<div dir="ltr">Dear Scott,<div><br></div><div>If you take mean across 4-8Hz and 30-200Hz, you can do it. Currently, by default the frequency ranges are separated into log-spaced 100 bins.</div><div><br></div><div>Scott, this is a downgraded version of your 2nd-ICA analysis on spectra from every 1-s epoch (or something like that) presented in Onton & Makeig (2009) emotion study. Instead of running ICA on time-frequency IC activations multivariately, it performs within-IC cross-frequency power spectrum correlation. If I run ICA on the same data, it would replicate your method. Actually, I reduced the function into within-IC calculation only. Initially it was across all ICs, which means output from the function has IC x IC x freq x freq, but it was too much so I decided to cut all non-diagonal parts).</div><div><br></div><div>Makoto</div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Jan 3, 2017 at 11:45 PM, Scott Makeig <span dir="ltr"><<a href="mailto:smakeig@ucsd.edu" target="_blank">smakeig@ucsd.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Makoto - Does it allow calculation of correlations (?) between power in two given bands (e.g., 4-8 Hz vs 30-200 Hz, etc.)?<div><br></div><div>Scott</div></div><div class="gmail_extra"><div><div class="h5"><br><div class="gmail_quote">On Tue, Jan 3, 2017 at 9:28 PM, Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Dear List,</div><div><br></div><div>This is a proof of concept prototype and alpha version (i.e. not tested extensively). The idea is very simple: you can ask whether your 8Hz and 20Hz from the same independent component wax and wane together or not (and positively or negatively). If you wonder what you can do with your resting state EEG data, this may add potentially interesting findings. Please let me know if you encounter problems. Thank you for your cooperation.</div><a href="https://sccn.ucsd.edu/wiki/CrossFreqPowerSpec" target="_blank">https://sccn.ucsd.edu/wiki/Cro<wbr>ssFreqPowerSpec</a><span class="m_2899359739088790149HOEnZb"><font color="#888888"><br clear="all"><div><br></div>-- <br><div class="m_2899359739088790149m_-7462776101698382039m_-6495843357604430587gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</font></span></div>
</blockquote></div><br><br clear="all"><div><br></div></div></div><span class="HOEnZb"><font color="#888888">-- <br><div class="m_2899359739088790149gmail_signature" data-smartmail="gmail_signature">Scott Makeig, Research Scientist and Director, Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla CA 92093-0961, <a href="http://sccn.ucsd.edu/~scott" target="_blank">http://sccn.ucsd.edu/~scott</a></div>
</font></span></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div>