<div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><div class="gmail_default" style="font-size:13px">Hi Tarik,</div><div class="gmail_default" style="font-size:13px"><br></div><div class="gmail_default" style="font-size:13px">thank you for your quick response.</div><div class="gmail_default" style="font-size:13px"><br></div><div class="gmail_default" style="font-size:13px">I have one more questions about this issue: </div><div class="gmail_default" style="font-size:13px">- When I check data rank of my raw CNT file I have a rank of 37, that is the effective number of rows of my matrix. Then, when I check the rank of my data after average re-referencing and adding Cz back I have a rank of 38, that is the effective number of rows of my new matrix. Thus, if I understand correctly, for both my datasets the matrix is full-ranked.</div><div class="gmail_default" style="font-size:13px">Should I find instead a data rank of N-1, rather than a data rank of N, due to the rank deficiency determined by the average reference?<br></div><div class="gmail_default" style="font-size:13px"><br></div><div class="gmail_default" style="font-size:13px">Antonio</div></div></div><div class="gmail_extra"><br clear="all"><div><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><span style="font-family:arial,helvetica,sans-serif">Antonio Maffei, Ph.D. Student<br></span></div><div dir="ltr"><span style="font-family:arial,helvetica,sans-serif"><br>Department of General Psychology (DPG)<br>University of Padova<br>Via Venezia 8 - 35131 <br>Padova, Italy<br><br>email: <a href="mailto:antonio.maffei@phd.unipd.it" target="_blank">antonio.maffei@phd.unipd.it</a><br></span></div><div><span style="font-family:arial,helvetica,sans-serif">office: 049 8276256</span></div></div></div></div></div></div></div></div>
<br><div class="gmail_quote">2016-07-21 21:48 GMT+02:00 Tarik S Bel-Bahar <span dir="ltr"><<a href="mailto:tarikbelbahar@gmail.com" target="_blank">tarikbelbahar@gmail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="color:rgb(51,51,153)">Hello Antonio, You should have enough data to make ICA happy, many groups use much less time and few channels but get valid-enough artifact-ICs. Your issue might be with rereferencing and adding CZ, and perhaps not fixing the rank. If you haven't had a chance to, please review Makoto's pipeline mentioned in the eeglablist, and the online eeglab tutorial. Googling eeglablist may also help. Some other notes are listed below. </div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">***************</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">remember to remove 1 channel to reduce rank for ICA, to reflect reduced rank due to the average rereferencing. Please google eeglablist for past mentions of this topic.<br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">Yes initial steps should take a long time, in general. It does not seem like it's an issue with your computer or installation.</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">consider downsampling the signal, or taking just half of the total signal time. This should confirm the speedups you expect.</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">consider going to 1-50 hz initially, this should "catch" any stereotyped components ICA can "see" in the data.<br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">consider demeaning and/or detrending the data </div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">consider detect+remove bad channels and not interpolating them before average rereferencing</div><div class="gmail_default" style="color:rgb(51,51,153)">[try to make sure you end up with at least 25 channels and that they are well distributed across the scalp.]<br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">consider the Cz in via interpolation before average rereferencing [or just leave out for now and interpolate it in after ICA-cleaning). In or out, it should not make much of difference in the hunt for ICA-derived stereotyped artifacts.</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><div class="gmail_default"><br></div></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div></div><div class="gmail_extra"><br><div class="gmail_quote"><div><div class="h5">On Wed, Jul 20, 2016 at 4:42 AM, Antonio Maffei <span dir="ltr"><<a href="mailto:antonio.maffei@phd.unipd.it" target="_blank">antonio.maffei@phd.unipd.it</a>></span> wrote:<br></div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div class="h5"><div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Dear all,</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">I am stepping in some problems when running ICA decomposition for artifact detection.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">My dataset consists in a continous 38 channels 70 minutes long recording, sampled at 500 Hz referenced to Cz.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">My preprocessing steps are the following:</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">- Re-reference to the average reference and adding Cz to the recording</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">-Filter with a band-pass filter set at 1 - 100 Hz</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">- Visual inspection of the recording and removal of big noisy artifacts, mainly movement artifacts, as suggested in the EEGLAB tutorials</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">After these steps my dataset consists of 1864585 data points on which I perform <i>runica</i> with the default options ('extended', '1').</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">I noticed that the process is very slow, and the algorithm needs to lowering the learning rate many times at the beginning but even so it seems that it fails to converge, since the wchange values does not decrease progressively (as they should) and it fails to reach the stop criterium (wchange <1e-07).</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">As a consequence I get a bad decomposition with uninterpretable components that prevent their use for artifact correction.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">I am wondering if this problem is related to the amount of data points fed to the ICA, since when I preprocessed shorter recordings I have not encountered such difficulties, or I am making some mistakes during my pipeline.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">A great thank to anyone who can help me.</div><span><font color="#888888"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Antonio</div>
</font></span></div>
<br></div></div>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br></div>
</blockquote></div><br></div>