<div dir="ltr"><div class="gmail_default" style="color:#333399">Hello Mohammed, hoping the brief thoughts below help a little. ~Best wishes.</div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399">1. There should be a relationship between ERP and ERSP, in the sense that chances in spectral dynamics "create" ERPS, thus it's probable that using both features should give more valid clusters.</div><div class="gmail_default" style="color:#333399">However if it's suggested to run MPT on one feature at a time, please do so.</div><div class="gmail_default" style="color:#333399">2. I would say try both features together for clustering, and also try them separately for two different clustering runs. You may empirically show the difference, and that would be something useful for the field.</div><div class="gmail_default" style="color:#333399">If there's no difference that also useful to note [let the list know if possible]. If you haven't tried things with the traditional k-means clustering in matlab, it would be interesting to know if you see any difference with that method compered to MPT clustering. </div><div class="gmail_default" style="color:#333399">3. It matters to some degree whether the condition effects you are interested in show up more (or less) in the ICAs using different filtering approaches, or in the clustering with one or two features.</div><div class="gmail_default" style="color:#333399">4. I don't think you'll have a problem with reporting on comparisons of the locations of spatial clusters when the data going into the ICAs has been filtered differently, </div><div class="gmail_default" style="color:#333399">as long as you describe appropriate caveats. If you do clustering in several ways then you could report whether or not there is a difference in localization across the techniques you choose.</div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, May 11, 2015 at 5:46 AM, Mohammed Jarjees <span dir="ltr"><<a href="mailto:m.jarjees.1@research.gla.ac.uk" target="_blank">m.jarjees.1@research.gla.ac.uk</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div lang="EN-GB" link="blue" vlink="purple"><div><p class="MsoNormal"><span style="color:black">Dears,<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black"> <u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">I want to cluster my 61 electrodes EEG data for three groups of people each group has 10 subjects and each subjects has three conditions. <u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">I would like to analyse ERSP and ERP and to use MPT clustering method. MPT suggest to use one feature at the time, so I will create separate studies for ERSP and ERP. I would like to be able to compare clustering of ERSP and of ERP as these two variables might not necessarily have the same clusters.<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black"> <u></u><u></u></span></p><p class="MsoNormal"><span style="color:black"> <u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">My questions are:<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">1. Should I select the same ICAs for ERP and ERSP? Though this might sound a common sense, by visual inspection of ICAs I've noticed that some ICs have very strong ERP while not much is going on in ERSP and vice-versa, some have very little ERP with strong ERSP. Therefore taking common components for both might blur results for both ERP and ERSP.<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">2. In case I should not use the same components, may I produce two ICs sets, one filtered at 0.1Hz for ERP and the other filtered with 1Hz for ERSP. That is because filtering with 1Hz for ERSP really helps removing a baseline drift and I get clearer ICs then when filtering with 0.1 Hz (which is necessary should I analyse ERP)?<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">Would I still be able to compare spatial locations of ERP and ERSP clusters?<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black"> <u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">Thank you very much for your help.<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">Best regards,<u></u><u></u></span></p><p class="MsoNormal"><span style="color:black">Mohammed<u></u><u></u></span></p><p class="MsoNormal"><u></u> <u></u></p></div></div><br>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br></div>