<div dir="ltr"><div style="font-size:12.8px;border-style:solid none none;border-top-width:1pt;border-top-color:rgb(225,225,225);padding:3pt 0in 0in"><p class="MsoNormal" style="border:none;padding:0in">I have been struggling with this issue for a couple years, also, and have two responses to your questions, Iman.</p><p class="MsoNormal" style="border:none;padding:0in"><br></p><p class="MsoNormal" style="border:none;padding:0in">First, some of the (fomer) researchers at UCSD, including Tim Mullen (who developed the SIFT connectivity toolbox), were working hard on a group-level, source-space connectivity toolbox, that would use markov chain monte carlo estimations of posterior distribution densities to deal with the missing data problem that is inherent to multi-subject connectivity analyses. Here is a link to a poster they presented a couple years ago on it. </p><p class="MsoNormal" style="border:none;padding:0in"><br></p><p class="MsoNormal" style="border:none;padding:0in"><a href="http://sccn.ucsd.edu/~scott/pdf/Thompson_and_Mullen_Poster_ICONXI.pdf">http://sccn.ucsd.edu/~scott/pdf/Thompson_and_Mullen_Poster_ICONXI.pdf</a></p><p class="MsoNormal" style="border:none;padding:0in"><br></p><p class="MsoNormal" style="border:none;padding:0in">However, due to some extenuating circumstances, they were not able to complete it. I am so thankful Makoto has taken up the charge to address the issue with his own toolbox!</p><p class="MsoNormal" style="border:none;padding:0in"><br></p><p class="MsoNormal" style="border:none;padding:0in">Second, a work-around that I have been using has been to conduct k-means clustering (using the standard STUDY function in EEGLAB), with a heavy weight on "dipole location" in the pre-clustering step. Then, I use these across-subject clusters (choosing the clusters that have the highest recruitment, i.e. have IC's from as many subjects as possible) to determine which IC's I will measure connectivity between. In other words, if Cluster 5 and Cluster 9 both recruited IC's from >90% of my subjects, then for each subject that has IC's in both clusters, I will measure the connectivity between the components, for that subject, that are in both clusters. </p><p class="MsoNormal" style="border:none;padding:0in"><br>Then i average the connectivity values accordingly, and simply ignore any subjects that are not co-occurring in both clusters of interest.</p><p class="MsoNormal" style="border:none;padding:0in"><br></p><p class="MsoNormal" style="border:none;padding:0in">This is not ideal but does generate plausible results.</p><p class="MsoNormal" style="border:none;padding:0in"><br></p><p class="MsoNormal" style="border:none;padding:0in">I'm so glad you brought this issue back onto the front burner, Iman!</p><p class="MsoNormal" style="border:none;padding:0in"><br></p><p class="MsoNormal" style="border:none;padding:0in">James</p><p class="MsoNormal" style="border:none;padding:0in"><b><br></b></p><p class="MsoNormal" style="border:none;padding:0in"><b>From: </b><a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">Makoto Miyakoshi</a><br><b>Sent: </b>Wednesday, July 13, 2016 12:00 AM<br><b>To: </b><a href="mailto:irezazadeh@ucdavis.edu" target="_blank">Iman Mohammad-Rezazadeh</a><br><b>Cc: </b><a href="mailto:eeglablist@sccn.ucsd.edu" target="_blank">EEGLAB List</a>; <a href="mailto:smakeig@ucsd.edu" target="_blank">Scott Makeig</a>; <a href="mailto:s.sanei@surrey.ac.uk" target="_blank">s.sanei@surrey.ac.uk</a><br><b>Subject: </b>Re: [Eeglablist] Group level brain connectivity analyses in sourcelevel</p></div><p class="MsoNormal" style="font-size:12.8px"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p><div style="font-size:12.8px"><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">Dear Iman,</span><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u><u></u></span></p><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">I have an alpha version. I'll present it in SfN this year (see below for poster info). I'm currently working on ULCA data sets using it. I plan to release a beta version of the tool this summer (of course, it's a pluging for EEGLAB). I'll meet my colleagues in Qusp soon to report finalization of it and discuss publication.<u></u><u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">Makoto<u></u><u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<u></u><u></u></span></p></div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">Your abstract, "<b>Group-level statistics on EEG effective source connectivity</b>," has been accepted into the program as a traditional poster presentation<br><br>Session Type: Poster<br>Session Number: 851<br>Session Title: Computational Tools for Human Data II<br>Date and Time: Wednesday Nov 16, 2016 1:00 PM - 5:00 PM<br>Location: San Diego Convention Center: Halls B-H<br>Abstract Control Number: 9417<u></u><u></u></span></p><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">Multivariate connectivity measures in EEG have been gathering attention to investigate causal information flow in dynamics across signals. There are known issues in applying this method on scalp-recorded channel EEG data, such as volume conductance and scalp mixing, which makes the original scalp channel data highly correlated. To address these issues, applying independent component analysis (ICA) as preprocess is effective. It finds a linear transform to obtain effective source signals that are temporally maximally independent to each other. Thanks to this, the issues raising from volume conductance and scalp mixing are both addressed cleverly without estimating any parameters in electrophysiological forward model. However, because ICA reveals individual differences, it creates problems in the group-level statistics. For example, in the conventional EEG analysis, group-level statistics was straightforward; selecting a channel e.g. Cz from all the subjects was regarded to be sufficient. But after ICA preprocessing, there is no exact common independent comonent across all the subjects. Hence we developed a following statistical framework: 1. Preprocess individual data with ICA, estimate equivalent current dipoles, and apply multivariate connectivity measures across all pairs of ICs; 2. Compute dipole density that distributes within MNI brain space by applying 3-D Gaussian kernel; 3. Segment dipole density into anatomical regions; 4. Compute region-to-region pairwise dipole density that is weighted by connectivity measures; 5, Repeat above process for all subjects; 6, Perform statistics between conditions using variance across subjects. We developed a free, open-source source toolbox that plugs into EEGLAB. With this solution, effective EEG source connectivity can be evaluated in time-frequency domain at the group-level statistics with multiple comparison corrections. It is also generate a movie to visualize information flow. We expect it will also impact MEG, ECoG, and other electrophysiological data analysis.<u></u><u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">On Tue, Jul 12, 2016 at 4:11 PM, Iman Mohammad-Rezazadeh <<a href="mailto:irezazadeh@ucdavis.edu" target="_blank">irezazadeh@ucdavis.edu</a>> wrote:<u></u><u></u></span></p><blockquote style="border-style:none none none solid;border-left-width:1pt;border-left-color:rgb(204,204,204);padding:0in 0in 0in 6pt;margin-left:4.8pt;margin-right:0in"><p class="MsoNormal">Hi EEGLABers,<u></u><u></u></p><p class="MsoNormal"> </p><p class="MsoNormal">My concern is because in any experiment subjects don’t necessarily share common EEG sources ( nodes in the network) in terms of their locations, number of sources , etc.</p><p class="MsoNormal"> </p><p>1-<span style="font-size:7pt"> </span>Does anyone has experience on doing group level connectivity analyses on source ( not channel level).</p><p>2-<span style="font-size:7pt"> </span>In a single subject design ( pre-/ post-treatment , for example) how can we compare the brain connectivity in source level by considering the above concern?</p><p class="MsoNormal"> </p><p class="MsoNormal">I would greatly appreciate any input and also please share any resources that you might think it is helpful.</p><p class="MsoNormal"> </p><p class="MsoNormal">Thanks</p><p class="MsoNormal">Iman</p><p class="MsoNormal"><b>-------------------------------------------------------------</b></p><p class="MsoNormal"><b>Iman Rezazadeh, Ph.D</b></p><p class="MsoNormal">Project Scientist | Semel Intitute, UCLA , Los Angeles, CA</p><p class="MsoNormal">Adjunct Researcher | Center for Mind and Brain, Davis, CA</p><p class="MsoNormal"> </p><p class="MsoNormal"> </p></blockquote></div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><br><br clear="all"><u></u><u></u></span></p><div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif"><u></u> <u></u></span></p></div><p class="MsoNormal"><span style="font-size:12pt;font-family:"Times New Roman",serif">--<u></u><u></u></span></p></div></div><p class="MsoNormal" style="font-size:12.8px"><span style="font-size:12pt;font-family:"Times New Roman",serif">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego</span></p><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div>James Jones-Rounds</div>Laboratory Manager<br>Human Development EEG and Psychophysiology (HEP) Laboratory,<div>Department of Human Development,<br>--------------------------------------------<br>Cornell University | Ithaca, NY<br></div><div>607-255-9883</div><div><a href="mailto:eeg@cornell.edu" target="_blank">eeg@cornell.edu</a></div></div></div>
</div>