<div dir="ltr">Dear Kevin,<div><br></div><div>Thanks for sharing the results of nice comparison (and good demonstration of David's tool).</div><div><br></div><div>> In my interpretation, it seems like the 'drift' in the 0.1hz data really does seem to be evoked infraslow components.</div><div><br></div><div>You mean 0.1-1.0Hz.</div><div><br></div><div>> 1hz filter reduces differences between conditions (amplitude & t-scores), makes significance less temporally cohesive, and eliminates late SW component. This is true for both cluster permutation & tMax permutation tests. <br></div><div><br></div><div>I agree. The EEG activities distribute smoothly across frequency ranges anyways, so it is not surprising. I would also find <1Hz activities in all of my past P300 studies etc.</div><div><br></div><div>> I'm doing an object valence study and infraslow components are well established in the literature (hopefully that's not inducing confirmation bias :-P).<br></div><div class="gmail_extra"><br></div><div class="gmail_extra">Yes why not following the literature.</div><div class="gmail_extra"><br></div><div class="gmail_extra">Makoto</div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Aug 12, 2015 at 12:45 PM, Kevin Tan <span dir="ltr"><<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi all, <div><br></div><div>Many thanks for everyone's very detailed and thoughtful comments, they've been invaluably helpful!</div><div><br></div><div>I systematically compared 0.1hz vs. 1hz data using two ERP searchlights: the more liberal cluster mass permutation test, and the much more conservative tMax permutation test. I used FWER = 0.1, 5000 permutations, and cluster size of ~3.15cm. </div><div><br></div><div>0.1hz:</div><div><a href="https://cmu.box.com/s/99lp08a2aodkyufp9iwkg2lxldhegu1z" target="_blank">https://cmu.box.com/s/99lp08a2aodkyufp9iwkg2lxldhegu1z</a><br></div><div><br></div><div>1hz:</div><div><a href="https://cmu.box.com/s/th5w62gunm9c9q23j5806ra6zue2u686" target="_blank">https://cmu.box.com/s/th5w62gunm9c9q23j5806ra6zue2u686</a><br></div><div><br></div><div>In my interpretation, it seems like the 'drift' in the 0.1hz data really does seem to be evoked infraslow components. 1hz filter reduces differences between conditions (amplitude & t-scores), makes significance less temporally cohesive, and eliminates late SW component. This is true for both cluster permutation & tMax permutation tests. <br></div><div><br></div><div>I'm doing an object valence study and infraslow components are well established in the literature (hopefully that's not inducing confirmation bias :-P).</div><div><br></div><div>Detrending per epoch seemed to reduce significance but still need to do it more systematically.  </div><div><br></div><div>Thanks again,</div><div>Kevin</div></div><div class="gmail_extra"><span class=""><br clear="all"><div><div><div dir="ltr"><div><font size="1" face="arial, helvetica, sans-serif">--</font></div><font size="1" face="arial, helvetica, sans-serif">Kevin Alastair M. Tan</font><div><font size="1" face="arial, helvetica, sans-serif">Lab Manager/Research Assistant<br></font><div><font size="1" face="arial, helvetica, sans-serif">Department of Psychology & Center for the Neural Basis of Cognition</font></div><div><font size="1" face="arial, helvetica, sans-serif">Carnegie Mellon University</font></div><div><font size="1" face="arial, helvetica, sans-serif"><br></font><div><div><font size="1" face="arial, helvetica, sans-serif"><a href="https://www.google.com/maps/place/40%C2%B026%2729.5%22N+79%C2%B056%2744.0%22W/@40.4414869,-79.9455701,61m/data=!3m1!1e3!4m2!3m1!1s0x0:0x0" target="_blank">Baker Hall 434</a> | <a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a> | <a href="http://tarrlabwiki.cnbc.cmu.edu/index.php/KevinTan" target="_blank">tarrlab.org/kevintan</a></font></div></div></div></div></div></div></div>
<br></span><div class="gmail_quote"><span class="">On Mon, Aug 10, 2015 at 2:52 PM, Mohammed Jarjees <span dir="ltr"><<a href="mailto:m.jarjees.1@research.gla.ac.uk" target="_blank">m.jarjees.1@research.gla.ac.uk</a>></span> wrote:<br></span><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear Kevin Tan,<br>
Sorry for this late reply. I was away last week.<br>
<br>
Yes, I mean use detrend on individual epochs. I hope this will help you to make your data better and after detrend you can apply the ICA wights from 1Hz data on 0.1 detrended data.<span class=""><br>
<span>Best Regards<br>
<br>
Mohammed Jarjees<br>
________________________________________<br>
</span></span>From: Kevin Tan [<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a>]<br>
Sent: 06 August 2015 07:20<br>
To: <a href="mailto:makoto@sccn.ucsd.edu" target="_blank">makoto@sccn.ucsd.edu</a>; Mohammed Jarjees; EEGLAB List<span class=""><br>
<span>Subject: Re: [Eeglablist] Too much drift with just 0.1hz high-pass filtering?<br>
<br>
</span></span><span class=""><span>Makoto,<br>
<br>
Thanks so much for the detailed reply. Indeed, given all the caveats, 0.1hz hi-pass produces 'better' ERP waveforms and is in-line with the literature.<br>
<br>
But what I'd really like to know is, does *my* 0.1hz data contain comparable drift to others' 0.1hz data? It's hard to tell since people don't publish their epoched EEG data. If it is comparable then I can feel much better.<br>
<br>
And yes, for ICA I use 1hz hipass then copy the resulting weights to 0.1hz data.<br>
<br>
Mohammed,<br>
<br>
I've tried detrend on continuous 0.1hz data with little effect. Do you mean detrend on individual epochs? Would that result in consistency issues across epochs?<br>
<br>
Many thanks for the comments!<br>
<br>
Best,<br>
Kevin<br>
<br>
--<br>
Kevin Alastair M. Tan<br>
Lab Manager/Research Assistant<br>
Department of Psychology & Center for the Neural Basis of Cognition<br>
Carnegie Mellon University<br>
<br>
</span></span><span class=""><span>Baker Hall 434<<a href="https://www.google.com/maps/place/40%C2%B026%2729.5%22N+79%C2%B056%2744.0%22W/@40.4414869,-79.9455701,61m/data=!3m1!1e3!4m2!3m1!1s0x0:0x0" rel="noreferrer" target="_blank">https://www.google.com/maps/place/40%C2%B026%2729.5%22N+79%C2%B056%2744.0%22W/@40.4414869,-79.9455701,61m/data=!3m1!1e3!4m2!3m1!1s0x0:0x0</a>> | <a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a><mailto:<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a>> | <a href="http://tarrlab.org/kevintan" rel="noreferrer" target="_blank">tarrlab.org/kevintan</a><<a href="http://tarrlabwiki.cnbc.cmu.edu/index.php/KevinTan" rel="noreferrer" target="_blank">http://tarrlabwiki.cnbc.cmu.edu/index.php/KevinTan</a>><br>
<br>
</span></span><span class=""><span>On Thu, Aug 6, 2015 at 7:50 AM, Mohammed Jarjees <<a href="mailto:m.jarjees.1@research.gla.ac.uk" target="_blank">m.jarjees.1@research.gla.ac.uk</a><mailto:<a href="mailto:m.jarjees.1@research.gla.ac.uk" target="_blank">m.jarjees.1@research.gla.ac.uk</a>>> wrote:<br>
Dear Kevin Tan,<br>
Have you tried detrend function on 0.1 Hz filtered data. It may be help.<br>
Best Regards<br>
Mohammed Jarjees<br>
<br>
________________________________________<br>
</span></span>From: Makoto Miyakoshi [<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a><mailto:<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>>]<span class=""><br>
<span>Sent: 05 August 2015 06:03<br>
To: Kevin Tan<br>
Cc: EEGLAB List<br>
Subject: Re: [Eeglablist] Too much drift with just 0.1hz high-pass filtering?<br>
<br>
Dear Kevin,<br>
<br>
In the Appendix of Rousslet (2012), you can find the shockingly bad effect of 1-Hz high-pass filter compared with 0.5-Hz or below. However, the filter function used here is pop_eegfilt, which is an old generation before Andreas Widmann redesign it, so for 500-Hz sampled data the filter order for 1-Hz is 75000. After Andreas's fix, it is 1651. 75000 is crazy. You need to keep it in mind. FYI, 1-Hz highpass with Hamming window and fiter order 75000 results in the transition bandwidth of 0.022; Andreas's heuristics suggests 1.<br>
<br>
> Is the drift in 0.1hz data ok? I get 'better looking' ERP waveforms & more robust differences between conditions in 0.1hz data – I'm worried this is mostly due to drift.<br>
<br>
Sadly, it is often the case that our eye are trained for something that does not have a good ground. Rousslet (2012) showed 'distortion' of ERP waveforms after 1- and 2-Hz highpass (but again with old function). However, if you know Gibb's phenomenon etc and the exact filter order you are using, you would find nothing wrong. Same goes for your/my impression of the 0.1-Hz high-passed data. I would say the waves are drifting and at least bad for the purpose of ICA. But for the researchers of EEG infraslow oscillations, they would say oh it's a good data.<br>
<br>
So there is no good or bad. After averaging several hundred trials, the apparently drifting signals (to my eyes) will produce 'better' ERP waveforms, thanks to the averaging process. If you say you will run ICA on the 0.1-Hz highpassed data, I'd say you shouldn't.<br>
<br>
Stephan Debener's solution is that you apply 1-Hz high-pass on the data, run ICA, copy the weight matrix to the 0.1-Hz high-passed data.<br>
<br>
Makoto<br>
<br>
</span></span><div><div class="h5"><div><div>On Tue, Aug 4, 2015 at 10:20 PM, Kevin Tan <<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a><mailto:<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a>><mailto:<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a><mailto:<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a>>>> wrote:<br>
Hi all,<br>
<br>
There are numerous papers that conclude that >0.1hz high-pass filtering distorts ERPs. However, I notice a lot of remaining drift after 0.1hz hi-pass, especially compared to 1hz hi-pass. I'm using a BioSemi Active2 128ch.<br>
<br>
0.1hz hi-pass:<br>
<a href="https://cmu.box.com/s/1uafw786miveruz85ycj3taxflzg7p7f" rel="noreferrer" target="_blank">https://cmu.box.com/s/1uafw786miveruz85ycj3taxflzg7p7f</a><br>
<br>
1hz hi-pass:<br>
<a href="https://cmu.box.com/s/t1dbzntjcwdrsp734m949xnzmycvpw5p" rel="noreferrer" target="_blank">https://cmu.box.com/s/t1dbzntjcwdrsp734m949xnzmycvpw5p</a><br>
<br>
Is the drift in 0.1hz data ok? I get 'better looking' ERP waveforms & more robust differences between conditions in 0.1hz data – I'm worried this is mostly due to drift.<br>
<br>
The 1hz data has ERP 'distortions': negative slope from start of epoch until P1 & negative deflection of later components. Thus, I'm not comfortable with either of the filters.<br>
<br>
The screenshots show data run only through 1) PREP pipeline 2) high-pass filtering 3) epoching. The final cleaned data shows the same drift.<br>
<br>
My full preproc stream:<br>
<br>
ICA dataset:<br>
- Load PREP'd data<br>
- 1hz hi-pass<br>
- Epoch<br>
- Epoch rejection<br>
- Extended ICA (binica)<br>
- Determine bad ICs<br>
<br>
Final dataset:<br>
- Load (unfiltered) PREP'd data<br>
- 0.1hz hi-pass (tried 1hz for comparison too)<br>
- Epoch<br>
- Generate ICs from matrices of ICA dataset<br>
- Remove bad ICs determined from ICA dataset<br>
- Epoch rejection<br>
- DIPFIT<br>
- Make ERPs<br>
<br>
Any input would be much appreciated!<br>
<br>
Many thanks,<br>
Kevin<br>
--<br>
Kevin Alastair M. Tan<br>
Lab Manager/Research Assistant<br>
Department of Psychology & Center for the Neural Basis of Cognition<br>
Carnegie Mellon University<br>
<br>
</div></div></div></div>Baker Hall 434<<a href="https://www.google.com/maps/place/40%C2%B026%2729.5%22N+79%C2%B056%2744.0%22W/@40.4414869,-79.9455701,61m/data=!3m1!1e3!4m2!3m1!1s0x0:0x0" rel="noreferrer" target="_blank">https://www.google.com/maps/place/40%C2%B026%2729.5%22N+79%C2%B056%2744.0%22W/@40.4414869,-79.9455701,61m/data=!3m1!1e3!4m2!3m1!1s0x0:0x0</a>> | <a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a><mailto:<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a>><mailto:<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a><mailto:<a href="mailto:kevintan@cmu.edu" target="_blank">kevintan@cmu.edu</a>>> | <a href="http://tarrlab.org/kevintan" rel="noreferrer" target="_blank">tarrlab.org/kevintan</a><<a href="http://tarrlab.org/kevintan" rel="noreferrer" target="_blank">http://tarrlab.org/kevintan</a>><<a href="http://tarrlabwiki.cnbc.cmu.edu/index.php/KevinTan" rel="noreferrer" target="_blank">http://tarrlabwiki.cnbc.cmu.edu/index.php/KevinTan</a>><span class=""><br>
<span><br>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
</span></span>To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><mailto:<a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a>><mailto:<a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><mailto:<a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a>>><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a><mailto:<a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a>><mailto:<a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a><mailto:<a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a>>><span class=""><br>
<div><div><br>
<br>
<br>
--<br>
Makoto Miyakoshi<br>
Swartz Center for Computational Neuroscience<br>
Institute for Neural Computation, University of California San Diego<br>
</div></div></span></blockquote></div><br></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div></div>