<div dir="ltr">Dear Norbert,<div><br></div><div>Check out Delorme et al. 2012 PLoS One.</div><div><br></div><div>Makoto</div></div><div class="gmail_extra"><br><br><div class="gmail_quote">2014-04-24 6:43 GMT-07:00 Norbert Franke <span dir="ltr"><<a href="mailto:nfranke@uni-bonn.de" target="_blank">nfranke@uni-bonn.de</a>></span>:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi everybody,<br>
<br>
I am comparing different ICA procedures.<br>
<br>
In my case the results after running different ICAs with the same EEG dataset (always beginning at scratch) are very similiar but not always the same. To decide which ICA procedure fits best I need to know more about preconditions of these algorithms. Otherwise its a danger to use the results which fits best to what I want to find and thats not science.<br>
<br>
Is there literature existing which compares ICAs?<span class="HOEnZb"><font color="#888888"><br>
<br>
<br>
Norbert Franke<br>
Bonn<br>
______________________________<u></u>_________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/<u></u>eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.<u></u>ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.<u></u>edu</a><br>
</font></span></blockquote></div><br><br clear="all"><div><br></div>-- <br><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br>
</div>
</div>