially affected by filtering. One implication of this is that

omparison of estimates from limited-sample data may  be highly
isleading, since the bias may  vary between estimates (cf. Section

.1). Note, however, that bias does not in itself affect hypothesis
esting (Section 2.4.1 and below) since it will be reflected in the null
nce Methods 201 (2011) 404– 419

distributions, both theoretical and empirically derived. For this rea-
son, here we  do not attempt to debias the G-causality test statistic
(see e.g., Geweke, 1984, Section 4; Efron, 1982).

We now examine the effects of model order and filtering on
statistical significance testing. First, for our small sample size it is
not clear how accurately the asymptotic �2 or the F-distribution of
Section 2.4.1 will approximate the distribution of FY→X under the
null hypothesis of zero causality (recall that the latter test is not
available for a multivariate predictee variable). For the null model
(Fig. 7, left column), sampled causalities above the critical lines indi-
cate Type I errors (false positives) at 5% significance according to
the corresponding null distribution (F, �2, or empirical,22) while
for the significant causality model (right column), causalities below
the critical lines indicate Type II errors (false negatives). The figure
shows that the �2 null distribution substantially underestimates
the critical value of FY→X at 5% significance, while the F-distribution
slightly overestimates it. These discrepancies increase strongly
with model order, rather than with filtering per se; i.e., filter-
ing impacts on significance testing via the increase in (estimated)
model order, as indicated by the thick horizontal lines on the x-
axes of Fig. 7: for the �2 distribution filtering effectively results in
a sharp increase in Type I errors, while for the F-distribution, the
picture is reversed, with a sharp increase in Type II errors (see also
Fig. 8).

To gauge the effects of filtering on significance testing under
a more realistic scenario where a null model is not known in
advance, we  also performed permutation tests. For both the signif-
icant and null VAR(1) models, for each of the 1000 trial sequences,
500 random permutation sequences were generated from the trial
sequence by the method of Freedman and Lane (Anderson and
Robinson, 2001); these were used to simulate an empirical null
distribution which was then employed to test for significance at
p-value 0.05. Fig. 8 shows Type I (left column) and Type II (right
column) errors generated by permutation, �2 and F-distributions,
for unfiltered data, and for filtered data using both FIR and IIR
filters. The top row shows results using optimal model orders; mid-
dle and bottom rows use model orders of 16 and 4, respectively
(see below). Considering first the top row (optimal model orders):
For Type I errors, without filtering all null distributions give the
expected error rate of ≈0.05. Consistent with Fig. 7, after filtering
Type I error rates are generally higher both for the permutation-test
empirical distribution and, especially, for the �2 distribution. The
effect is stronger for the IIR filter, reflecting the higher model order.
For Type II errors, without filtering errors are negligible under all
null distributions. After filtering, Type II error rates are increased,
for the permutation-test empirical distribution and, especially, for
the F-distribution. Again, the effect is stronger for the IIR filter. In
summary, results indicate an increase in both Type I and Type II
errors under filtering, mostly attributable to an increase in esti-
mated model order. In addition they support concerns (cf. Section
2.4.1) on the use of the theoretical null distributions for short time
series.

In many applications, researchers may  use model orders based
on prior knowledge of the data generating process (the underlying
mechanism) rather than on formal model order selection criteria
such as AIC and BIC, especially if the latter are specifying excessively
high model orders or not reaching a minimum. The middle and
22 Because the empirical null distribution is calculated from the known null model,
the  Type I error probability at p-value =  ̨ will always be exactly  ̨ by design. Thus in
the left column the empirical null distribution critical lines coincide with the upper
95%  confidence limit.
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 0.05) under the null hypothesis FY→X = 0, calculated from the empirical null distr
ines  denote critical values at 5% significance for the theoretical F- and asymptotic
onfidence intervals for the estimated optimum model order. For the significant ca

rder 16, for unfiltered data, Type I error rates are slightly higher as
ompared to the corresponding optimal model order results; Type
I error rates remain negligible. For the filtered data, results show a
omplex pattern. Type I error rates are similar (as compared to opti-
al  model order) for both the permutation test and F-distributions

ollowing FIR filtering, and are slightly higher under IIR filtering.
or the �2 distribution, Type I errors are actually lower when using

 model order 16 as compared to optimal, for both FIR and IIR fil-
ering. Type II error rates are negligible under FIR filtering for all

istributions (lower than the optimal model order), and are high
nd roughly equal under IIR filtering (corresponding to lower error
or F, higher for �2, and similar for permutation distributions, as
ompared to the optimal model order). Summarising, an informed
n; i.e., the sample distribution of FY→X for the null model. Normal solid and dashed
ll distributions, respectively. The thick horizontal bars on the x-axis indicate 95%

 model the horizontal line indicates the actual causality FY→X = 0.1.

guess (underestimate) of model order performs well and in fact
shows greater invariance with respect to the selected null distribu-
tion (F, �2, or permutation); these properties may reflect a tradeoff
between “poor estimation of a good model” (at the estimated opti-
mal  model order), against “good estimation of a poor model” (at
the arbitrarily chosen lower model order).

Results using model order of 4 (Fig. 8, bottom row), reflect a
more drastic underestimation of model order; such low model
orders are however often employed in practical applications in

neuroscience (Bressler and Seth, 2011; Ding et al., 2006). For the
filtered data, both Type I and Type II errors rates are now sub-
stantially higher, reflecting a poor model for the (known to be
high order) filtered VAR. Interestingly, there is now very little
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ig. 8. Significance testing: probabilities of Type I errors (false positives, left) and T
stimated from the permutation-test empirical (“p-t emp.”), and F- and �2 null distri
alues:  1 for unfiltered, 44 for FIR and 80 for IIR filters (cf. Fig. 6). Middle row: mode

ifference between results obtained using the various null distri-
utions.

.1.3. Eliminating line noise by notch filtering
As mentioned, G-causality is (theoretically) invariant to filter-

ng only for stationary processes, leaving open the possibility that
ltering may  be useful for achieving stationarity, and/or for reduc-

ng model order of a nearly non-stationary process. To illustrate this
sage, we examine notch filtering of time series data contaminated
y fixed-frequency harmonic components (e.g., 50/60 Hz electrical

ine noise). We  simulated line noise by adding a fixed sinusoidal
ignal of amplitude 1 and normalised frequency �/4 radians to
oth the X and Y component time series generated from the min-
mal VAR(1). Data was then filtered (in both forward and reverse
irections) by two types of digital notch filters: a FIR linear-phase

east-squares filter of order 64 (a high order was needed in order
o alleviate ripple in the passband and curtail power sufficiently in
I errors (false negatives, right) at 5% significance level for the different filter types,
s. Error bars indicate standard errors. Top row: model orders are estimated optimal
rs all set to 16. Bottom row: model orders all set to 4.

the stopband), and an IIR Butterworth filter of order 4, both with a
notch of width 0.02 radians (Fig. 9). Although strictly speaking the
process with an added sinusoid is non-stationary, in finite sample it
may  be approximated and modelled as a VAR(p). As in Section 4.1.1
we estimated model order using AIC, BIC and CV in 1000 trials of fil-
tered and unfiltered time series of length 29. Selected model orders
(for the null model c = 0) are shown in Fig. 10.  As expected, addi-
tion of line noise increases the model order considerably (although
again with substantial disagreement among the selection criteria).
Notch filters (both FIR and IIR) effectively reduce the model order
to close to the value 1 of the original noiseless process.

Fig. 11 plots sampled causalities against model order (cf. Fig. 7),
and Fig. 12 plots Type I and Type II error rates, for contaminated

and filtered data (cf. Fig. 8). For unfiltered (i.e., contaminated) data,
both the theoretical F- and, more markedly, the asymptotic �2 null
distribution greatly underestimate the critical 5% significance level.
In contrast to the filtered data in Fig. 7, this effect is stronger at



L. Barnett, A.K. Seth / Journal of Neuroscie

-50

-40

-30

-20

-10

 0

 10

0 π/4 π/2 3π/4 π

M
ag

ni
tu

de
 (d

B
)

Normalised frequency  λ (radians)

FIR
IIR

Fig. 9. Notch filter frequency response: the FIR (solid line) filter is an order 64 linear-
phase least-squares, the IIR filter (dashed line) an order 4 Butterworth, applied in
forward and reverse directions. Both have a notch of width 0.2 radians centred at
�/4  radians.

 0

 5

 10

 15

 20

 25

AIC BIC CV

M
od

el
 o

rd
er

Selection criterion

unfiltered
FIR
IIR

F
s
i

l
a
e
s

4

a
f
q
o
r
c
(
d
S
fi
f
a
a
c

ing to all invertible multivariate digital filters and to time-domain,
frequency-domain, and multivariate [generalised variance form
(Barrett et al., 2010)] varieties of G-causality. Given this general-
ity, how then to account for simulation results showing corruption

23 The ripple makes filter invariance in the spectral domain less clear; in theory,
ig. 10. Mean estimated optimal model order for unfiltered and notch-filtered time
eries of length 29, for the minimal VAR(1) with simulated line noise. Error bars
ndicate 95% confidence intervals.

ower model orders. The result is a very high Type I error rate (and
 negligible Type II error rate). Notch filtering reduces the Type I
rror rate to roughly the 5% level expected for an uncontaminated
ignal, without increasing the Type II error rate.

.1.4. Filter invariance and band-limited G-causality
In a final experiment, we test our proposal (Section 3.2) that

n appropriate way to identify causal interactions in a specific
requency band is to use band-limited G-causality, i.e., in the fre-
uency domain to simply ignore causal estimates outside the range
f interest, and in the time domain to integrate over the specified
ange. We  simulated an ensemble of 10,000 minimal VAR(1) pro-
ess with significant causality c = csig and other parameters as before
see introduction to Section 4.1), but with N = 212 time points to
ecrease statistical bias and improve accuracy of causal estimates.
imulations were run unfiltered and with the FIR and IIR lowpass
lters as previously described (Section 4.1). Model orders were 1
or unfiltered, 44 for FIR filtered and 80 for IIR filtered data (selected
s in Section 4.1.2). Spectral G-causalities were calculated with

 frequency resolution of 1024 as before, and plotted (with 95%
onfidence intervals) against normalised frequency, along with the
nce Methods 201 (2011) 404– 419 415

analytically calculated spectral G-causality of (41). We  note that
statistical significance testing requires permutation testing in the
absence of a known null distribution for the sample estimate of
band-limited G-causality (Section 2.4.1).

Results are displayed in Fig. 13.  Consistent with our analysis and
with Fig. 1 (Section 3), it is clear that for the (FIR and IIR) filtered
data spectral G-causality is not suppressed in the filter stop band
� ∈ [�/2, �]. Note that the “ripple” on the spectral causalities for fil-
tered data is an artefact of the in-sample finite order used to model
the effectively infinite-order filtered VAR process23 [cf. Section 3,
in particular (26)].

Time-domain G-causalities including, for unfiltered data, band-
limited causality over the pass band B = [0,  �/2] calculated
according to (34) by numerical quadrature, are displayed (with
95% confidence intervals) in Fig. 14.  Invariance under filtering is
clear within the bounds of finite-sample estimation; filtered G-
causalities are close to the unfiltered G-causality value of 0.1, even
though the filters strongly suppress spectral power in the filter stop
band [�/2, �] where spectral G-causality is much higher than in
the pass band. The band-limited (unfiltered) G-causality, on the
other hand, reflects correctly the much lower G-causality in the
pass band. Again, accuracy of estimation—and, by implication, sig-
nificance testing—is compromised by filtering. Note that the ripples
evident in the spectral G-causality results (Fig. 13) do not affect the
invariance in the time domain.

5. Discussion

In this paper we  have shown analytically, and corroborated
experimentally in simulation, that G-causality is invariant under
very general digital filtering. In practice, filtering cannot and does
not suppress G-causal interactions in filter stop-bands; however
certain filtering operations (e.g., notch filtering) can be useful for
achieving stationarity or for reducing the model order of near-
non-stationary processes, facilitating better VAR model fitting and
hence more accurate G-causality estimation. If the objective is to
restrict G-causality inferences to specific frequency ranges, we have
shown that band-limited G-causality is both theoretically valid
and practicable. In the frequency domain, band-limited G-causality
simply amounts to ignoring causal estimates outside the range of
interest; in the time domain, it involves integrating over the range
of interest.

5.1. Summary of findings and comparison with previous studies

The theoretical finding that G-causality is invariant under gen-
eral filtering was  alluded to almost thirty years ago (Geweke,
1982) but seems to have gone unnoticed in the subsequent lit-
erature, at least in neuroscience (Florin et al., 2010; Seth, 2010).
Building on Geweke’s early insight, we  have shown here that
the invariance arises from a generalisation of a fundamental
property of G-causality, namely its invariance under the group
of (unlagged) linear transformations of variables (Barrett et al.,
2010). Consequently, the invariance is completely general, apply-
at  high model order (which would necessitate long time series for reliable estima-
tion) ripples would be expected to become smaller (and higher frequency) and the
invariance would be more apparent. The increased variance of the two lower plots
indicates that filtering also reduces the accuracy of spectral causal estimation and
thus increases the risk of mis-identification of causalities.
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ig. 11. Sample G-causality distributions FY→X plotted against model order for filt
ausality model (right column). See caption to Fig. 7 for details.

f G-causal estimates following filtering (Florin et al., 2010; Seth,
010)? We  have shown that a primary cause is the large increase

n empirical model induced by filtering; high model orders become
ecessary in order to properly fit the modified aspects of the power
pectrum (low power in stop band, steep roll-off, etc.). Indeed, in
heory (almost) any filtered VAR process becomes infinite order.
n sample, high model orders can enable adequate model fitting
ut at the cost of estimating large numbers of parameters given
he same data, which in turn leads to inflated Type I and Type II
rror rates. This explanation differs from that offered by Florin et al.
2010),  who suggested that the errors are adequately accounted for

y alteration of the VAR regression coefficients following filtering.
ur analysis has shown that, on the theoretical level, G-causality

s unaffected despite this alteration. We  also identified two further
otential causes of error post-filtering, (i) estimation of unstable
nd unfiltered data with line noise, for the null model (left column) and significant

or near-unstable models due to increased spectral radius and (ii)
numerical instabilities in G-causality estimation, caused by near-
vanishing spectral power. Our simulations were designed to avoid
these latter two causes; however it is easy to construct examples
in which they arise.

Using a minimal exactly solvable model, we  investigated the
effects of filtering on small-sample data with respect to statistical
bias and null-hypothesis significance testing. Bias, while strong for
small samples and high model orders, does not appear to be much
affected by filtering. By contrast, significance testing, as reflected
in Type I and Type II error rates, can be substantially affected by

filtering. The inflation of error rates is apparent under the �2 and
F-distributions, as well as under permutation sampling. Interest-
ingly, the precise pattern of errors depends on the distribution
used. For sample sizes of the order 29 (512) generated by our
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Fig. 13. Spectral G-causality for filtered and unfiltered data (solid lines) with 95%
confidence intervals (shaded) estimated from a sample of 10,000 minimal VAR(1)
ndicate standard errors. Type II errors (false negatives) were insignificant in all
onditions and are not shown. Model orders were the estimated optimal values: 16
or  unfiltered, 2 for FIR and IIR filters.

inimal VAR(1) model, the theoretical asymptotic �2 distribution
f the sample estimator for the G-causality statistic (under the null
ypothesis of zero causality) is a poor approximation at the higher
odel orders implied by filtering, leading in particular to increased

ype I error rates. The (non-asymptotic) F-distribution, while closer
o the actual null distribution, also becomes less exact at higher

odel order leading, by contrast, to increased Type II error rates.
hese results imply that it is generally safer to estimate a null dis-
ribution for significance testing by a non-parametric technique
uch as permutation sampling. Even so, following filtering, error
ates under permutation testing remain severely inflated due to
he higher model orders required.

Using model orders that are substantially lower than those
mplied by filtering (and in our example closer to the “true” model
rder) had the effect of reducing the differences among the vari-
us methods of significance testing, probably reflecting a trade-off
etween poor estimation of a good model (high model order) and
ood estimation of a poor model (low model order). Error rates
emain inflated in all cases, indicating that the effects of filtering
n VAR modelling cannot be avoided simply by a priori knowledge
f the underlying process.

The theoretical invariance of G-causality under filtering holds
trictly for stationary processes which may  be reasonably modelled
s VARs, leaving open the possibility that filtering could remain use-
ul in rendering a nonstationary sequence stationary, for example
y notch filtering of (nonstationary) artifactual components such as
lectrical line noise, or the removal of low frequency transients by
igh-pass filtering; both effects might be detectable by a prelimi-
ary spectral analysis. Confirming this, we used our minimal model
o show that notch filtering of data contaminated by line noise can
ndeed recover a stationary VAR amenable to G-causality analy-
is. On the other hand, we have stressed that filtering is entirely
nsuitable for identifying causal interactions within specific fre-
uency bands. Our final set of simulations shows that band-limited
-causality provides an effective alternative for estimation of time-
omain G-causality within specific frequency bands.

It is worth emphasising that our simulation results were

btained using a model for which G-causality could be computed
nalytically. This approach allowed us to validate and explore
he implications of our theoretical results with greater precision
nd confidence than would be possible by analysis of real data
processes, along with analytically calculated G-causality (dashed lines), plotted
against normalised frequency. The vertical lines specify the lowpass filter cutoff
frequency. See text for details.

or numerical simulation alone. Moreover, to our knowledge, no
analytical derivation of G-causality from a generative model has
previously been described in the literature. Our model therefore
provides a unique platform for further methodological studies,
especially on the effects of data preprocessing methods on G-
causality analyses.

5.2. Related measures
In this paper we have considered only linear VAR models and
G-causality measures. It might be thought that nonlinear measures
(Marinazzo et al., 2011; Gourévitch et al., 2006) may  offer greater
robustness to filtering: since the detrimental effects of filtering fol-
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ow from the large increase in empirical (linear) model order, it
s plausible that nonlinear G-causality methods could lessen these
ffects by fitting the filter-induced power spectra distortions with

ewer parameters than equivalent linear VAR models. Although we
ave not tested this possibility, note that the question of model fit-
ing in sample is distinct from the question of whether linear and

ig. 15. Suggested pipeline for analysis. At the outset, nonstationarity and the presence 

pectra, by VAR model stability checks as described in Section 2, and by dedicated stationar
teps  in the order suggested, each time checking if data has become stationary. 2VAR mod
hiteness of residuals (Seth, 2010). Recall that Type I errors are false positives, and Type 
nce Methods 201 (2011) 404– 419

nonlinear measures are equivalent in theory. It is worth empha-
sising that for Gaussian processes the theoretical invariance of
G-causality under filtering obtains for both linear and nonlinear
versions. Indeed, we have previously shown that for Gaussian pro-
cesses, G-causality and transfer entropy are equivalent, and that,
furthermore, a Gaussian VAR process is necessarily linear (Barnett
et al., 2009). The implication is that—at least where a Gaussian
approximation is reasonable—nonlinear G-causality measures have
no advantage over linear measures.

The directed transfer function (DTF) (Kaminski et al., 2001) and
partially directed coherence (PDC) (Baccalá and Sameshima, 2001)
are spectral causal measures related to G-causality. Preliminary
investigations indicate that these measures will also be invariant,
albeit under a narrower class of filtering; specifically when the com-
ponent variables are independently filtered—i.e., when the filter
transfer function is of the form G(z) = diag(g1(z), . . .,  gn(z)) [cf. Eq.
(25)]—and the individual filters have been normalised so that the
gi(0) are all equal.

5.3. G-causality, filtering, and hemodynamic convolution

Although we  have focused on filtering applied as an explicit
(pre)processing step, it may  be that physiological processes inter-
vening between target neural variables and observables can
impose “implicit” filtering. For example, a long-standing debate
is appropriate for fMRI BOLD signals, given their slow dynamics
relative to the underlying neural signals, the within-subject and
between-subject variability in peak latency of the hemodynamic

of artifacts can be identified by visual inspection of the raw time series and power
ity tests such as the ADF and KPSS tests (Seth, 2010). 1Carry out these preprocessing
el fit can be verified by a number of methods including R2, model consistency, and
II errors are false negatives (misses).



roscie

r
n
R
p
p
n
A
r
(
i
u
o
v
2
a
n
i
w
c
l
s
m
p
S
w

5

o
i
v
o
n
d
p
f
t

A

a
f

R

A

A

B

B

B

B

C

L. Barnett, A.K. Seth / Journal of Neu

esponse function, and the severe downsampling imposed by scan-
er repetition times (David et al., 2008; Bressler and Seth, 2011;
oebroeck et al., 2011; Valdes-Sosa et al., 2011). A common sus-
icion is that the variation in hemodynamic latency in particular
resents a fatal confound to G-causality analysis, since hemody-
amic “delays” are often longer than underlying neural delays.
ccording to this suspicion, if hemodynamic latencies oppose neu-
al latencies, G-causality will fail to detect the “true” causality
determined by the neural delays) because it will be determined
nstead by the confounding hemodynamic latencies. Some sim-
lation studies support this suspicion (Smith et al., 2011), while
thers show a surprising resilience of G-causality analysis under
arying hemodynamics (Deshpande et al., 2010; Schippers et al.,
011). However, the hemodynamic response is often modelled as

 convolution rather than as an explicit buffering or delay of a
eural signal (Friston et al., 2000; Zumer et al., 2010), suggest-

ng that G-causality of fMRI BOLD signals may  enjoy invariance
ith respect to the underlying neural signals, insofar as the HRF

onvolution represents a stable, invertible filter. While stability is
ikely to hold (since, as remarked in Section 3, FIR filters are always
table) it is less clear whether the invertibility condition will be
et. In particular, if the onset of the hemodynamic response is a

ure delay then, considered as a filter, it will not be invertible (cf.
ection 3). Nonetheless, this suggests a useful avenue for future
ork.

.4. Summary

In summary, our results suggest that for G-causality analysis
f data one should filter as little as possible, and only insofar as
s necessary to render nonstationary data stationary. Fig. 15 pro-
ides a suggested pipeline for G-causality analysis, as implied by
ur results. Note that this flowchart has heuristic value only; it is
ot guaranteed to furnish valid results for all data, and for any given
ata set other analysis pipelines may  be equally or more appro-
riate. Nonetheless, we hope it will provide a practically useful
ramework for researchers interested in inferring causal interac-
ions from their data.
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