<div dir="ltr">Dear Agnieszka,<div><br></div><div>First of all, if your data has poor quality you can't expect good results even if you perform the fansiest signal processing. This is called GIGO (garbage-in, garbage-out). There is no established way to evaluate the EEG data quality in a non-relative sense (i.e. without depending on experience). It's better to ask someone experienced to evaluate your data quality.</div><div><br></div><div>For cleaning continuous data, I recommend using ASR in clean_rawdata() plugin as a pre-ICA processing, then ICA. If this approach does not work, I would doubt the data quality.</div><div><br></div><div>If you are interested in my personal memos for preprocessing pipeline, see this page.</div><div><br></div><div><a href="http://sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline">http://sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline</a><br></div><div><br></div><div>Makoto</div><div><br></div><div><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Jun 13, 2016 at 7:30 AM, Agnieszka Zuberer <span dir="ltr"><<a href="mailto:azuberer@googlemail.com" target="_blank">azuberer@googlemail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div dir="ltr">hi everyone,<div><br></div><div>we would like to perform a spectral analysis for Theta, Alpha and Beta power based on the welch approach on our continuous data sets, recorded with 3 scalp electrodes (FZ, CZ, OZ) referenced to the mastoid.</div><div><br></div><div>We gained bad results with both regression based artifact corrections (Gratton, 1983) and ICA. Reading the preprocessing tutorials of eeglab for continuous datasets, we wonder about the order of following procedures</div><div><br></div><div>a) <span style="color:rgb(84,84,84);line-height:18.2px">reject continuous portions of data based on spectrum (</span>with pop_rejcont)</div><div>b) <span style="color:rgb(84,84,84);line-height:18.2px">reject continuous portions by </span>simple mv-threshold (iterating through the raw data in 1 second-steps and reject portions exceeding 150mv)</div><div>c) perform pwelch spectral analysis</div><div><br></div><div>Our question is, what is worse:</div><div>- performing a pwelch approach on "cleaned" data resulting in breakes in the data </div><div><b>or </b><br></div><div>- performing a pwelch approach on raw uncorrected data while maintaining the continuity of the data and reject data afterwards with indices for segments marked for rejection<br></div><div><br></div><div>thank you very much for helping us out.</div><span class=""><font color="#888888"><div><br></div><div>Agnieszka</div><div><br></div><div><br></div><div>
</div></font></span></div>
<br>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div></div>