<div dir="ltr"><div style="font-family:arial,sans-serif;font-size:14px">Dear list subscribers,</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">
I just wanted to share my experience in case you are interested in.</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">1. Channels names without 10-20 nomenclature (i.e. Fz, Cz, Pz etc) can not be recognized by 'warp' function in the head model settings. -> Use fiducials only that have labels such as Nz, LPA, RPA etc that is stored under EEG.chaninfo.nodatachans</div>
<div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">2. Polhemus measurements uses meters whereas EEGLAB default assumes millimeters. -> x1000 required.</div>
<div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">3. If applying individually measured channel locations (using Polhemus, Zebras, etc) transform parameters should be computed. -> use coregister() function.</div>
<div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">Below is an example.</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">
% redo channels (transform meter to millimeter!)</div><div style="font-family:arial,sans-serif;font-size:14px"> tmpNoDataChans = EEG.chaninfo.nodatchans;</div><div style="font-family:arial,sans-serif;font-size:14px">
tmpNoDataChans = rmfield(tmpNoDataChans,'datachan');</div>
<div style="font-family:arial,sans-serif;font-size:14px"> EEG.chanlocs = [EEG.chanlocs tmpNoDataChans];</div><div style="font-family:arial,sans-serif;font-size:14px"> for n = 1:length(EEG.chanlocs)</div><div style="font-family:arial,sans-serif;font-size:14px">
EEG.chanlocs(1,n).X = EEG.chanlocs(1,n).X*1000;</div><div style="font-family:arial,sans-serif;font-size:14px"> EEG.chanlocs(1,n).Y = EEG.chanlocs(1,n).Y*1000;</div><div style="font-family:arial,sans-serif;font-size:14px">
EEG.chanlocs(1,n).Z = EEG.chanlocs(1,n).Z*1000;</div><div style="font-family:arial,sans-serif;font-size:14px"> end</div><div style="font-family:arial,sans-serif;font-size:14px"> EEG.chaninfo.nodatchans = [];</div>
<div style="font-family:arial,sans-serif;font-size:14px"> EEG = pop_chanedit(EEG, 'eval','chans = pop_chancenter( chans, [],[]);');</div><div style="font-family:arial,sans-serif;font-size:14px"> </div>
<div style="font-family:arial,sans-serif;font-size:14px"> % compute transform parameter</div><div style="font-family:arial,sans-serif;font-size:14px"> [~,transform] = coregister(EEG.chaninfo.nodatchans, '/data/common/matlab/eeglab/plugins/dipfit2.3/standard_BEM/elec/standard_1005.elc', 'warp', 'auto', 'manual', 'off')</div>
<div style="font-family:arial,sans-serif;font-size:14px"> </div><div style="font-family:arial,sans-serif;font-size:14px"> % manual fitting results</div><div style="font-family:arial,sans-serif;font-size:14px"> % [0 -25 -10 -0.1 0 -1.5708 1.15 1.15 1.1]</div>
<div style="font-family:arial,sans-serif;font-size:14px"> %</div><div style="font-family:arial,sans-serif;font-size:14px"> % automatic warping results</div><div style="font-family:arial,sans-serif;font-size:14px"> % [-3.4586 -29.9836 -3.8724 -0.0702 -0.0014 -1.5717 1.2789 1.2018 1.2028]</div>
<div><br></div>-- <br><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div>
</div>