<div dir="ltr">Dear Nitin,<div><br></div><div>I forwarded this post to EEGLAB developers since I thought this could be used to make the current ICA clustering more robust. To me your solutions seem reasonable and I see no reason not to use it! I appreciate your effort to made it available for the community.</div><div><br></div><div>Makoto</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Sat, Mar 12, 2016 at 1:35 PM, Williams, Nitin J <span dir="ltr"><<a href="mailto:nitin.williams@helsinki.fi" target="_blank">nitin.williams@helsinki.fi</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">





<div lang="FI" link="#0563C1" vlink="#954F72">
<div>
<p class="MsoNormal"><span style="font-size:10.5pt">Hi,<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.5pt"><u></u> <u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt">Please excuse the shameless plug, this is to inform you about a MATLAB-based toolbox for cluster analysis that we have made available from:<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt"><u></u> <u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt"><a href="http://www.mathworks.com/matlabcentral/fileexchange/55938-clustering-toolbox" target="_blank">http://www.mathworks.com/matlabcentral/fileexchange/55938-clustering-toolbox</a><u></u><u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt"><u></u> <u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white">The toolbox implements the following pipeline:<u></u><u></u></span></p>
<p class="MsoNormal"><span><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white"> </span></span><span lang="EN-GB" style="font-size:10.5pt;color:#191919"><br>
<span style="background:white">1. Denoising of raw-data prior to cluster analysis, using Empirical Mode Decomposition<span> </span></span><br>
<span style="background:white">2. Determining number of clusters using Stability Index, a bootstrap-based index</span><br>
<span style="background:white">3. Initialise cluster centroids for <i>k</i>-means using method based on Genetic Algorithms<span> </span></span><br>
<span style="background:white">4. </span></span><span style="font-size:10.5pt;color:#191919;background:white">Visualisation of cluster analysis results using PCA-based method<span> <u></u><u></u></span></span></p>
<p class="MsoNormal"><span><span style="font-size:10.5pt;color:#191919;background:white"><u></u> <u></u></span></span></p>
<p class="MsoNormal"><span><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white">For details of pipeline and example application to ensembles of ERP single-trials, refer:<u></u><u></u></span></span></p>
<p class="MsoNormal"><span><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white"><u></u> <u></u></span></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white">Williams NJ, Nasuto SJ, Saddy, JD. Method for exploratory cluster analysis and visualisation<span> </span>of single-trial ERP ensembles.
<u></u><u></u></span></p>
<p class="MsoNormal"><i><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white">Journal of Neuroscience Methods</span></i><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white"> 250, 22-33.<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.5pt"><a href="http://www.sciencedirect.com/science/article/pii/S016502701500059X" target="_blank"><span lang="EN-GB" style="color:#004aa0;background:white">http://www.sciencedirect.com/science/article/pii/S016502701500059X</span></a><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.5pt"><u></u> <u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white">Please also cite above paper when publishing results from applying this code!<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white"><u></u> <u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white">Of course, any feedback/comments/queries welcome.<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt;color:#191919;background:white"><u></u> <u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt">Thanks & regards,<u></u><u></u></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="font-size:10.5pt">Nitin<u></u><u></u></span></p>
</div>
</div>

<br>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div>