<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=utf-8"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman",serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
span.E-MailFormatvorlage17
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:70.85pt 70.85pt 2.0cm 70.85pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=DE link="#0563C1" vlink="#954F72"><div class=WordSection1><p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'>Dear Lampros,<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'>linear-mixed effects models (LME) have been used to analyze single-trial EEG responses in the field of psycholinguistics. Advantages include their suitability for handling unbalanced datasets (typical of EEG data with different numbers of bad trials per cell) and that there is no need to run separate F1/F2 ANOVAS (across participants and items). To my knowledge, the existing studies have usually computed separate LMMs for the data of each electrode (or electrode cluster) and for each consecutive time point (or time window, see Amsel, 2011 in particular), which creates some challenges with regard to multiple comparisons. See some refs below.<o:p></o:p></span></p><p class=MsoNormal style='text-autospace:none'><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal style='text-autospace:none'><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'>Best, Olaf<o:p></o:p></span></p><p class=MsoNormal style='text-autospace:none'><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal style='text-autospace:none'><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'>Amsel, B.D. (2011). Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials. Neuropsychologia, 49, 970-983<br>[computed LMMs for each electrode and running 10 ms time windows]<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal style='text-autospace:none'><strong><span style='font-size:10.0pt;font-family:"Arial",sans-serif;font-weight:normal'>Dimigen, O.</span></strong><b><span style='font-size:10.0pt;font-family:"Arial",sans-serif'>,</span></b><span style='font-size:10.0pt;font-family:"Arial",sans-serif'> Sommer, W., Hohlfeld, A., Jacobs, A., & Kliegl, R. (2011). </span><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif'>Coregistration of eye movements and EEG in natural reading: Analyses & Review. <em><span style='font-family:"Arial",sans-serif;font-style:normal'>JEP:General</span></em><i>,</i> 140, 552-572. <br>[</span><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-language:EN-US'>included behavioral covariates as additional fixed effects]<o:p></o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal><span lang=EN-US style='font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D;mso-fareast-language:EN-US'><o:p> </o:p></span></p><p class=MsoNormal><b><span style='font-size:11.0pt;font-family:"Calibri",sans-serif'>Von:</span></b><span style='font-size:11.0pt;font-family:"Calibri",sans-serif'> Lampros Perogamvros [mailto:lambros.pero@gmail.com] <br><b>Gesendet:</b> Dienstag, 16. Juni 2015 13:44<br><b>An:</b> eeglablist@sccn.ucsd.edu<br><b>Betreff:</b> [Eeglablist] mixed model for EEG data<o:p></o:p></span></p><p class=MsoNormal><o:p> </o:p></p><div><p class=MsoNormal>Hi all,<o:p></o:p></p><div><p class=MsoNormal><o:p> </o:p></p></div><div><p class=MsoNormal style='margin-bottom:12.0pt'>We were just wondering whether you guys ever implemented a mixed model analysis for eeg data, and if so how you did it/setup the model? This model would be ideal when there are unequal numbers of observations per condition, and sometimes 0 observations for a condition for a given subject. This model would allow us to use all the data and do statistical tests on the individual observations rather than just averaging over all the observations for each subject, so it would be much more powerful. Are you aware of any such model for EEG?<o:p></o:p></p></div><div><p class=MsoNormal>Thanks!<o:p></o:p></p></div><div><p class=MsoNormal>Lampros Perogamvros MD<o:p></o:p></p></div><div><p class=MsoNormal>University of Wisconsin <o:p></o:p></p></div></div></div></body></html>