<div dir="ltr">Iman - IF you know that a particular ERP (peak) is the projection of a single source, then <div> loc(mean) = mean(locs) + e % error e depending on the noise in the locs in interaction with the head model!</div><div> But typically we don't know this...</div><div><br></div><div>Scott</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Jan 19, 2016 at 4:48 PM, Iman Mohammad-Rezazadeh <span dir="ltr"><<a href="mailto:irezazadeh@ucdavis.edu" target="_blank">irezazadeh@ucdavis.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div lang="EN-US" link="#0563C1" vlink="#954F72">
<div>
<p class="MsoNormal">Hi EEGLABers, <u></u><u></u></p>
<p class="MsoNormal">I just wonder if anyone has done a research on the effect of averaging on source localization. In other words and in the group level analysis what is the difference between applying source localization on the grand average data AND applying
clustering method ( like EEGLAB) on sources based on individual subjects. <u></u><u></u></p>
<p class="MsoNormal">Thanks <u></u><u></u></p>
<p class="MsoNormal">Iman <u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal"><b>-------------------------------------------------------------<u></u><u></u></b></p>
<p class="MsoNormal"><b>Iman M.Rezazadeh, Ph.D<u></u><u></u></b></p>
<p class="MsoNormal">Semel Intitute, UCLA , Los Angeles<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
</div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature">Scott Makeig, Research Scientist and Director, Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla CA 92093-0961, <a href="http://sccn.ucsd.edu/~scott" target="_blank">http://sccn.ucsd.edu/~scott</a></div>
</div>