<div dir="ltr">Dear Clemens,<div><br></div><div>This clarification may be of interest for other subscribers too, so let me get back to the list to continue.</div><div><br></div><div>Sorry for slow response. I've been swamped by a project I've been working on since January, which is finished (I believe) yesterday.</div><div><br></div><div><div>> Did I understand correctly, that, to take ERSPs as an example, the data, wich is hundreds of time/frequency points is reduced to principal components that explain the most variance? In components that for example capture a lot of fm-theta, would this (first) principal component take its weight from the time/frequency points in 4-8 Hz range, high in power, and some latency? In other words, there a hundreds of dimensions, if I reduce to five dimensions, I am left with, mostly theta, some alpha, some noise, etc.? </div><div><br></div><div>This is my first time to check this process in code so I could be wrong.</div><div>For the case of ERSP/ITC, std_preclust() line 362 says X, which should be frequency x time, is reshaped to 1 x numel(X), which means time-frequency is vectorized. For example, suppose you have ERSP/ITC matrix of 30 (freqs) x 200 (times) x 50 (ICs), you'll run runpca() at line 404 of the same function on 6000 x 50 matrix. If you specify ERSP/ITC dimension of 10, this should be 10 x 50 matrix after dimension reduction. So the vectorized time-frequency data are dimension-reduced.</div><div><br></div><div>> I am sorry to bother you, perhaps you can also suggest some literature where people have done similar things. (I have read Julie Ontons paper from 2005 on FMT cluster, Still I am not so confident if I get the PCA thing) <br></div></div><div><br></div><div>I have never seen a publication detailing this part. However, this way of using PCA to reduce data dimension is extremely popular in the engineering field, and no need to validate... that's how I feel.</div><div><br></div><div>Makoto</div><div><br></div><div><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Thu, Jun 9, 2016 at 2:13 AM, Clemens DICKHUT <span dir="ltr"><<a href="mailto:clemens.dickhut@uni.lu" target="_blank">clemens.dickhut@uni.lu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">
<div style="word-wrap:break-word">
<div>Dear Makoto, </div>
<div><br>
</div>
Thanks a lot for your reply. I have read the online manual thoroughly, however, the part where it is described how PCA reduces the dimensions of the respective measures is a little vague… at least I am not able to grasp it.
<div><br>
</div>
<div>Did I understand correctly, that, to take ERSPs as an example, the data, wich is hundreds of time/frequency points is reduced to principal components that explain the most variance? In components that for example capture a lot of fm-theta, would
this (first) principal component take its weight from the time/frequency points in 4-8 Hz range, high in power, and some latency? In other words, there a hundreds of dimensions, if I reduce to five dimensions, I am left with, mostly theta, some alpha, some
noise, etc.? </div>
<div><br>
</div>
<div>I am sorry to bother you, but this step really is a black box to me… </div>
<div><br>
</div>
<div>I am sorry to bother you, perhaps you can also suggest some literature where people have done similar things. (I have read Julie Ontons paper from 2005 on FMT cluster, Still I am not so confident if I get the PCA thing) </div>
<div><br>
</div>
<div>All the best, </div><span class=""><font color="#888888">
<div>Clemens </div>
</font></span><div><span class="">
<div>
<div style="color:rgb(0,0,0);letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;word-wrap:break-word">
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
<br>
__________________________________</div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
Clemens Dickhut, M.Sc., (PhD Student) <br>
Institute for Health and Behaviour<br>
Research Unit INSIDE<br>
University of Luxembourg - Campus Belval<br>
Maison des Sciences Humaines<br>
11, Porte des Sciences, R. 04 415<br>
L-4366 Esch-sur-Alzette</div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
Tel.: <a href="tel:%28%2B352%29%2046%2066%2044%209536" value="+3524666449536" target="_blank">(+352) 46 66 44 9536</a><br>
</div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
<br>
</div>
</div>
<br>
</div>
<br>
</span><div><div class="h5"><div>
<blockquote type="cite">
<div>On 07 Jun 2016, at 01:26, Makoto Miyakoshi <<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>> wrote:</div>
<br>
<div>
<div dir="ltr">Dear Clemens,
<div><br>
</div>
<div>> As for example, I want to reduce the dimensions of ERSP/dipoles, spectra, given all ICs, which dimensions, what are the dimensions that would be reduced for the respective measures? <br>
</div>
<div class="gmail_extra"><br>
</div>
<div class="gmail_extra">If I remember correctly, EEGLAB manual says</div>
<div class="gmail_extra"><br>
</div>
<div class="gmail_extra">1. Set the parameters so that total number of dimensions across all the measures are <20-30 because k-means clustering performance becomes worse if >30.</div>
<div class="gmail_extra"><br>
</div>
<div class="gmail_extra">2. Do not use 'final dimension' thing.</div>
<div class="gmail_extra"><br>
</div>
<div class="gmail_extra">I think it's a good idea to keep it below 20 to see how it works.</div>
<div class="gmail_extra">I personally recommend you use just dipole and just a little bit (weight 1 - 3) of spectrum with dimension 10-15. It's a good idea to avoid the measure which you'll test using statistics in the end to avoid 'double dipping' issue (if
you don't know what it is, google 'voodoo correlation'.)</div>
<div class="gmail_extra"><br>
</div>
<div class="gmail_extra">Makoto</div>
<div class="gmail_extra"><br>
</div>
<div class="gmail_extra"><br>
<div class="gmail_quote">On Tue, May 24, 2016 at 1:42 AM, Clemens DICKHUT <span dir="ltr">
<<a href="mailto:clemens.dickhut@uni.lu" target="_blank">clemens.dickhut@uni.lu</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">
<div style="word-wrap:break-word">Dear all,
<div><br>
</div>
<div>I have some trouble understanding the reduction of dimensionality on measures selected for component clustering. (STUDY —> build pre-clustering array)</div>
<div><br>
</div>
<div>As for example, I want to reduce the dimensions of ERSP/dipoles, spectra, given all ICs, which dimensions, what are the dimensions that would be reduced for the respective measures? </div>
<div><br>
</div>
<div>I am grateful for any input. </div>
<div><br>
</div>
<div>Best, </div>
<div>Clemens </div>
<div><br>
<div>
<div style="letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;word-wrap:break-word">
<div style="font-family:Helvetica;font-size:16px;font-style:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
__________________________________</div>
<div style="font-family:Helvetica;font-size:16px;font-style:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
Clemens Dickhut, M.Sc., (PhD Student) <br>
Institute for Health and Behaviour<br>
Research Unit INSIDE<br>
University of Luxembourg - Campus Belval<br>
Maison des Sciences Humaines<br>
11, Porte des Sciences, R. 04 415<br>
L-4366 Esch-sur-Alzette</div>
<div style="font-family:Helvetica;font-size:16px;font-style:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
Tel.: <a href="tel:%28%2B352%29%2046%2066%2044%209536" value="+3524666449536" target="_blank">
(+352) 46 66 44 9536</a><br>
</div>
<div style="font-family:Helvetica;font-size:16px;font-style:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
<br>
</div>
</div>
<br>
</div>
<br>
</div>
</div>
<br>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">
http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">
eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">
eeglablist-request@sccn.ucsd.edu</a><br>
</blockquote>
</div>
<br>
<br clear="all">
<div><br>
</div>
-- <br>
<div data-smartmail="gmail_signature">
<div dir="ltr">Makoto Miyakoshi<br>
Swartz Center for Computational Neuroscience<br>
Institute for Neural Computation, University of California San Diego<br>
</div>
</div>
</div>
</div>
</div>
</blockquote>
</div>
<br>
</div></div></div>
</div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div></div>