<div dir="ltr"><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(7,55,99)">Dear Makoto,<br><br>provided that the more data points the better, is there any specific formula for computing the minimum number of data points to pass to ICA?<br><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(7,55,99)">Thanks,<br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small;color:rgb(7,55,99)">Germano<br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On 4 December 2014 at 20:32, Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear Jeff,<span class=""><div><br></div><div><span style="color:rgb(0,0,0);font-family:Calibri,sans-serif;font-size:14.285714149475098px">> My epochs range from 3 to 20 minutes.</span><br></div><div><br></div></span><div>Sounds too short for 256ch decomposition. You need at least > 1 million datapoints for it. Using high sampling rate such as 1000Hz increases apparent datapoints, but I'm not sure how it helps.</div><span class=""><div><br></div><div><span style="color:rgb(0,0,0);font-family:Calibri,sans-serif;font-size:14.285714149475098px">> I generally find 1-3 ICs for each subject.</span><br></div><div class="gmail_extra"><br></div></span><div class="gmail_extra">This sounds too few for 256ch decomposition.</div><span class=""><div class="gmail_extra"><br></div><div class="gmail_extra">> <span style="color:rgb(0,0,0);font-family:Calibri,sans-serif;font-size:14.285714149475098px">general background noise goes UP after these 1-3 components are removed.</span></div><div class="gmail_extra"><span style="color:rgb(0,0,0);font-family:Calibri,sans-serif;font-size:14.285714149475098px"><br></span></div></span><div class="gmail_extra"><span style="color:rgb(0,0,0);font-family:Calibri,sans-serif;font-size:14.285714149475098px">If the removed components are coupled with other components that cancels out each other, this could happen. However that's kind of rare and I don't see it very often... most likely your decomposition has problems.</span></div><div class="gmail_extra"><span style="color:rgb(0,0,0);font-family:Calibri,sans-serif;font-size:14.285714149475098px"><br></span></div><div class="gmail_extra"><span style="color:rgb(0,0,0);font-family:Calibri,sans-serif;font-size:14.285714149475098px">Makoto</span></div><div class="gmail_extra"><br><div class="gmail_quote"><div><div class="h5">On Wed, Nov 26, 2014 at 3:18 PM, K Jeffrey Eriksen <span dir="ltr"><<a href="mailto:eriksenj@ohsu.edu" target="_blank">eriksenj@ohsu.edu</a>></span> wrote:<br></div></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div><div class="h5">
<div style="word-wrap:break-word;color:rgb(0,0,0);font-size:14px;font-family:Calibri,sans-serif">
<div>EEGlabbers:</div>
<div><br>
</div>
<div>Does anyone out there have particular experience from removing eye blinks from 256 channel EEG data using ICA? I have started to apply it to 11 subjects with data recorded at 1,000 frame/sec, bandpass filtered & downsampled to 250 fps. My epochs range
from 3 to 20 minutes. I generally find 1-3 ICs for each subject. When I remove these, there is still visible remnants around the time of each eye blink. Of more concern is that the general background noise goes UP after these 1-3 components are removed.</div>
<div><br>
</div>
<div>Any ideas that might improve my results? I can post some screenshots if need be.</div>
<div>Thanks,</div>
<div><br>
</div>
<div>-Jeff</div>
</div>
<br></div></div>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a><span class="HOEnZb"><font color="#888888"><br></font></span></blockquote></div><span class="HOEnZb"><font color="#888888"><br><br clear="all"><div><br></div>-- <br><div><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</font></span></div></div>
<br>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br></div>