<div dir="ltr">Dear Makoto,<div><br></div><div>regarding the small number of channels and the small number of available data points I would have suggested a regression based artifact removal instead of an ICA. I am using only 3 electrodes and had very bad results with an ICA. However, I am still looking for a proper regression based artifact removal procedure in EEGlab or MATLAB. I have checked the extended EEGlab plugin list but could not find a regression based artifact removal procedure.</div><div><br></div><div>Please advice.</div><div><br></div><div>thanks</div><div>Agnieszka</div></div><div class="gmail_extra"><br><div class="gmail_quote">2015-06-03 20:36 GMT+02:00 Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear Emmanuelle,<div><br></div><div>Here is Makoto's preprocess pipeline</div><div><a href="http://sccn.ucsd.edu/wiki/Makoto%27s_preprocessing_pipeline" target="_blank">http://sccn.ucsd.edu/wiki/Makoto%27s_preprocessing_pipeline</a><br></div><div><br></div><div>If you re-reference before ICA, don't forget to reduce the data rank by 1. You can either reject any one channel or use 'pca' option in runica to specify the rank which EEG.nbchan-1.</div><div><br></div><div>Don't forget to clean your data before ICA. Try artifact subspace reconstruction (ASR) in clean_rawdata(). You can even choose the parameters so that it keeps the original data length.</div><div><a href="http://sccn.ucsd.edu/wiki/Plugin_list_process" target="_blank">http://sccn.ucsd.edu/wiki/Plugin_list_process</a><br></div><div><br></div><div>Also for ICA make sure that you have sufficiently large number of datapoints, which channel^2 x 30 or larger when 32ch.</div><div><br></div><div>For high-pass, use 1Hz and transition 0.25-0.75Hz. This is very high compared with other recommendations.</div><div><br></div><div>Makoto </div><div> </div></div><div class="gmail_extra"><div><div class="h5"><br><div class="gmail_quote">On Mon, Jun 1, 2015 at 1:20 PM, Emmanuelle Renauld <span dir="ltr"><<a href="mailto:emmanuelle.renauld.1@ulaval.ca" target="_blank">emmanuelle.renauld.1@ulaval.ca</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi all,<br>
<br>
<br>
I have been thinking a lot about the best way to analyse my data, considering that I have very few channels (8. Thus 7 after re-referencing).<br>
<br>
So far, I do:<br>
1. Re-referencing.<br>
2. High-pass<br>
3. Low-pass<br>
4. ICA decomposition<br>
<br>
However: with only 7 channels, I often had very bad result at ICA. Looking at the signals, I saw many bugs happening on nearly all electrodes at the same time. If I cut the signal around that bug (ex, remove some data from EEG.data and EEG.times), the spectrum is usually already cleaner, and the ICA decomposition also works better (for instance, alpha frequencies are then well separated from the eye blinks and eye movements components).<br>
<br>
So I started thinking about "epoching" my data, but I don't have events to do that. Something like cutting my data into windows of maybe 1 second, removing windows where the signal is too big, and then computing spectrums and ICA. I did it manually, cutting usually 2-3 sections in the data, the worst parts, of usually around 10 seconds each. I was supervising the results, and it worked, but if I start doing it automatically, I fear that the number of windows rejected increase. What do you think would be the effect of computing ICA or spectrums on such annexed data? Could it, for instance, create false frequencies?<br>
<br>
I have two types of data: at rest, or doing a DDT task.<br>
<br>
Thank you very much!<br>
<br>
<br>
Emmanuelle<br>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a><br>
</blockquote></div><br><br clear="all"><div><br></div></div></div><span class="HOEnZb"><font color="#888888">-- <br><div><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</font></span></div>
<br>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr"><div>Agnieszka Zuberer<br>Möhrlistr. 92<br>8006 Zürich<br><br>Tel.: +41 7<span style="color:rgb(136,136,136);font-size:12.8000001907349px">6 29 51 321</span></div></div></div>
</div>