<div dir="ltr"><div class="gmail_default" style="color:#333399">Hi Hannah, here's a suggestion, though there may be a simpler way.</div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399">Break EEG.data into two variables in matlab, one variable with the eye channels, one with the rest of the channels.</div><div class="gmail_default" style="color:#333399">Then filter the eye channels as you wish. Then rebuild the EEG.data so it contains all channels (by joining the two variables). Then save this as a new eeglab dataset.</div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399">You may also try do so by saving two versions of your dataset, one with just the eye channels, and one with the rest of the channels.</div><div class="gmail_default" style="color:#333399">You would have to then filter the eye channel .set file, then load both set file into memory,</div><div class="gmail_default" style="color:#333399">and then rebuild the EEG.data with all channels by joining the EEG.data variable from the two .set files. Then save that matrix, which should contain your filtered eye channels and the rest of the (non-eye) channels.</div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Oct 17, 2016 at 8:02 AM, Hanna Kadel <span dir="ltr"><<a href="mailto:kadel@staff.uni-marburg.de" target="_blank">kadel@staff.uni-marburg.de</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear EEGLab users, dear developers,<br>
<br>
I would like to use a low-pass filter on selected channels of my EEG<br>
data structure. So far, I've used pop_eegfiltnew for data filtering,<br>
but this applies the filter to all channels in the dataset. Is there any<br>
possibility to apply a filter *only* to specified channels, leaving all<br>
the other data unchanged? Or would I need to define my own filter<br>
function for this purpose, or use some workaround with copying parts of<br>
the dataset back and forth?<br>
<br>
(Background: For rejection of eye-movement-contaminated trials, I use<br>
VEOG and HEOG difference channels. Due to high frequency noise artifacts<br>
in some recordings, I get a lot of "false positive" artifact trials.<br>
Thus, I would like to low-pass filter the EOG-difference channels prior<br>
to artifact detection)<br>
<br>
Thanks a lot in advance for any hints & advice.<br>
<br>
Hanna<br>
<br>
--<br>
Dipl.-Psych. Hanna Kadel<br>
Philipps-Universität Marburg<br>
Fachbereich Psychologie<br>
Cognitive Neuroscience of Perception and Action<br>
Gutenbergstraße 18<br>
D-35032 Marburg<br>
<br>
Tel: 06421 28-22160<br>
E-Mail: <a href="mailto:hanna.kadel@staff.uni-marburg.de">hanna.kadel@staff.uni-marburg.<wbr>de</a><br>
______________________________<wbr>_________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/<wbr>eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.<wbr>ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.<wbr>edu</a></blockquote></div><br></div>