<div dir="ltr">Dear Kay,<div><br></div><div>thank you so much for your explanation! I am aware that - as you mentioned - power and energy are very different concepts, energy being the capacity to do work (calculated by integrating power over time), whereas power is the rate, at which work is done or energy is transmitted.</div><div><br></div><div><ul>So, learning from you that PSD and power spectrum differ only in the normalization factor I still wonder:</ul><ul><br><li style="margin-left:15px"><font color="#404040" face="Arial, Helvetica, sans-serif" style="font-size:12.8px"><span style="line-height:17.992px">what do we actually get out from averaging the <span class="">power</span> <span class="">spectral</span> density for a specific frequency range</span></font><font color="#404040" face="Arial, Helvetica, sans-serif" style="font-size:12.8px"><span style="line-height:17.992px">, coded as </span></font><b style="font-size:12.8px">mean(PSD(F>=fFreqency & F<=lastFreq))</b><span style="font-size:12.8px">; </span><font style="font-size:12.8px"><font color="#404040" face="Arial, Helvetica, sans-serif"><span style="line-height:17.992px">(e.g. </span></font>fFreqency = 3.5 lastFrequency 7.5 for Theta<font color="#404040" face="Arial, Helvetica, sans-serif"><span style="line-height:17.992px">)</span></font> </font></li><ul><li style="margin-left:15px"><span style="font-size:12.8px">would this be called "PSD for Theta?" Probably not? Is the direct output then </span><span style="font-size:12.8px">microv^2/Hz? </span></li><li style="margin-left:15px"><span style="font-size:12.8px">papers reporting PSD instead of power spectrum plotted the complete power density without averaging the psd for a specific frequency range. I am though interested in the power of specific frequency band and my initial preferation to use pwelch was its </span><span style="color:rgb(64,64,64);font-family:Arial,Helvetica,sans-serif;font-size:13px;line-height:17.992px">smoother </span><span class="" style="color:rgb(64,64,64);font-family:Arial,Helvetica,sans-serif;font-size:13px;line-height:17.992px">power</span><span style="color:rgb(64,64,64);font-family:Arial,Helvetica,sans-serif;font-size:13px;line-height:17.992px"> </span><span class="" style="color:rgb(64,64,64);font-family:Arial,Helvetica,sans-serif;font-size:13px;line-height:17.992px">spectrum gain.</span></li></ul></ul><div><font color="#404040" face="Arial, Helvetica, sans-serif"><span style="line-height:17.992px">Agnieszka</span></font></div></div><div class="gmail_extra"><br><div class="gmail_quote">2016-06-28 1:10 GMT+02:00 Kay Sung <span dir="ltr"><<a href="mailto:ksung3@jhmi.edu" target="_blank">ksung3@jhmi.edu</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div lang="EN-US" link="blue" vlink="purple">
<div>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">Hi,
<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">I had the same question about the power spectral density for myself and asked for some help in EEGlab list. Probably because of my lack of knowledge, I could not find very
satisfactory explanation. But here is what I learned from various sources. (I’m not an electric engineer and may be wrong about many things.)<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">The power spectral density is often expressed in watts/Hz and this unit in fact tells the amount of actual power of the signal. For now, forget about ‘/Hz’ term.
<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">Note that 1 watt is 1*V*I or 1*V^2/R. Therefore, in electric engineering, to measure the power (watt), we need to know at least two of three terms (V, I, or R). If we can
somehow assume that R is constant, than V^2 is directly proportional to watt, the power. Note that power (e.g., watt) and energy (e.g., I, the electric current) are different things.
<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">The constant impedance may be true in electric hardware but not in human brain. In EEG setting, there is no way to know the exact amount of current (I) or impedance (R). The
constant impedance is certainly not true. Given these situations in EEG, voltage is the only way to approximate the actual power (well, that’s the only thing we can measure) and the simplest measure of power is apparently V^2, which is known as absolute power.
At this point, I do not know that we use V^2 as absolute power in EEG because we can assume R as relatively constant or simply because we don’t know R and decided to ignore it. I know some people say as if the voltage is the measure of power but I think that
is a mistake at least in EEG settings. The voltage is relatively defined by the amount of electric current (I) and impedance (i.e., V = IR) and watt is only available when we know at least two terms.
<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">Regarding the ‘/Hz’ term, we often use V^2/Hz as power measure (EEGlab calculates this when no baseline is subtracted for power calculation). As Dr. Horton explained before,
the denominator (/Hz) is a normalization factor (the frequency bin size) and it is there so that the comparison of two different datasets is meaningful. This is because FFT may use different frequency bin size depending on the range of frequency in the data
to be analyzed. The comparison of power based on FFT analysis will be meaningless if two datasets has different range of frequency.<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">A side note. One of my questions I had before was whether we can express the spectral power (V^2/hz) as decibel. (at that time, I did not know the meaning of ‘/hz’.) Makoto
said we can, so it should be (</span><span style="font-size:13.0pt;font-family:Wingdings">J</span><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">). It is basically the spectral power against a unit spectral power (V^2/Hz over 1 V^2/Hz) and
therefore we could say it is dB measure. <u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">Please correct any mistakes that I have in this posting. I’m still learning…<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif">K.<u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif"><u></u> <u></u></span></p>
<p class="MsoNormal" style="margin-bottom:12.0pt"><b><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">Kyongje (Kay) Sung, Ph.D</span></b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">Research Associate<br>
<b>Johns Hopkins University School of Medicine</b><br>
Cognitive Neurology & Neuropsychology – Department of Neurology</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f"> </span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">1629 Thames Street, Suite 350</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">Baltimore, MD 21231<br>
P <a href="tel:443-287-8019" value="+14432878019" target="_blank">443-287-8019</a> | F <a href="tel:410-955-0188" value="+14109550188" target="_blank">410-955-0188</a><br>
</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><a href="mailto:ksung3@jhmi.edu" target="_blank"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">ksung3@jhmi.edu</span></a></span><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f"><br>
</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><a href="http://web.jhu.edu/cognitiveneurology/index.html" target="_blank"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">web.jhu.edu/cognitiveneurology/index.html</span></a><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">_______________________________________________________________________________</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0">WARNING: This E-mail (including any attachments) is not secure. Information sent by e-mail may not remain</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0">confidential. This email may contain health care information. Permission to use or disclose this information has
</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0">been granted either by law or the patient. Further use or disclosure without additional patient authorization or as
</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0">otherwise permitted by law is prohibited.
</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0">DISCLAIMER: This e-mail is intended only for the individual to whom it is addressed. It may be used only in
</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0">accordance with applicable laws. If you received this e-mail by mistake, notify the sender and destroy the e-mail.</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0"> </span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Calibri Light",sans-serif;color:#0070c0">Please consider the environment before printing this e-mail</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#00337f">_______________________________________________________________________________</span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"><u></u><u></u></span></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif;color:#1f497d"><u></u> <u></u></span></p>
<p class="MsoNormal"><span style="font-size:13.0pt;font-family:"Calibri",sans-serif;color:#1f497d"><u></u> <u></u></span></p>
<p class="MsoNormal"><b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"> <a href="mailto:eeglablist-bounces@sccn.ucsd.edu" target="_blank">eeglablist-bounces@sccn.ucsd.edu</a> [mailto:<a href="mailto:eeglablist-bounces@sccn.ucsd.edu" target="_blank">eeglablist-bounces@sccn.ucsd.edu</a>]
<b>On Behalf Of </b>Agnieszka Zuberer<br>
<b>Sent:</b> Monday, June 27, 2016 9:40 AM<br>
<b>To:</b> EEGLAB List <<a href="mailto:eeglablist@sccn.ucsd.edu" target="_blank">eeglablist@sccn.ucsd.edu</a>><br>
<b>Subject:</b> [Eeglablist] power spectrum versus power spectral density<u></u><u></u></span></p><div><div class="h5">
<p class="MsoNormal"><u></u> <u></u></p>
<div>
<p class="MsoNormal">Dear eeglab-community,<u></u><u></u></p>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<div>
<p class="MsoNormal">for our resting baseline measurements we would like to compute the power for Theta, Alpha and Beta. In the
<a href="http://ch.mathworks.com/help/signal/examples/practical-introduction-to-frequency-domain-analysis.html" target="_blank">
eeglab-tutorial</a> we read that calculating the power spectral density with pwelch <span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#404040">would yield a smoother power spectrum with power values closer to the expected values.</span><u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<div>
<p class="MsoNormal" style="line-height:12.0pt"><span style="font-size:10.0pt">Our questions are:<u></u><u></u></span></p>
</div>
</div>
<div>
<div style="margin-left:6.75pt;margin-right:6.75pt;margin-bottom:4.5pt;word-wrap:break-word">
<div>
<ul type="disc">
<li class="MsoNormal">
What is the difference between power spectrum <b><span style="font-size:10.5pt;background:#fafafa">(V^2/Hz)</span></b> and power-spectral density
<b>(</b><b><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#404040">watts/Hz)</span></b><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#404040"> in </span>lay terminology for a non-electrophysiologist? Here we read tons
of discussions on research gate and other pages, but the difference was mainly defined in units instead of really explaining the meaningful difference. Any literature on that would be highly appreciated.<u></u><u></u></li><li class="MsoNormal">
<span style="font-family:"Arial",sans-serif;color:#404040">what do we actually get out from averaging the power spectral density for a specific frequency range, coded as </span><b>mean(PSD(F>=fFreqency & F<=lastFreq))</b>; <span style="font-size:7.5pt;font-family:"Arial",sans-serif;color:#404040">(e.g. </span><span style="font-size:7.5pt">fFreqency =
3.5 lastFrequency 7.5 for Theta</span><span style="font-size:7.5pt;font-family:"Arial",sans-serif;color:#404040">)</span><span style="font-size:7.5pt"> </span><u></u><u></u></li></ul>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
<div>
<p class="MsoNormal">Thank you very much in advance.<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal">Agnieszka<u></u><u></u></p>
</div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
</div>
</div>
</div>
<div>
<div>
<div>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
</div>
</div>
</div>
</div>
</div></div></div>
</div>
</blockquote></div><br>
</div></div>