<div dir="ltr">Dear Bastien,<div><br></div><div>I scanned the attached proceeding but I could not find how PARAFAC works. I noticed that it uses wavelet transform for preprocess only for PARAFAC, which would be certainly effective if you want to separate theta from alpha in the end. I want to see why they used SOBI, how they evaluated decomposition quality, how they identify alpha component etc, but the authors did not explain it probably because the page limit of the proceeding. So, honestly speaking I'm not fully convinced with the author's claim.</div>
<div><br></div><div>If you have clear alpha in the data that 'contaminates' other ERP component, that's a happy present if you are an ICA user since it promises clear decomposition. Why don't you try EEGLAB's default ICA (extended informax, which is better in decomposition performance; for detail see Delorme et al.., 2012 PLoS One) on a few data and see the results. That should not hurt!</div>
<div><br></div><div>Makoto</div><div><br></div><div><br></div><div><br></div><div><br></div></div><div class="gmail_extra"><br><br><div class="gmail_quote">2014-01-30 Bastien Boutonnet <span dir="ltr"><<a href="mailto:bastien.b1@gmail.com" target="_blank">bastien.b1@gmail.com</a>></span>:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word"><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">
Dear all</div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto"><br></div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">
(Thanks for the previous help regarding my STUDY statistics questions, esp Makoto & Arno –I have been busy with other things but will try your suggestions and see if I can move forward with that in a few weeks. Just thought I’d say thanks anyway)</div>
<div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto"><br></div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">
Someone in my lab finished collecting data destined to be analysed through classical ERP averaging. We looked at the data this morning (grand averages from 16+ participants) and it looks like the datasets are suffering from serious alpha contamination. Strong alpha contaminations are present in pretty much all participants. </div>
<div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto"><br></div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">
Is there any known way and possibly implemented way to remove the source of the alpha signals which are distorting the data? I thought of ICA immediately but a paper by Vanderperren (<a href="ftp://ftp.esat.kuleuven.be/sista/kvanderp/reports/MBEC_655.pdf" target="_blank">ftp://ftp.esat.kuleuven.be/sista/kvanderp/reports/MBEC_655.pdf</a>) seems to claim ICA not to be very good for that and advocates a Parallel Factor Analysis. Has anything like that been implemented?</div>
<div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto"><br></div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">
If ICA was to be used have you got any suggestions as to how to go about it (I.e. how to identify good candidates once ICA decomp is done)</div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">
<br></div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">Cheers,</div><div style="font-family:Helvetica,Arial;font-size:12px;color:rgba(0,0,0,1.0);margin:0px;line-height:auto">
Bastien</div><span class="HOEnZb"><font color="#888888"><br><div><font face="Helvetica"><span style="font-size:12px">-- <br>Bastien Boutonnet, Ph.D.<br></span></font><div><font face="Helvetica"><span style="font-size:12px">School of Psychology,</span></font></div>
<div><font face="Helvetica"><span style="font-size:12px">Bangor University</span></font></div><div><font face="Helvetica"><span style="font-size:12px"><a href="http://bastienboutonnet.com" target="_blank">bastienboutonnet.com</a></span></font></div>
</div></font></span></div><br>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br><br clear="all"><div><br></div>
-- <br><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div>
</div>