<div dir="ltr"><div class="gmail_default" style="color:rgb(51,51,153)">Hello Nasrin,</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">Sloreta does compute source signals as a time series if you want, review the documentation and GUI for Loreta.</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">In eeglab, the dipoles for ICs are essentially just "spatial" information that specify dipole estimates for a particular IC (or cluster of ICs in STUDY).</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">From eeglab's perspective, the ICs are themselves neural sources that have been decomposed by ICA.</div><div class="gmail_default" style="color:rgb(51,51,153)">Thus once you have an ICA decomposition in eeglab, you can consider the IC values (over time) in the eeglab .set files as</div><div class="gmail_default" style="color:rgb(51,51,153)">"continuous source signals". Of course, there's a lot of theory and opinion to this point of view, but it's pretty accurate.</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">If you seek distributed source signals, you're likely better off with sloreta, brainstorm, mne python, and some other tools out there.</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">You may also be interested in exploring Zeynep's NFT toolbox for eeglab, which may have some options of interest to you.</div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">If you have more questions about how ICA reflects sources, I recommend, if you have not had a chance to yet, to review the following:</div><div class="gmail_default" style="color:rgb(51,51,153)">ICA tutorial and tutorial data on the eeglab website</div><div class="gmail_default" style="color:rgb(51,51,153)">Onton and Makeig's chapter on ICA </div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)">You may also appreciate the following article:</div><div class="gmail_default" style="color:rgb(51,51,153)"><a href="https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ysFFLvkAAAAJ&cstart=20&sortby=pubdate&citation_for_view=ysFFLvkAAAAJ:ClCfbGk0d_YC" class="gmail-gsc_a_at" style="padding:8px 0px;font-size:16px;color:rgb(102,0,153);text-decoration:none;font-family:arial,sans-serif">Brain-Source Imaging: From sparse to tensor models</a><div class="gmail-gs_gray" style="margin:0px;padding:0px;border:0px;color:rgb(119,119,119);font-family:arial,sans-serif;font-size:13px">H Becker, L Albera, P Comon, R Gribonval, F Wendling, I Merlet</div><div class="gmail-gs_gray" style="margin:0px;padding:0px;border:0px;color:rgb(119,119,119);font-family:arial,sans-serif;font-size:13px">IEEE Signal Processing Magazine 32 (6), 100-112</div><div class="gmail-gs_gray" style="margin:0px;padding:0px;border:0px;color:rgb(119,119,119);font-family:arial,sans-serif;font-size:13px"><br></div><div class="gmail-gs_gray" style="margin:0px;padding:0px;border:0px;color:rgb(119,119,119);font-family:arial,sans-serif;font-size:13px"><br></div></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div><div class="gmail_default" style="color:rgb(51,51,153)"><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Sun, Nov 13, 2016 at 8:34 AM, nasrin maarefi <span dir="ltr"><<a href="mailto:n_maarefi@yahoo.com" target="_blank">n_maarefi@yahoo.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div style="color:#000;background-color:#fff;font-family:HelveticaNeue,Helvetica Neue,Helvetica,Arial,Lucida Grande,sans-serif;font-size:16px"><div id="m_-3659998675252576357yui_3_16_0_ym19_1_1479043334868_3765">Hello</div><div id="m_-3659998675252576357yui_3_16_0_ym19_1_1479043334868_3765" dir="ltr">I want to do source localization for constructing my signals sources from my ERPs. I did it by sLoreta software but I couldn't get source signals values like time series. </div><div id="m_-3659998675252576357yui_3_16_0_ym19_1_1479043334868_3765" dir="ltr">Is there any way in EEGLAB to construct source signals with matrix output not just color figures of activity?</div><div id="m_-3659998675252576357yui_3_16_0_ym19_1_1479043334868_3765" dir="ltr">thanks in advance.</div><div id="m_-3659998675252576357yui_3_16_0_ym19_1_1479043334868_3764"><br></div></div></div><br>______________________________<wbr>_________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/<wbr>eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.<wbr>ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.<wbr>edu</a><br></blockquote></div><br></div>