<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
p
{mso-style-priority:99;
mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
span.EmailStyle18
{mso-style-type:personal-reply;
font-family:"Calibri","sans-serif";
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri","sans-serif";}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Hi,<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>My question is because of</span> <span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><a href="http://sccn.ucsd.edu/~scott/pdf/Makeig_Onton_LuckERP11.pdf">http://sccn.ucsd.edu/~scott/pdf/Makeig_Onton_LuckERP11.pdf</a> <o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>Pages 36-37. From my understanding the difference is only the way that Time-Freq is constructed by ERPS and ERP. But refer to my last email, I think they are the same :<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'> <o:p></o:p></span></p><p>-<span style='font-size:7.0pt'> </span>In traditional way : we make an average out of them x_avg and then make the Fourier transform of them F(x_avg)=F([x1+x2]/2 ) = F(x1/2)+F(x2/2)= [F(x1) + F(X2)] / 2<o:p></o:p></p><p>2-<span style='font-size:7.0pt'> </span>In ERPS we calculate time-freq for each epoch F(x1) and F(x2) and then make the average ERPS=[ Fx(1) + F(x2)] / 2 <o:p></o:p></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal><a name="_MailEndCompose"><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'><o:p> </o:p></span></a></p><p class=MsoNormal><b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif"'>From:</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif"'> eeglablist-bounces@sccn.ucsd.edu [mailto:eeglablist-bounces@sccn.ucsd.edu] <b>On Behalf Of </b>Makoto Miyakoshi<br><b>Sent:</b> Thursday, February 27, 2014 10:48 PM<br><b>To:</b> Iman M.Rezazadeh<br><b>Cc:</b> EEGLAB List<br><b>Subject:</b> Re: [Eeglablist] ERPS vs Time-Freq<o:p></o:p></span></p><p class=MsoNormal><o:p> </o:p></p><div><p class=MsoNormal>Dear Iman,<o:p></o:p></p><div><p class=MsoNormal><o:p> </o:p></p></div><div><p class=MsoNormal>I'm not sure if there is any difference... I was not aware of it.<o:p></o:p></p></div><div><p class=MsoNormal>You may want to check dftfilt3() for the EEGLAB default wavelet (and let us know what you find).<o:p></o:p></p></div><div><p class=MsoNormal><br>> And what is the difference btw evoked and induced potential.<br><br>Evoked is phase-reset to stimulus onset and induced is not. I thought Galambos proposed this distinction, but I could be wrong.<o:p></o:p></p></div><div><p class=MsoNormal><o:p> </o:p></p></div><div><p class=MsoNormal style='margin-bottom:12.0pt'>Makoto<o:p></o:p></p><div><p class=MsoNormal>2014-02-27 16:35 GMT-08:00 Iman M.Rezazadeh <<a href="mailto:i_rezazadeh@yahoo.com" target="_blank">i_rezazadeh@yahoo.com</a>>:<o:p></o:p></p><blockquote style='border:none;border-left:solid #CCCCCC 1.0pt;padding:0in 0in 0in 6.0pt;margin-left:4.8pt;margin-right:0in'><div><div><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'>Hi , <o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'>What is the difference btw the traditional time-freq representation of an ERP and ERPS? Are they the same? Since Suppose, we have two epochs x1 and x2 with zero means , then <o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'> <o:p></o:p></p><p>1-<span style='font-size:7.0pt'> </span>In traditional way : we make an average out of them x_avg and then make the Fourier transform of them F(x_avg)=F([x1+x2]/2 ) = F(x1/2)+F(x2/2)= [F(x1) + F(X2)] / 2<o:p></o:p></p><p>2-<span style='font-size:7.0pt'> </span>In ERPS we calculate time-freq for each epoch F(x1) and F(x2) and then make the average ERPS=[ Fx(1) + F(x2)] / 2 <o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'> <o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'> <o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'>And what is the difference btw evoked and induced potential. My questions are mostly from Chp 3 of the Oxford Handbook of Event Related Potential Components pg 77-78<o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'> <o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'>Best<o:p></o:p></p><p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto'><span style='color:#888888'>Iman<o:p></o:p></span></p></div></div></blockquote></div><p class=MsoNormal><br><br clear=all><o:p></o:p></p><div><p class=MsoNormal><o:p> </o:p></p></div><p class=MsoNormal>-- <o:p></o:p></p><div><p class=MsoNormal>Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<o:p></o:p></p></div></div></div></div></body></html>